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Abstract

The time dependent pairing equations are obtained from the variational
principle. The BCS occupation and vacancy amplitudes are supplied by these
equations when the deformation of the nuclear system evolves in time. These
equations were generalized to include the Landau-Zener promotion mechanism
in superfluid systems. During the nuclear disintegrations, the single particle
levels are rearranged. But, two single particle levels characterized by the same
good quantum numbers cannot intersect and give rise to the so called avoided
levels crossing regions. In such regions, it is possible that the nucleons promote
from one level to another. By considering such mechanisms, a new dynamical
pair breaking effect was evidenced. Within this formalism, the experimental
fragment distribution obtained in cold fission was reproduced in the energy
region were an inversion of the even-odd effect is observed. By taking into
account the matrix elements of the time derivative operators in deducing the
equations of motion, a new formula for the nuclear inertia was derived. This
formula takes into account the dissipated energy. If the theory is particularized
for adiabatic system, then the well known cranking formalism resorts.
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1 Introduction

Some results concerning the possibility of modeling the pair breaking mechanism
during a large scale amplitude motion of a nuclear system, together with the mod-
ification of the effective mass due to the dissipated energy, are presented in this
contribution. Both theories resort from generalized time dependent pairing equa-
tions that are deduced from the variational principle. Due to the extreme saturation
of the nuclear matter, the nucleons move inside the nucleus in a mean field defined
mainly by the boundaries of its surface. Therefore, it is accepted that a dynamical
description can be realized by investigating the change of the nuclear shape. The nu-
clear shape parametrization depends on collective coordinates associated to a choice
of degrees of freedom. In fission, these collective coordinates are forced to vary in or-
der to reach a scission configuration. The way in which the nuclear matter responds
to the external forces responsible for large scale amplitude deformation is described
by inertia and effective mass. At the same time, by solving the Schrödinger equation
for the mean field potential, it is possible to determine many intrinsic quantities, as
for example eigenfunctions of nucleons and their single particle energies. During the
evolution of the nuclear system, additional intrinsic excitations are produced. That
is, a flow of energy and of angular momentum from the collective motion into the in-
trinsic one is produced, called dissipation. The Landau-Zener promotion mechanism
is one way to take into account the dissipation in nuclear motion processes. The
effective mass is also modified by the dissipation. In the following, the way in which
a dynamical pair breaking effect is produced due to the Landau-zener promotion
mechanism and the influence of the dissipation on the effective mass are discussed.

2 Formalism

The main features of the generalized time dependent equations of motion are pre-
sented in this section. Exact derivation of the formulas can be found in Refs. [1, 2, 3].
The equations of motion are obtained within the variational principle by starting
with the energy functional

L =

〈
ϕ

∣∣∣∣H − ih̄
∂

∂t
+H ′ − ~Ω ~J − λN̂

∣∣∣∣ϕ
〉
, (1.1)

where we denoted with ~J (in h̄ units) the total angular momentum. ~Ω is the angular
velocity. As usual, λ is a notation for the Fermi energy that results from the BCS
equations, and N̂ =

∑
k>0(a

+
k ak + a+

k̄
ak̄) is the particle number operator.

A trial many-body function |ϕ〉 expanded as a superposition of time dependent
BCS seniority-zero and seniority-two wave functions is considered

|ϕ(t)〉 = c0(t)|φBCS〉+
∑

j

cjj(t)α
+
j α

+
j̄
|φBCS〉+

∑

j,l

cjl(t)a
+
j a

+
l̄
|φBCS(jl)〉, (1.2)
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where the Bogoliubov wave function is

|φBCS〉 =
∏

k

(uk(t) + vk(t)a
+
k a

+
k̄
)|0〉. (1.3)

The Hamiltonian with pairing residual interactions is given by

H(t) =
∑

k>0

ǫk(q)(a
+
k ak + a+

k̄
ak̄)−G(q)

∑

k,i>0

a+k a
+
k̄
aiaī. (1.4)

The interaction that allows to simulate a promotion mechanism contribution in
superfluid systems similar to the Landau-Zener effect is defined as

H ′ =
∑

Ω,m,m′ hΩ,m,m′α+
Ω,m(Ω,m′)αΩ,m′(Ω,m)

×∏
Ω′,m′′ αΩ′,m′′(Ω,m′)a

+
Ω′,m′′aΩ′,m′′α+

Ω′,m′′(Ω,m).
(1.5)

Due to the interaction hΩ,m,m′ that is produced between two single particle orbitals
that have the same good quantum number in the avoided crossing regions, a nucleon
can be promoted from one single particle level to another.

After performing the variation of the energy functional, by neglecting the angular
momenta and the matrix elements of the time derivative, the following system of
differential equations emerges:

ih̄ρ̇k(0) = κk(0)∆
∗
k(0) − κ∗k(0)∆k(0), (1.6)

ih̄ρ̇k(jl) = κk(jl)∆
∗
k(jl) − κ∗k(jl)∆k(jl), (1.7)

ih̄κ̇k(0) =
(
2ρk(0) − 1

)
∆k(0) + 2κk(0) (ǫk − sNikλ)

−2Gkkρk(0)κk(0),
(1.8)

ih̄κ̇k(jl) =
(
2ρk(jl) − 1

)
∆k(jl) + 2κk(jl) (ǫk − sNikλ)

−2Gkkρk(jl)κk(jl),
(1.9)

ih̄Ṗ0 =
∑

l,j 6=l

hlj(S
∗
0jl − S0jl) (1.10)

ih̄Ṗjl = hlj(S0jl − S∗
0jl) (1.11)

ih̄Ṡ0jl = S0jl(Ē0 − Ējl) + S0jl

(∑
k 6=j,l Tk(jl) −

∑
k Tk(0)

)

+
∑

{mn}6={jl} hmnSmnjl + hjl(Pjl − P0)
(1.12)

ih̄Ṡmnjl = Smnjl(Ēmn − Ējl) + Smnjl

(∑
k 6=m,n Tk(mn) −

∑
k 6=j,l Tk(jl)

)

+hmnS0jl − hjlS
∗
0mn

(1.13)
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where j, k, l, m, n label the single particle levels in the active pairing space. The
sign s = ±1 is introduced in oder to have a dynamic projection of the number of
particles in the final fragments. We used the following notations:

∆k(0) =
∑

k′ κk′(0)Gkk′ ; ∆k(jl) =
∑

k′ 6=j,l κk′(jl)Gkk′ ;

κk(0) = uk(0)vk(0); ρk(0) =| vk(0) |2;
κk(jl) = uk(jl)vk(jl); ρk(jl) =| vk(jl) |2;

P0 =| c0 |2; Pjl =| cjl |2;
S0jl = c0c

∗
jl; Smnjl = cmnc

∗
jl.

(1.14)

As usual, ∆γ denote the gap parameter. The solutions of the system are the
single particle densities ργ , the pairing moment components κγ , the probabilities
to have a given seniority configuration Pγ , and the moment components between
configurations Sγγ′ . The relations (1.6)-(1.9) are the well known time dependent
paring equations previously deduced in Refs. [4, 5].

By introducing the matrix elements of the time derivative operator, and consider-
ing that the process is slow enough that the seniority zero configuration is dominant,
new formulas for the effective mass and for the moments of inertia can be deduced.
The elements of the mass tensor are:

Bνµ = BN
νµ +BD

νµ (1.15)

where

BN
νµ = 2h̄2 ∑

m,n6=m

{
(Emn − E0)

∣∣∣κm
√
ρm|κn|

|κm|√ρn
− κn

√
ρn|κm|

|κn|√ρm

∣∣∣
2

×
〈
m

∣∣∣ ∂H∂qν
∣∣∣n

〉〈
n
∣∣∣ ∂H∂qµ

∣∣∣m
〉
|Pmn00|2

/

[(
Emn −∑

k 6=m,n Tk(mn) − E0 +
∑

k Tk

)2
(ǫm − ǫn)

2

]} (1.16)

BD
νµ = h̄2

∑
m

[(
κm
ρm

∂ρm
∂qν

− κm
κ∗
m

∂κ∗
m

∂qν

) (
κ∗
m

ρm
∂ρm
∂qµ

− κ∗
m

κm

∂κm
∂qµ

)

+
(
κm
ρm

∂ρm
∂qµ

− κm
κ∗
m

∂κ∗
m

∂qµ

) (
κ∗
m

ρm
∂ρm
∂qν

− κ∗
m

κm

∂κm
∂qν

)]
/ (Emm − E0) .

(1.17)

The collective moments of inertia are:

Ii = 2
∑

m,n6=m

(Emn − E0)
∣∣∣κm

√
ρm|κn|

|κm|√ρn
− κn

√
ρn|κm|

|κn|√ρm

∣∣∣
2
〈m|Ji|n〉2|Pmn00|2

(
Emn −∑

k 6=m,n Tk(mn) − E0 +
∑

k Tk

)2 . (1.18)

In the previous equations, the mass parameters depend on the solutions of the
time dependent pairing equations ρk and κk. The dissipated energy of the system
can be obtained by evaluating the total energy of the system with these solutions.
Therefore, these parameters depend on the dissipated energy accumulated in the
system. Moreover, By particularizing the formulas through the BCS solutions for
adiabatic systems, the well known formulas given by the cranking model are re-
trieved.
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Figure 1: Dependence of the fission yields for the mass fragmentation 90/144 as
function of the excitation energy E∗. The full line is the yield of the even-even
fragments 90Kr+144Ba and the dashed line is for the odd-odd fragments 90Rb+144Cs.

3 Results

A very strange phenomenon was observed in cold fission. For excitation energies
lower than 4 MeV, an inversion of the even-odd effect in the mass distribution was
evidenced experimentally [6, 7, 8]. At these energies, the odd-odd mass partitions
dominates the fission of an even-even parent nucleus. This phenomenon can be
explained within the microscopic equations of motion (1.6)-(1.13). We are interested
to determine the yields as function of the excitation energy in the cold fision of 234U
for two fragmentation configuration, namely 90Rb+144Cs (odd-odd) and 90Kr+144Ba
(even-even) that belong to the same mass partition 144/90. Experimental data are
available for the energy dependence of these yields. First of all, a fission trajectory
beginning from the ground state of the parent nucleus and reaching the scission
configuration was evaluated by using the least action principle. The generalized
pairing time dependent equations were solved along this deduced fission trajectory
for different values of the tunneling velocity. The tunneling or internuclear velocity
is defined as the time derivative of the collective distance between the centers of the
emerging fragments. We observed that, for low collective velocities, the dissipated
energy is very small, the fissioning system being almost adiabatic at scission. In
this case, the dissipated energy is less than 1 MeV. When the tunneling velocity
increases towards very large values, the dissipation energy is close to 12-14 MeV
and reaches a plateau. In the same time, at low velocities we obtain only odd-odd
fission fragments, P0 being almost 0. At intermediate collective velocities that lead
to dissipated energies of the order of 4 MeV, the even-even fragment yields begin
to dominate the odd-odd ones. The energy dependence of the yields is displayed in
Fig. 1. So, by solving the equations of motions we succeeded to describe precisely
the experimental trends.

Performing the variation for the same energy functional as that determining the
time dependent paring equations, new formulas for the inertia are deduced for the
effective masses (1.15) and for the moments of inertia (1.18). These formulas include
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the dissipated energy produced during the evolution of the nuclear system, from the
parent ground state up to scission. We observed that for low internuclear velocities,
when the nuclear system behaves as adiabatic, the values given by the new formulas
reproduce exactly those given by the adiabatic cranking model [9]. For intermediate
values of the internuclear velocities, the effective masses and the moments of inertia
decrease with about 10 %. For even larger values of the internuclear velocities, close
to the limit of validity of the model, the inertia increases asymptotically towards very
large values. So, the collective velocity should decrease. This asymptotic behaviour
prevents the appearance of negative values of the inertia for large values of the
collective velocities. We consider that large values of the internuclear velocity are
about 1/10 of the Fermi velocity of the nucleon. The non adiabatic inertia has a
similar shell structure as the adiabic one.

4 Conclusions

We proposed a microscopic model for the explanation of the inversion of the odd-
even effect in the mass distribution of cold fission. This model takes into account the
Landau-Zener effect. In a superfluid system, the Landau-Zener promotion mecha-
nism is responsible for a new dynamical pair breaking effect. This effect is incor-
porated in a new set of time dependent pairing equations. The experimental yield
distributions were reproduced. Concerning the investigation of the mass parameters,
we concluded that inertia strongly depends on the dissipated energy accumulated in
the fissioning system during the large scale amplitude motion. It can be postulated
that the system should adjust its collective velocity in order to prevent negative
values of the effective mass.
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