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Abstract

We present an overview of a unified description of the structure and α-
emission properties of even-even nuclei. The low-energy spectrum relevant for
α-emission is described within the framework of the Coherent State Model
(CSM). The treatment of the α-emission process is based on an α-daughter
interaction containing a monopole component, calculated through a double fold-
ing procedure with a M3Y interaction plus a repulsive core simulating the Pauli
principle, and a quadrupole-quadrupole (QQ) interaction. The decaying states
are identified with the lowest narrow outgoing resonances obtained through the
coupled channels method. The α-branching ratio to the first excited state is
reproduced by means of the QQ strength. Simultaneously, a reasonable agree-
ment is obtained for the α-branching ratios to the second and third excited
states.
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1 Introduction

The field of α-spectroscopy in an extension of traditional nuclear spectroscopy, where
the probe is no longer of electromagnetic, but of strong origin. Thus, in addition to
the usual γ-ray analysis, one may investigate nuclear structure through α-emission.
This work summarizes recent results regarding the fine structure of the α-decay
spectrum in even-even nuclei. For a comprehensive study of the presented structure
properties and α-transitions, as well as a review of the literature, see Refs. [1, 2].
For a systematics of experimental data regarding decay intensities and partial half-
lives, consult Ref. [3]. The topic of α-decay in odd-mass nuclei is expanded upon
in Ref. [4], for the case of favored α-transitions. Remarks concerning the even-odd
staggering of the α-particle spectroscopic factor and its relation to α-clustering can
be found in Ref. [5].

2 The CSM Model

The main idea behind this approach consists in treating the surface vibrations of a
deformed even-even nucleus as a superposition of quadrupole phonons [6, 7]. Fol-
lowing this idea, the model was greatly expanded towards the treatment of three
interacting collective bands [8, 9, 10], as well as in terms of the particle-core inter-
action in odd-mass nuclei [11].

In its simplest realization, the model is based on the assumption that the intrinsic
state of an even-even nucleus having an arbitrary axial deformation is given by a
coherent superposition of quadrupole phonons

|ψg〉 = e
d
(
b†20−b20

)
|0〉 , (1)

where
(
b†2µ, b2µ

)
are the phonon operators with projection µ = 0 and d is the

deformation parameter, proportional to the usual quadrupole deformation [8].

The ground band states are obtained by projecting out the angular momentum
components of the intrinsic function

|ϕ(g)
J 〉 = N (g)

J P̂ JM0|ψg〉 , (2)

by using the projection operator P̂ JM0 and normalizing with the factor N (g)
J . The

corresponding energy levels EJ follow as the expectation values in this basis of the
Hamiltonian

Ĥ = A1b
†
2 · b2, (3)
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where A1 is a strength factor and the dot designates a scalar product. The re-
sulting level structure is harmonic for vanishing deformation, goes through a transi-
tional regime as the deformation increases and then stabilizes into a rotational band.
Detailed applications of this method to the study of even-even α-emitters and its
extension to the odd-mass case can be consulted in Refs. [2, 4].

3 The coupled-channels method and applications

The general theory of resonant states is expanded upon in Refs. [12, 13]. Here, we
will give a concise overview of the coupled-channels equation and its application to
α-decay in the case of even-even nuclei.

The α-transition process can be represented as

P → D(J) + α(J) , (4)

where, J is the spin/parity of the daughter nucleus and emitted α-particle, coupling
to the 0 angular momentum of the parent nucleus.

The wave function that is under consideration has the form of a clustered α-
daughter ansatz [13] with the total spin of the initial state

Ψ(b†2,R) =
∑

J

fJ(R)

R
Y(J)(b†2, R̂) . (5)

The function fJ(R) describes the α-daughter radial motion in the channel J . We
introduce the core-angular harmonic

Y(J)(b†2, R̂) =
[
ϕJ(b†2)⊗ YJ(R̂)

]
0
, (6)

where ϕJ(b†2) designates the daughter internal wave function, with b†2 the daughter
degrees of freedom, while YJ(R̂) is the usual spherical harmonic that describes the
relative angular motion of the α-daughter system. These core-angular harmonics
are orthonormal.

The α-daughter dynamics is treated using a stationary Schrödinger equation, i.e.

HΨ(b†2,R) = QαΨ(b†2,R) , (7)

whereQα is the Q-value of the decay process. Due to the fact that all measured decay
widths are by many orders of magnitude smaller than the corresponding Q-values,
the stationarity approximation is a very good assumption. Hence, an α-decaying
state is identified with a narrow resonant solution that contains only outgoing com-
ponents.

The Hamiltonian

H = − ~2

2µ
∇2
R +HD(b†2) + V (b†2,R) , (8)
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contains the kinetic operator depending on the reduced mass, a term describing
the dynamics of the daughter nucleus HD(b†2) and the α-core interaction V (b†2,R),
which is generally split into spherical and deformed parts. The spherical component
follows from the matching of a harmonic oscillator with the double folding potential
integrated from the M3Y nucleon-nucleon plus Coulomb force (see Ref. [13] for com-
putational details, along with references contained therein), while for the deformed
component it is enough to retain the QQ coupling.

This expansion of the interaction, together with the expansion of the wavefunc-
tion in the core-angular harmonic basis of Eq. (6), leads to a system of coupled
differential equations for the radial functions

d2fJ(R)

dρ2J
=
∑

J ′
AJJ ′(R)fJ ′(R) , (9)

where ρJ is the reduced radius. The coupling matrix AJJ ′ has off-diagonal compo-
nents given by the matrix elements of the deformed part of the interaction. When
evaluated in the CSM model, the QQ component of the interaction term present in
Eq. (8) can be adjusted by a coupling strength dependent on the CSM deformation
[2]. These matrix elements vanish at large distances, where the field is Coulombian,
and there the asymptotic expression of the first resonance of this potential is an
outgoing Coulomb-Hankel wave. One can show [13] that the partial decay widths
that constitute the fine structure of the α-emission spectrum can be supplied by the
asymptotic form of these functions

Γ =
∑

J

ΓJ =
∑

J

~vJ lim
R→∞

|fJ(R)|2 (10)

=
∑

J

~vJ |NJ |2 ,

in terms of the scattering amplitudes NJ and the center of mass velocity at infinity
for each α-daughter channel J .

The goal is to give an accurate description of the decay intensities

ΥJ = log10
Γ0

ΓJ
, (11)

which is easily checked by means of the so-called suppression factors

log10 SFJ = Υexp
J −Υtheor

J , (12)

where the two values stand for experimental and theoretical quantities, respectively.
Clearly, small suppression factors will indicate an accurate theory.

Solving the coupled channels system of Eq. (9) in a manner that reproduces
the decay intensities to 2+ states leads to a linear dependence of the QQ coupling
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strength, denoted by C, on the CSM deformation d. This dependence has different
slopes around the neutron number N = 126. For heavy nuclei, where several tran-
sitions are observed in the decay spectra, this dependence can be used to predict
their structure. For example, in the case of even-even actinides, one can obtain a
simultaneous description of the transitions to 2+ and 4+ states up to a factor of 3,
while the transitions to 6+ states are usually described with an accuracy of about
an order of magnitude.

In conclusion, the CSM model offers a unified approach to the study of vibra-
tional, transitional and well-deformed nuclei. Inserting the parametrization of the
deformation that describes the nuclear structure in the coupled channels equation
supplies good estimates for the fine structure of the α-emission spectrum.
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