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Abstract. Gold nanoparticles (AuNPs) receive a great deal of attention for 

biomedical applications due to their unique properties to monitor intracellular 

delivery of therapeutic agents. Evidently, drug delivery is a compelling field of 

research due to the need of releasing medicine at specific locations in a controlled 

manner with a minimum amount of side effects. The present review focuses on the 

combination of AuNPs with different types of chemotherapeutic agents as potential 

drug delivery vehicles that can be used in cancer therapy. 
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1. Introduction 

According to the World Health Organization (WHO), cancer is the second 

major cause of death at a global level, leading to a staggering 9.6 million deaths as 

of 2018 [1]. The war on cancer has led to intensive research in order to develop 

alternative methods that would increase the efficacy of antitumor medication while 

decreasing the potential side effects. Nanotechnology has proven to be a promising 

alternative to conventional therapies. As nanoparticles are much smaller in size than 

cells, they can readily and easily penetrate into the cell and interact with DNA, 

enzymes, proteins and different receptors [2]. Different nanoparticles, NPs, are 

being widely studied due to their large surface area, enhanced ability to interact 

with cancerous cells, and capability to be functionalized with specific medication 

[3]. 

Gold nanoparticles (AuNPs) are probably the most researched ones in 

regards to cancer therapy. The leaky tumour vasculature would allow AuNPs to 
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easily accumulate, process that is known as the enhanced permeability and retention 

effect (EPR) [4]. They can be easily synthesized within a wide range of sized, from 

1 to 100 nm, and a multitude of shapes (spheres [5-8], rods [9, 10], triangles [11-

13], star-shaped [14-16]), are biocompatible and have the ability to be 

functionalized with several types of molecules [17-26].   

 Considering the unique properties of AuNPs and their potential applications 

there are already a great number of review papers tackling an in-depth study of 

synthesis methods and recent advances in cancer therapies and drug delivery [27-

31].  However, a review regarding AuNPs and different types of chemotherapeutic 

agents has not yet been done, taking into account various models of nanoscale 

interactions. With this in mind, the present review focuses on gold nanoparticles 

loaded with different types of chemotherapy medicines, divided by class, with a 

brief attention on the types of methods that can be employed in the synthesis of 

such nanoparticles.  

 

2. Synthesis of gold nanoparticles 

 

 While gold nanoparticles can technically be prepared by both ‘top-down’ 

and ‘bottom-up’ types of synthesis, this paper will focus on the latter, as this 

category permits a better control of properties and surface characteristics, such as 

size, size distribution, shape, zeta potential and nanoparticles charge analysis. 

Usually, the bottom-up methods refer to a chemical reduction of gold ions from a 

specific salt solution using a reducing agent followed by the stabilization of the gold 

nanoparticles with a capping agent.  

 

2.1. Chemical synthesis routes 

 Chemical synthesis routes are probably the most popular methods for the 

synthesis of gold nanoparticles as they allow for a better control of properties in the 

final product [5, 6, 8, 17, 20, 22-24, 26, 32-46]. As a rule, this types of methods 

involve 2 steps, namely, a reduction through agents (citric acid, borohydrides, 

sugars, oxalic acids, hydrogen peroxide) followed by a stabilization process (with 

different agents such as trisodium citrate dihydrate, cetyltrimethylammonium 

bromide, nitrogen or oxygen based ligands). A summary of some studies employing 

chemical routes for synthesizing AuNPs is presented in Table 1 followed by some 

brief detail on two of the most recognizable chemical synthesis routes. 

 The classic Turkevich method is perhaps the most employed one in 

synthesizing gold nanoparticles. Originally reported by Turkevich [32], with later 

modifications by Frens [33] this method is based on the aqueous reduction of 

hydrogen tetrachloroaurate (III, HAuCl4) by means of trisodium citrate. The  

citrate addition to a boiling aqueous solution of hydrogen tetrachloroaureate kept 
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 under a vigorous stirring leads to a formation of a ruby-red colloidal suspension of 

gold. Here, citrate acts as both a reducing agent for Au(III) to Au(0) and a 

stabilizing one, preventing any possible aggregation. Of course, by variating the 

ratio of HAuCl4 to citrate, temperature, and pH, gold nanoparticle falling within a 

wide range of size and degree of stability can be obtained. This synthesis method is 

widely used, either in its standard form [34-37] or with some variations [38]. 

   
Table 1. Chemical methods for the synthesis of AuNPs 

Gold salt 

precursor 
Agents 

AuNPs 

characteristics 
Reference 

AuCl3 Trisodium citrate, tannic 

acid, potassium carbonate 

Spherical and ellipsoidal shapes 

average diameter, d:   ~5 -7 nm 

5, 8 

HAuCl4 

 

Resveratrol  Spherical shape, d:  ~20 nm 6 

Na3Au(SO3)2 

 

Trisodium citrate Spherical, elliptical, triangular, 

pentagonal or hexagonal,  

d: ~ 48 nm 

22, 23 

 

 

 

 

 

 

 

HAuCl4 

 

 

 

Trisodium citrate Spherical or elliptical shape, 

d: ~14 nm 

5, 20, 22, 24, 26 

Sodium citrate,  ascorbic 

acid   + UV rays 

 Various shapes, various sizes,  

d: ~ 40 nm 

34 

 

 

Trisodium citrate 

Mostly spherical, various sizes, 

d: < 32 nm 

41 

Spherical, d: 5-10 nm 42 

Spherical, d: ~8-12 nm 43 

 

 

 

 

HAuCl4 

 

Hydroquinone citrate Spherical,  d: 50-200 nm 44 

NaBH4, citrate  Spherical, d: ~13 nm 45 

NaBH4,  

TOAB (N(C8H17)4Br), 

dodecanethiol, toluene 

Spherical,  d: 2-4 nm 46 

  

 To put it briefly, the Brust-Schriffrin [39, 40] method employs a chemical 

reduction of gold ions (HAuCl4 precursor) by means of borohydride in a water-

toluene system, followed by an alkanethiol adsorption. Gold nanoparticles 

synthesized through this method are reported to be highly stable, of spherical shape 

and soluble in organic solvents. 
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2.2. Biological synthesis routes 

 While the chemical methods discussed previously are the preferred 

synthesis routes for gold nanoparticles, the use of potentially toxic substances 

severely restricts the range of applications. This is especially the case for 

biomedical applications. Thus, the needs to find more suitable alternatives to 

prepare gold nanoparticles have led to the development of biological routes that 

employ plants, biomolecules or microorganisms.  

 

 2.2.1. With the aid of plants 

 The synthesis of gold nanoparticles using various plant extracts is extensively 

researched and documented in scientific literature due to their reducing biomolecules 

and highly-stabilizing abilities [47-49]. These types of syntheses are particularly 

researched as they offer a low-cost, non-toxic and eco-friendly approach to classic 

chemical routes and involve mixing gold salts with plant extracts under various 

conditions (time, concentration, pH, temperature, stirring speed and time). Table 2 

presents a selection of some of the more recent published works involving the 

synthesis of AuNPs by means of plant extracts [49-61].   

  
Table 2. Plants used in synthesizing AuNPs 

Plant AuNPs characteristics Reference 

Angelica 

 

Spherical or ellipsoidal  

d: 3 to 4 nm  

 

 

 

 

49 

 

Hypericum 

 

Large aggregates, comprised of a large number 

of fractal-like shaped particles  

d: 7 nm 

Hamamelis Various shapes (triangular, cubic, 

pentagonal, hexagonal, heart shaped), along 

with nearly spherical ones; 

fractions, 46 nm aggregates 

d: 4-8 nm;  d: 8-12 nm.  

Rosa Rugosa (leaf) Spherical,  d: 11 nm 50 

Ziziphus zizyphus (leaf) Spherical, d: <30 nm 51 

Corchorus olitorius (leaf) Quasi-spherical, d: 35-50 nm 52 

Mimosa tenuiflora (bark) Diverse, d: 40-150 nm 53 

Coffea arabica Spherical,  d: 15 nm 54 

Chenopodium formosanum 

(shell) 

Spherical, d: 8  nm 55 

Ocimum sanctum (leaf) Spherical, d: 12-20 nm 56 

Sargentodoxa cuneata (plant) Hexagonal, d: 15-30 nm 57 

Periploca Aphylla (stem) Spherical, d: 25-30 nm 58 

Cistus incanus (leaves) Popcorn, d: 45-85 nm  

Nanostars,  d: 60 nm 

59 

Cymbopogon flexuosus (leaf) Triangular,  d: 12-30 nm 60 

Stevia rebaudiana (leaf) Octahedral, d: 8-20 nm 61 
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As it can be seen from Table 2, gold nanoparticles obtained through this type of 
method can be of different sizes and shapes. The plant extract is commonly obtained 
through a simple process of washing the different plant parts in use, boiling them and 
filtering the final broth.  The extract is then used in combination with a gold salt at different 
working conditions to obtain the desired size and shape of nanoparticles. The 
phytochemicals (such as glutathione, tannins, polyphenols, ascorbates, terpenoids) present 
in the used extract act as the reducing agent here [62-65]. Following a change in colour of 
the solution, AuNPs were filtered out and washed either in purified water or ethanol. 
 
          2.2.2. With the aid of microorganisms  
 Various microorganisms, such as fungi, yeasts, algae and bacteria have recently 
been employed as mini laboratories for the fabrication of gold nanoparticles through 
enzymatic and non-enzymatic processes both intra and extracellular. The processes 
involved in this synthesis can be both enzymatic and non-enzymatic. When microorganism 
cells are treated with gold salts they tend to produce gold nanostructures. The colour of the 
microorganism supernatant can vary within a wide range, depending on the shape of 
AuNPs and the refractive index of the solution [66]. These latter nanostructures are then 
isolated and subjected to different techniques of purification to finally obtain AuNPs. Table 
3 present a summary of some microorganisms employed for the synthesis of gold 
nanoparticles [67-79].  
 
Table 3. Microorganisms used in synthesizing AuNPs 

Microorganism Type AuNPs characteristics References 

Deinococcus radiodurans Bacterium Pseudo spherical, spherical, irregular 
shape,  d: 43 nm 

67 

Bacillus cereus Bacterium Octagonal, spherical, hexagonal, 
d: 20-50 nm 

66 
Fusarium oxysporum Fungi 

Marinobacter pelagius  Bacterium Varied shapes, d: 2-6 nm 68 
Brevibacillus formosus Bacterium Spherical, d: 5-12 nm 69 

Pseudomonas fluorescens Bacterium  Mostly spherical, d: 5-50 nm 70 
Penicillium rugulosum Fungi Spherical, hexagonal, triangular, 

d: 20-80 nm 
71 

Aspergillus terreus IF0 Fungi Elongated, triangular, rod shaped, 
d: 10-29 nm 

72 

Mariannaea sp. HJ Fungi Sphere, hexagon, irregular shape,  
d: 37 nm 

73 

Extremophilic yeasts Yeast Irregular shape, d: 30-100 nm 74 
Phaffia rhodozyma Yeast Spherical, d: 4-7 nm 75 

Magnusiomyces ingens 
LF-F1 

Yeast Spherical, hexagonal, triangular, 
pentagonal, irregular shape,  d:  50 
nm 

76 

Saccharomyces 
cerevisiae 

Yeast Spherical, d: 13 nm 77 

Sargassum spp.  Algae Hexagonal, truncated triangular, 
d: 50  nm 

78 

Turbinaria conoides Algae Spherical, pseudo-spherical, 
undefined shape,  d: 6-10 nm  

79 
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As can be observed in Table 3, microorganisms lead to the formation of gold 

nanoparticles in a wide range of sizes, depending on their type. Shapes are also 

varied, with many studies reporting a non-homogenous final product. This can of 

course be controlled by choosing the right type of microorganism and manipulating 

reaction parameters such as pH and temperature.  

For bacteria, it is revealed that enzymes (such as cytochrome oxidase, 

NADPH-dependant reductase, sulphite reductase, hydrogenase) and defence 

pathways play a role in gold nanoparticle production while the exact mechanism is 

not as of yet known [80, 81]. In fact, enzymes, proteins and biomolecules play a 

similar role in the formation of gold nanoparticles for all microorganisms.  In the 

case of algae, however, the synthesis of gold nanoparticles occurs at the 

extracellular level as algae cells are reported to be sensitive to metallic stresses and 

tend to die [29]. 

 

3. Gold nanoparticles and chemotherapy medicine 

  

 Cancer cells have the ability to proliferate at a faster than regular cells. 

Chemotherapy aims to kill cancer cells and stop proliferation by means of medicine 

that can target cancer cells at different stages of the cell cycle. At present, more than 

100 different chemotherapy medicines are used to treat a variety of cancers, both 

by themselves or in combination. However, the balance between dealing with the 

disease by destroying the cancer cells and saving healthy ones has yet to be reached.   

While still in progress, research for alternative delivery methods include the 

use of different nanoparticles as carriers of which gold nanoparticles are extensively 

studied due to nontoxic and bio inert. Fusing the potential of AuNPs with traditional 

drugs used in chemotherapy allows for a more personalized and targeted treatment 

of patients. In the following, this paper will address the different classes of 

chemotherapy medicine with a focus on the research regarding AuNPs. 

Fig. 1 presents a schematic literature synthesis of the chemotherapy drugs 

researched on in relation to gold nanoparticles.  
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Fig. 1. Types of chemotherapeutic agent using AuNPs as carriers. 

 

            3.1. Alkylating agents  

Drugs falling in the category of alkylating agents hinder cancer cells from 

reproducing through damaging DNA [82-84]. These types of medicine perform 

well in all phases of the cell cycle, being used to treat a variety of cancers (sarcoma, 

lymphoma, leukemia, myeloma, Hodgkin disease). Typical alkylating agents 

include, but are not limited to busulfan, lomustine, dacarbazine, and platinum 

compounds such as cisplatin, carboplatin, oxiplatin. Though research regarding the 

conjugation of cisplatin on gold nanoparticles is still in the beginning, there are 

some studies in literature that show promising results on the matter. Most of these 

studies involve platinum compounds (oxaliplatin, cisplatin, carboplatin) as the drug 

of choice.  

Platinum compounds are reported to present a much lower risk of leading 

to leukemia (primarily Acute Myeloid Leukemia) as opposed to older alkylating 

agents that have a tendency to harm bone marrow [85-87]. As explained by 

Goodsell [88], these compounds have a platinum ion that is double charged and is 

surrounded by four ligands with the amine ones forming powerful bods with the 

platinum ion and the chloride or carboxylate compounds leaving moieties that 

permit the Pt ion to bond with DNA bases.  
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 3.1.1. Cisplatin  

 Cisplatin is the most common compound used in studies correlation with 

AuNPs. Zhou et al. presented a cisplatin-conjugated gold nanocluster that showed 

an inhibition of tumour growth in a 4T1 murine breast tumour cell line [89]. Here, 

a folic acid alteration rapidly increased cell uptake and cytotoxicity, the conjugated 

nanoparticles being able to accumulate in the tumour in a selective manner. Another 

study [90] reported that gold nanoparticles have the ability to prevent cisplatin-

induced chemo resistance, lead to tumour regression, while also increasing the 

sensitivity of ovarian tumours to a low dose of cisplatin in vivo. Gotov et al. [91] 

showed that a hyaluronic acid-coated, cisplatin-conjugated set of gold nanoparticle 

can suppress tumour growth in a mouse model injected with MCF-7 cells.  

Coluccia et al. [92] studied the effect of AuNPs complexed with cell uptake 

peptides and cisplatin on GMB cell lines, leading to minimal to no tumour growth. 

Another group [93] presented the results of 11-mercaptoundecanoic acid (MUA) 

capped gold nanoparticles conjugated with cisplatin on a human lung carcinoma 

A549 cell line implanted in a mouse model. They found that gold nanoparticles lead 

to changes in the biodistribution of cisplatin, leading to them avoiding the organs 

where cisplatin typically accumulates and tends to be toxic.  

Caballero et al. researched the assisted delivery of platinum drugs including 

cisplatin and the more bioavailable Pt(IV) pro-drugs by means of DNA-coiling 

AuNPs [94]. The experiment was performed on human ovarian carcinoma A2780 

and human lung carcinoma A549 cell lines showing that the nanocarier with the 

Pt(IV) prodrug tends to enhance the activity of the drug alone. They also presented 

a dual possibility of drug delivery and imaging as the carriers can also support a 

fluorescent tag. 

 

 3.1.2. Oxaliplatin  

 Studies on oxaliplatin have also been reported in literature, while they are 

not as abundant. Tummala et al. [95] studied the effects of oxaliplatin gold 

nanoparticles conjugated with an antiDR5 antibody on colorectal carcinoma HTC-

116 cell line. The results showed an inhibition in tumour growth. Brown et al. [96] 

reported on AuNPs functionalized with a monolayer of thiolated poly(ethylene 

glycol) (PEG) capped with a carboxylate group  and tethered with oxaliplatin. The 

functionalized AuNPs presented a significantly better cytotoxicity in all cell lines 

(A549 lung epithelial cancer cell line and the colon cancer cell lines HCT116, 

HCT15, HT29, and RKO) when compared to that of oxaliplatin alone. 

 

 

  

  

 



 

 
Alexandra Avram, Gheorghe Tomoaia, Aurora Mocanu, Maria Tomoaia-Cotisel            31 

 

             3.1.3. Temozolomide 

 Another chemotherapy drug that has been researched in relation with gold 

nanoparticle conjugation is temozolomide, with one group [97] reporting that gold 

nanostructures loaded with temozolomide are capable of reducing chemo-

resistance. These structures are reported to have a greater effect on destroying 

cancer stem cells (82.7%) than the drug alone (42%). Another group of researchers 

[98] showed that temozolomide loaded onto AuNPs and liposome embedded 

AuNPs have promise in a BALB/c mouse model with urethane-induced lung 

cancer, showing a strong synergistic antitumor activity with the liposomes 

improving the distribution and penetration of temozolomide.  

 

 3.1.4. Dacarbazine 

 Dacarbazine has also started to gain attention in relation to gold 

nanoparticle-based drug delivery, with Zhang et al. [99] reporting  that the presence 

of AuNPs could facilitate the binding of the drug to specific DNA bases, thus 

enhancing detection sensitivity of mismatches in the DNA helix. Shen et al. [100] 

also studied the effect of functionalized AuNPs on the binding of dacarbazine to 

DNA and DNA bases. These studies enhance the possibility of tumour-related 

biosensors which could provide a more rapid rate of detection. 

 

             3.2. Antimetabolites 

 This group of drugs take action by interfering with both RNA and DNA 

growth by substituting for their normal building blocks, damaging cancer cells 

when the chromosomes are being copied [101]. Antimetabolites are employed in 

the treatment of ovarian and breast cancers, among other types. Antimetabolite as 

chemotherapy drugs includes 5-fluorouracil, cytarabine, hydroxyurea, floxuridine 

and 6-mercaptopurine. There are quite a few studies that report on functionalized 

gold nanoparticles as carriers of some drugs in the antimetabolite family. 

  

 3.2.1. Fluorouracil 

Fluorouracil (5-FU) is one of these drugs that have been extensively 

researched in order to improve upon its activity and limit its severe side effects. 

Safwat and his group [102] reported on how AuNPs can enhance the efficacy of 

fluorouracil in colorectal cancer with the drug release being pH-dependent and 

slow. The complex carrier induced apoptosis and managed to stop the progression 

of the cell cycle in colon cancer cells obtained from actual patients. The same group 

showed the effect of fluorouracil-loaded AuNPs for the treatment of skin cancer 

using a mouse skin cancer xenograft model (A431) [103] with the tumour line being 

lower after 8 days from application. Akinyelu and Singh [104] have  

presented some work on a folate-tagged chitosan-functionalized AuNPs on  

several assays, namely, human breast adenocarcinoma (MCF-7), hepatocellular 
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carcinoma (HepG2) and kidney cells (HEK293). The functionalized nanocarriers 

presented an enhanced cytotoxicity when compared to free 5-FU.  

Chinnaiyan et al. [105] presented the results of 5-FU-loaded guar gum-

capped gold nanoparticles (synthesized with Borassus flabellifer) for the in vitro 

treatment of some MiaPaCa-2 human pancreatic cancer cells. The results revealed 

an increase in apoptosis, with cancer cells having morphological changes after 24 

hours. Another study worth mentioning is that of Nivethaa et al. [106] that deals 

with an in vitro cytotoxicity experiment of a chitosan/gold nanocomposite 

encapsulated with 5-fluorouracil on a MCF-7 cell line with a VERO control. The 

devised carriers exhibited a high cytotoxic effect on the MCF-7 cells (50% cell 

viability at a 31.2 μg ml−1 sample concentration) without affecting the VERO ones. 

Mohamed et al. [107] also reports on the enhancement of 5-FU drug action on 

human colon cancer HTC-16 cell line, by loading it onto gold nanoparticles. 

The more recent study of Ferreira Vilar et al. [108] is dealing with the effects 

of AuNPs on oral mucositis induced by fluorouracil in a hamster model. The gold 

nanoparticles prevented oral mucositis and improved upon inflammation 

parameters and oxidative stress. This is of particular importance as mucositis is a 

well-known side effect of chemotherapy against epithelial cells and confirms that 

the addition of AuNPs as a nanocarrier for 5-FU will prevent or at least limit 

potential negative side effects. 

  

 3.2.2. 6-Mercaptopurine 

6-Mercaptopurine is another antimetabolite that has received attention in 

regards to gold nanoparticle drug delivery studies. One earlier study [109] paved 

the way by tackling the stabilization of AuNPs by monolayers of 6-mercaptopurine. 

On the other hand, Podsialdo et al. [110] discovered that AuNPs can enhance the 

anti-leukaemia (K569 cell line) action of 6-mercaptopurine making possible a 

reduction in drug concentration thus being clinically beneficial.  

The toxicity and in vitro cytotoxicity of one such carrier (AuNPs-6-

mercaptopurine) was studied by Ganeshkumar et al. [111] on a zebrafish embryo 

model and Hep-2 cell line. Here, both free 6-mercaptopurine and that loaded on 

AuNPs showed no embryo death. The carrier was observed to lead to a significant 

cytotoxic effect on Hep-2 cells after a period of incubation of 24 hours. 

  

 3.2.3. Capecitabine 

 The studies on capecitabine and gold nanoparticles as its carriers are still in 

the easily stages. However, one particular paper [112] tested the in vitro anti-tumour 

efficiency (HepG2 cells) of AuNPs conjugated with several drug including 

capecitabine. Here, the loaded gold nanoparticles lead to lower cell proliferation 

rates compared to capecitabine alone.  
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            3.3. Anthracyclines or anti-tumour antibiotics  

 Acting like antibiotics for tumours, anthracyclines hinder enzymes 

employed in copying DNA during a cell cycle therefore are used for a variety of 

cancer types. Anthracyclines include doxorubicin, daunorubicin, idarubicin and 

epirubicin. However, while effective, these types of drugs have the ability to 

permanently damage heart tissue if they are given in high doses. With this in mind, 

researchers have tried to find ways to minimize this negative side effect. One 

possible solution presents itself in the form of loading these drugs onto 

functionalized gold nanoparticles. 

 

 3.3.1. Doxorubicin 

Doxorubicin is perhaps the most well-known drug in this family and there 

are thousands of papers in literature with results in relation to AuNPs as well as 

with other types of nanoparticles as delivery platforms. In the following, this paper 

will present a selection of the multitude of papers published on this interesting topic 

with a focus on stability, toxicity and how the devised doxorubicin-gold 

nanoparticles carriers interact in vitro or in vivo. 

One particular study by Tomoaia et al. [6] reported results concerning the 

activity of doxorubicin mediated by gold nanoparticles and resveratrol in human 

cervical cancer HeLa and CaSki cell lines with excellent results in apoptosis.  

 
 

Fig. 2.  Gold nanoparticles (AuNPs) functionalized with resveratrol (Resv) and 

doxorubicin (Dox) and the corresponding TEM images. 

 

As can be seen in the TEM images, given in Fig. 2, resveratrol (Resv) or its 

oxidation products resulted from synthesis form a coating around AuNPs [17].  

After functionalization with doxorubicin (Dox) the TEM image still presents a 
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single coating, showing that Dox molecules are entrapped in the initial Resv 

coating. Fig. 3 presents the cell responses for both resveratrol and doxorubicin alone 

and their mixtures, AuNPs alone, and AuNPs-Dox. Resveratrol alone only shows a 

mild response in CaSki cells (1), a response that intensifies when it is mixed with 

doxorubicin (2, 3). AuNPs-Resv (5) gives a response similar to the control while 

AuNPs-Resv-Dox (5, 6) has a more pronounced effect in the CaSki line. Of course, 

doxorubicin alone, at three all concentrations show the best cell response. However, 

these concentrations are quite high and therefore toxic. 

 

 
 

Fig. 3. CaSki cell response to Resv of 0.75 µg/mL (sample 1), Resv-Dox mixtures: 0.5 µg Resv 

/mL and Dox 0.1 µg /mL (2), and 1 µg Resv /mL and Dox 0.2 µg /mL (3), GNPs of 2.7 µg /mL 

(4), Dox-GNPs nanocomplexes, namely Dox 0.1 µg /mL and GNPs 1.3 µg /mL (5), and Dox 0.2 µg 

/mL and GNPs 2.7 µg /mL (6), and three Dox concentrations: 2.10 µg /mL (7), 6.25 µg /mL (8) and 

12.5 µg /mL (9), after 24 h incubation. CTRL represents the control given by untreated cells. Cells 

viability was determined using MTT assay and it is given in % of CTRL. The bar values are the 

mean from at least three different experiments. Error bars represent the standard deviation (± SD). 

 

To better convey this data, Fig. 4 presents the phase contrast microscopy on 

CaSki cells. It can be observed that while the cells present a resistance to a 2.1 

µg/mL doxorubicin concentration they do show an excellent response to gold 

nanoparticles functionalized with a 21 times lower doxorubicin concentration, 

proving that the AuNPs synthesized in this study can be a good vehicle for the 

transport of chemotherapeutic agents. On the other hand, Du et al [113] synthesized 

5 different doxorubicin analogues, two of which along with doxorubicin were 

conjugated to gold nanoparticles. The Dox-AuNPs showed a high stability in mouse 

models with no histopathological differences, the same as with the mouse models 

treated with saline solutions. On the other hand, simple doxorubicin leads to 

histopathological lesions. 
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Fig. 4. Phase contrast optical microscopy images of CaSki cells treated with Dox alone, at two 

different concentrations, and Dox-GNPs nanocomplex (Dox 0.1 µg /mL and GNPs 1.3 µg /mL). 

The same concentrations and symbols were used as in Fig. 3. Magnification× 400. 

 

One other study [114] deals with chemically induces fibrosarcoma in mouse 

models. The developed doxorubicin-AuNPs carriers were proven to be non toxic 

and cell compatible while also exhibiting a higher therapeutic efficacy (81%) 

compared to that of free doxorubicin (48%) at the same concentrations. Further, 

Ramalingam et al. [115] stabilized gold nanoparticles with polyvinylpyrrolidone 

and conjugated them with doxorubicin (Dox@PVP-AuNPs) and used them in 

regards to lung cancer. The results showed an in vitro cytotoxic effect that inhibited 

the growth of lung cancer cells and induced intrinsic apoptosis.  

Wu and his team [116] tried to understand the effects on the size of the gold 

core (10, 20, 60 nm) on the performance of gold nanoparticles conjugated with 

doxorubicin, both in vitro and in vivo. Here, the 10 nm-core conjugate displayed 

the highest efficacy in liver cancer models, regardless of the fact that it loaded fewer 

drugs. Conversely, Curry et al. [117] present both factual and theoretical evidence 

concerning the adsorption of doxorubicin on gold nanoparticles, where 

hydrophobic forces steer doxorubicin towards the nanoparticle surface followed by 

a surface adsorption by means of gold-carbonyl coordination and cation π-

interactions. This study revealed that glutathione and serum albumin helped the 

enhancement of desorption of drug molecules from gold nanoparticles at 

physiological concentrations.  

 

 3.3.2. Daunorubicin  

Another anthracycline, namely, daunorubicin has also been studied with 

Danesh et al. [118] reporting on its delivery by an aptamer-modified gold 

nanoparticle to T-cell acute lymphoblastic leukemia. The Apt-Dau-AuNPs complex 

showed promising results on U266 (B lymphocyte human myeloma, non-target) 

and Molt-4 (target) cell lines – the complex being able to selectively  

target Molt-4 cells while being less toxic for U266 ones. Another similar study by 

the same group [119] worked on polyvalent aptamers-modified AuNPs loaded  
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with daunorubicin (PT-Dau-AuNPs) showing that this drug delivery system could 

decrease cytotoxic effects of daunorubicin. 

 

 3.3.3. Epirubicin 

Some other studies deal with the improvement of targeting and decrease in 

toxicity of another major anthracycline, namely epirubicin. In this case, Chen et al. 

[120] discuss the epirubicin-loaded marine carrageenan ligosaccharide capped 

AuNPs. This type of carrier significantly releases epirubicin in a simulated acidic 

cancer environment while the release in a normal environment is negligible. Also, 

it induced a higher apoptosis in HCT-116 and HepG2 cell lines when compared 

with the free drug. Another study by Meng et al. [121] confirms the suppression of 

a hepatocellular carcinoma xenograft in a mouse model by means of epirubicin-

AuNPs.  

A tumour specific delivery and release experiment by Kunjiappan et al. 

[122] involved liposome encapsulated epirubicin-AuNPs and showed a stop in 

proliferation of MCF-7 breast cancer cell line with the apoptosis being dependant 

on time and dose. Another paper worth mentioning is that by Devi et al. [123] that 

present the effects of some gum arabic capped gold nanoparticles (Fa-E-GNPs) on 

a A549 cell line of human lung adenocarcinoma. Here, the Fa-E-GNPs had an 

improved cytotoxic effect on the cell lines when compared to the free epirubicin. 

Senthil Kumar et al. reported on a plant-synthesized (Limonia acidissima) gold 

nanoparticle attached with epirubicin and its effects on a MCF-7 cell line [124]. 

The number of cancer cells that were nonviable increased dramatically after 

treatment with the epirubicin-AuNPs.  

  

            3.4. Topoisomerase inhibitors 

 Used predominantly to treat different types of leukemia, topoisomerase 

inhibitors hinder topoisomerase enzymes, thus interfering with the copying of DNA 

[125]. This group includes irinotecan and topotecan (which are topoisomerase I 

inhibitors) and teniposide and etoposide (which are topoisomerase II inhibitors).  

 

 3.4.1. Topotecan  

 While of high interest and the focus of many studies regarding cancer, 

topotecan (TOPO), a camptothecin compound, has been investigated very little in 

regards to its interactions with gold nanoparticles. One study found by the authors 

[126] presented a glutathione-triggered delivery of topotecan from AuNPs in vitro 

and in vivo by subcutaneous administration using a mouse model. The results 

suggest that the AuNPs-TOPO delivery system can be utilized as a controlled  

drug release system with low toxicity. Li et al. [127] examined the loading and 

delivery of various chemotherapy medicines (one of them being topotecan 
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hydrochloride) from a novel polysaccharide-gold nanocluster supramolecular 

conjugate. This delivery system was discovered to be pH-responsive, the best 

results regarding drug release being at a mildly acidic pH. Here, the encapsulation 

efficiency (34.65 ± 3.31 %) and loading efficiency (5.04 ± 0.87 %) of topotecan 

were significantly lower than other drugs in the experiment, with doxorubicin 

having the highest values. 

  

 3.4.2. Irinotecan 

 As with its counterpart, there are a few studies that pursue the nanocarrier 

drug delivery approach to irinotecan using carriers, mostly biodegradable polymers. 

However, the study of Li et al. [127] examined the loading and delivery of 

irinotecan hydrochloride from a novel polysaccharide-gold nanocluster 

supramolecular conjugate. The results presented an encapsulation efficiency of 

45.16 ± 4.51 %, and a loading efficiency of 7.35 ± 0.74 %, values higher than those 

of topotecan.  

 

 3.4.3. Etoposide  

 Gold nanoparticles loaded with etoposide have only recently been gaining 

attention, namely, through the study of Ali et al. from 2020 [128] that proposed 

different formulations based on different variables such as nanoparticle size, 

experimental temperature, etoposide load. The in vitro cytotoxicity assay on NHI-

H69 cancer cell line and BEAST-B2 normal cell line showed that the developed 

system has a high selectivity towards the first.  

  

            3.5. Mitotic inhibitors  

 This class of compounds are mainly derived from plants, stopping cellular 

division as well as stopping enzymes from producing proteins needed for cell 

reproduction, thus damaging them [129]. Some examples of mitotic inhibitors 

include Paclitaxel, Docetaxel, Vinblastine and Vinorelbine.  

 

 3.5.1. Paclitaxel (Taxol) 

 Paclitaxel-loaded gold nanoparticles have been the focus of several  

studies, with a variety of papers and patents being published on this matter. An 

earlier work of Gibson et al. [130], describe the first instance of gold  

nanoparticles (2 nm) functionalized with paclitaxel focusing on the processes that 

occur. Paciotti et al [131] have worked on several paclitaxel thiolated analogues 

and their release from AuNPs. Several analogues were biologically evaluated using 

a human ovarian A2780 cancer cell line with two formulations being found  

to be more potent than the actual paclitaxel. One analogue was tested in tumour 

bearing mouse models with a 50% reduction within 9 days which is very  

promising. Heo et al. [132] reported on a paclitaxel-loaded AuNP and biotin 
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receptor and their interactions with different cell lines – HeLa (human breast 

cancer), MG63 (human osteosarcoma) and A549 (human lung carcinoma). Here, 

glutathione enhanced the release of paclitaxel to 71% in 24 h, compared to 21% in 

the absence of glutathione. The experimental carrier has an affinity towards 

cancerous cells while not affecting healthy ones. On the other hand, Alhalili et 

al. [133] investigated the pH dependent cytotoxicity of AuNPs loaded with 

paclitaxel against a breast cancer cell line (T47D). It was found that the viability of 

cells decreased in a significant manner at a pH value of 6.5. Meanwhile, Asar et al. 

[134] investigated the effects of AuNPs-paclitaxel on oral squamous cell carcinoma 

that was induced in Syrian hamsters with those treated with the medicine loaded on 

AuNPs showing beter results than those treated with rhe drug alone. 

  

 3.5.2. Docetaxel  

 Docetaxel-loaded gold nanoparticles have raised interest with several 

researched groups. Francois et al. [135] reported on docetaxel encapsulated in 

PEGylated AuNPs and its effect on HTC15 human colon carcinoma and MCF7 

human breast cancer cell lines. While standalone gold nanoparticles presented 

absolutely no cytotoxic effects, the carrier was found out to be 2.5 times more 

efficient than the drug alone. Another paper [136] studied the cytotoxicity of AuNPs 

loaded with docetaxel against a H520 lung cancer cell line with an observed 

decrease in cell survival. It is reinforced again that a gold-based nanocarrier loaded 

with chemotherapy medicine is more effective than the free drug. The effect of such 

carrier on another type of cancer, namely human prostate LNCaP, was studied by 

Oliveira et al. [137]. In this case, the gold nanoparticle functionalized with PEG 

(550 and 2000) and loaded with docetaxel produced a durable cytotoxic effect while 

the unloaded AuNPs were without any effect.  

 On the other hand, Wan and his team [138] employed apatite as a carrier for 

docetaxel and gold nanoparticles. In vitro tests on HepG2 human liver cancer cell 

lines demonstrated the high cytotoxicity of the devised carrier.  

  

            3.6. Corticosteroids  

 Corticosteroids, natural hormones or hormone-like drugs, are considered 

chemotherapy drugs when used as integral part of a cancer treatment. Probably the 

most well-known types of corticosteroids are prednisone and methylprednisolone. 

The research on the delivery of corticosteroids by means of gold nanoparticles as 

the carriers is still in the early stages. However, one article [139] does address this 

issue by analysing the release of dexamethasone (glucosteroid drug) from 

functionalized AuNPs (AuNP-3MPS/DXM). An in vitro assay was performed on 

HeLa (human cervix carcinoma), EG.7-OVA murine lymphoma and Karpass 422 

human B cell non-Hodgkin’s lymphoma cell lines at different concentrations of  
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the developed compound. It was found that tumour cell proliferation was hindered 

at a AuNP-3MPS/DXM concentration of 8.4 ng mL-1.  

 

4. Safety concerns in using AuNPs as drug carriers 

  

 Gold nanoparticles show promising results in improving pharmacokinetics 

[140] thus leading to a reduction in known side effects of chemotherapy agents and 

potentially allowing higher doses to reach cancer cells. However, the cytotoxicity 

of AuNPs needs to be taken into account especially considering all surface 

adjustments in regards to drug delivery. The size of gold nanoparticles is another 

important parameter, with AuNPs of 10 nm being able to circulate through the blood 

stream for more than 24 hours in animal models [141] and can accumulate in 

organs. Also, immune responses that can be potentially triggered should also be 

taken into account.  

 

5. Future trends: AuNPs loaded onto inorganic biomimetic compounds 

 

 A more recent trend in gold nanoparticle research is their binding to other 

types of materials, specifically biomimetic ones such as calcium phosphates. 

Synthetic hydroxyapatite, Ca10(PO4)6(OH)2,  is highly biocompatible and has been 

the focus of a wide range of studies regarding biomedical applications [142-159]. 

While both hydroxyapatite and calcium phosphates are generally believed to be 

used more in bone implants, they can act as effective drug delivery systems. 

Nontoxic by nature, phosphate nanoparticles can be readily dissolved in an acidic 

environment of around pH 4.5 acidity that can be found in humoral tissues and 

lysosomes after uptake. Literature exhibits a few studies on gold nanoparticles 

loaded on calcium phosphates. Cha et al. [160] reported on a pH sensitive 

nanocarrier of AuNPs coated with calcium phosphate and loaded with doxorubicin 

(PEGylated Dox-AuNP@CaP).  

 Cell viability tests performed using HeLa showed that cellular viability  

was 19% after a period of incubation of 24 hours. Also, the release of doxorubicin 

from the said carrier in a lysosomal fluids environment (pH 4.5) reaches 78%.  

Another study by Ito et al. [161] deals with the preparation of a DNA/AuNPs 

encapsulated in calcium phosphate with the DNA being released by immersion of 

the carrier in an acetate buffer. Moreover, Liang et al. [162] reports on 

hydroxyapatite composites loaded with AuNPs that are able to guide osteogenic 

differentiation from human bone marrow-derived mesenchymal stem cells by 

means of a WNT/β catenin signalling pathway. Possessing similar bioactive/ 

biocompatible properties to those of phosphates and hydroxyapatite, forsterite 

(Mg2SiO4) is another promising candidate for gold nanoparticles loading/ drug 

delivery research. Its bioactivity relies on the content of Mg and Si that are essential 
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minerals that are known to contribute to the mineralization of young  

bone and skeletal mass gain respectively [163-169]. There is an increased demand 

for more effective drug delivery systems that are both nontoxic in nature and are 

able to decrease the toxicity of certain medications while maintaining/ increasing 

their potency. With this in mind, the use of such inorganic, biocompatible  

materials as HAP and forsterite in combination with gold nanoparticles and 

medicine would provide a new pathway towards a more sustainable patient 

treatment with few to none side effects. 
  

6. Nanoscale interactions  
 

As is given throughout this review, the nanoscale interaction is a non-

explored area, despite the fact that the anti-neoplastic drugs need to cross blood 

brain barrier, BBB [170-174], to treat brain cancer. Also, the AuNPs  

functionalized with anti-tumour agents have to cross cell membranes to approach 

the cell nucleus [175-181] to treat cancer in the body. Definitely, the knowledge  

of nanoscale interactions obtained at the level of self-assemblies of different  

organic molecules, like lipids, lecithin and proteins, as monolayers [182-230], 

bilayers [231-233] or liposomes, as well as Langmuir-Blodgett layers [234-239] is 

important (Fig. 5).  

 
 

Fig. 5. Models for nanoscale interactions.  
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The understanding of the importance of nanoscale interaction is enriched by 

using the said self-assemblies known as models of cell membranes and of different 

compartments in cytoplasm, like cell organelles called lysosomes.  Lysosomes hold 

enzymes that digest all materials that are taken into the cell and also recycle 

intracellular materials. The AuNPs functionalized with anti-tumour agents can 

cross the cell membranes [240-243] by passive diffusion and endocytosis or by 

active transport through binding to a cell membrane receptor. Considering the 

complexity of these interactions, it is reasonable to suggest the use of self-

assemblies of organic molecules, like monolayers, bilayers, Langmuir-Blodgett 

layers to explore nanoscale interaction in these systems, which remains a major 

challenge (Fig. 5). Nanoscale interaction effects are also seen in various phenomena 

as opening and closing of ion channels, which are known to be important in cell 

signalling. Future studies should attempt an understanding of the role of nanoscale 

interactions and how their effects can influence cell membrane properties, DNA 

synthesis, and eventually gene expression in cancer treatment. 
 

Conclusions  
 

 Gold nanoparticles can be employed in cancer therapy due to their unique 

properties as well as to their physical, chemical and biological characteristics. 

Combining AuNPs with classic cancer drugs can improve pharmacokinetics and 

potentially lead to a more efficient treatment with fewer side effects. Most studies 

reviewed showed an improved effect at decreased drug concentrations when gold 

nanoparticles were the carriers. Moreover, AuNPs-drug complexes were cytotoxic 

particularly to cancer cells. Additionally, it was demonstrated that AuNPs can 

diminish or dismiss the side effect of chemotherapeutic agents. 
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