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Abstract

The paper considers three concepts of nonuniform exponential di-
chotomy and their correspondents for the case of uniform exponential
dichotomy on the half-line in the general framework of evolution oper-
ators in Banach spaces. Two of these concepts can be considered for
evolution operators that are not invertible on the unstable manifold
yielding more general behaviors. Using two particular classes of evo-
lution operators defined on the Banach space of bounded real-valued
sequences, we give some illustrative examples which clarify the rela-
tions between these concepts.
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1 Introduction

The notion of exponential dichotomy introduced by Perron in [24] plays
a central role in the qualitative theory of dynamical systems, which has
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an impressive development. The exponential dichotomy property for linear
dynamical systems has gained prominence since the appearance of two fun-
damental monographs of J. L. Massera and J. J. Schäffer [15], J. L. Daleckii
and M. G. Krein [12]. These were followed by the important books of C.
Chicone and Y. Latushkin [11] and L. Barreira and C. Valls [5].

The most important dichotomy concept used in the qualitative theory
of ordinary differential equations is the uniform exponential dichotomy (see
[13], [14], [9], [16], [18], [27], [29], [32], [31], [33]). In the nonautonomous set-
ting, the concept of uniform exponential dichotomy is too restrictive and it
is important to look for more general behaviors, for example the nonuniform
case, where a consistent contribution is due to L. Barreira and C. Valls ([6],
[7], [8]). Their study is motivated by ergodic theory and nonuniform hyper-
bolic theory (we refer the reader to the monograph of L. Barreira and Ya.
Pesin [4] for details and further information). Furthermore, an important
property of this asymptotic behavior (both in the uniform and nonuniform
case) is the roughness of the dichotomy which can be seen from the papers
[27], [34] and [35]. Another direction for the study of nonuniform behaviors
is due to the members of the Research Center in Differential Equations from
West University of Timişoara, Romania, who study a more general type of
nonuniform exponential dichotomy which does not impose an upper bound
on the dichotomy projections (see [16], [20], [19], [17],[25], [26], [3], [22], [21],
[28], [30]).

We prove that in the particular case when the nonuniformity is of expo-
nential type and the dichotomy projections are exponentially bounded, the
three dichotomy concepts presented in this paper are equivalent (Theorem
3).

In this paper we consider three concepts of nonuniform exponential di-
chotomy (exponential dichotomy, strong exponential dichotomy, weak expo-
nential dichotomy) and their correspondents for the case of uniform expo-
nential dichotomy for evolution operators on the half-line. Thus we obtain
a systematic classification of exponential dichotomy concepts with the con-
nections between them. Using two general classes of evolution operators, we
clarify the relations between these concepts. In contrast with the concept of
exponential dichotomy, two concepts of strong exponential dichotomy and
weak exponential dichotomy (see Proposition 1 and Open Problem 2) can
be defined for evolution operators which are not invertible on the unstable
manifolds, but, in contrast with the invertible case, more general behaviors
are obtained.

We remark that in this paper we assume the existence of a family of
projections P which is compatible with a given evolution operator U . At a
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fist view the existence of such a family P is a strong hypothesis. The im-
pediment can be eliminated using the notion of admissibility, by associating
to an evolution operator U : ∆→ B(X) the integral equation

f(t) = U(t, s)f(s) +

t∫
s

U(t, τ)v(τ) dτ, (t, s) ∈ ∆

where f and v belong to some Banach function spaces. Under the hypothesis
of admissibility, the existence of the family of projections and the dichotomy
property is deduced (for details, see for example [8], [19], [30], [32], [23] [31],
[18]).

2 Dichotomic pairs

Let X be a real or complex Banach space and B(X) the Banach algebra
of all bounded linear operators on X. The norms on X and B(X) will be
denoted by ‖ · ‖. Denote by I the identity operator on X.
We will also use the following notations:

∆ = {(t, s) ∈ R2
+ : t ≥ s} and T = ∆×X.

Definition 1. A map P : R+ → B(X) is called a family of projections
on X if

P (t)2 = P (t), for every t ≥ 0.

In particular

• if there are M ≥ 1 and γ ≥ 0 such that

‖P (t)‖ ≤Meγt, for all t ≥ 0

then we say that P : R+ → B(X) is exponentially bounded;

• if there is M ≥ 1 such that

‖P (t)‖ ≤M, for all t ≥ 0

then we say that P is bounded.

Remark 1. If P : R+ → B(X) is a family of projections on X then

Q : R+ → B(X) defined by Q(t) = I − P (t)

is also a family of projections on X, which is called the complementary
family of projections of P .
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Definition 2. A map U : ∆ → B(X) is called an evolution operator on
X if

(e1) U(t, t) = I for every t ≥ 0;

(e2) U(t, s)U(s, t0) = U(t, t0) for all (t, s), (s, t0) ∈ ∆.

Definition 3. A family of projections P : R+ → B(X) is said to be invari-
ant for the evolution operator U : ∆→ B(X) if

U(t, s)P (s) = P (t)U(t, s)

for all (t, s) ∈ ∆.

Definition 4. A family of projections P : R+ → B(X) is said to be com-
patible with the evolution operator U : ∆→ B(X) if

(c1) P is invariant for U ;

(c2) for every (t, s) ∈ ∆ the restriction of U(t, s) on Ker P (s) is an iso-
morphism from Ker P (s) to Ker P (t)

If P is compatible with U then the pair (U,P ) is called a dichotomic pair.

Remark 2. If (U,P ) is a dichotomic pair then for all (t, s) ∈ ∆ one has
that

U(t, s)Q(s) = Q(t)U(t, s).

Remark 3. If (U,P ) is a dichotomic pair and for all (t, s) ∈ ∆ the linear
operator U(t, s) is invertible (for example, if the evolution operator arises
from linear ODEs) then (U,Q) is also a dichotomic pair, where Q is the
complementary family of P .

Remark 4. If (U,P ) is a dichotomic pair then there exists V : ∆→ B(X)
such that V (t, s) is an isomorphism from Ker P (t) to Ker P (s) and

(v1) U(t, s)V (t, s)Q(t) = Q(t);

(v2) V (t, s)U(t, s)Q(s) = Q(s);

(v3) V (t, s)Q(t) = Q(s)V (t, s)Q(t)

for all (t, s) ∈ ∆. The map V is called the skew-evolution operator
associated to the pair (U,P ).
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3 Exponential dichotomy

In this section we present the exponential dichotomy concepts considered
(both in the uniform and the nonuniform case), for example, in [1], [15], [18],
[19], [23], [28], [29], [30].

In what follows, let (U,P ) be a dichotomic pair and let V be the skew-
evolution operator associated to the pair (U,P ).

Definition 5. We say that the pair (U,P ) is exponentially dichotomic
(e.d) if there are N ≥ 1, α > 0 and β ≥ 0 such that

(ed1) eα(t−s)‖U(t, s)P (s)x‖ ≤ Neβs‖P (s)x‖

(ed2) eα(t−s)‖Q(s)x‖ ≤ Neβt‖U(t, s)Q(s)x‖
for all (t, s, x) ∈ T , where Q is the complementary family of P .
In the particular case when β = 0 we say that (U,P ) is uniformly expo-
nentially dichotomic (u.e.d).

Remark 5. As particular cases of the above defined concept, we obtain the
following concepts:

(i) if P (t) = I for all t ≥ 0, then we obtain the exponential stability
property;

(ii) if P (t) = I for all t ≥ 0 and β = 0, then we obtain the uniform
exponential stability property.

Remark 6. If (U,P ) is u.e.d then it is e.d. The converse is not generally
true, as shown in Example 1, (vii).

The above concept allows us to define the exponential dichotomy prop-
erty for evolution operators in the general case in which the invertibility on
the kernels of the projections is not assumed i.e. P is only invariant for
U . Next, we present another result concerning the nonuniform exponential
dichotomy which, as it can be seen from the two conditions of the theorem,
can also be asserted in the general (noninvertible) case.

Theorem 1. The dichotomic pair (U,P ) is exponentially dichotomic with
β ∈ [0, α) (where α and β are given by Definition 5) if and only if there
exists N ≥ 1 such that

(ed′1) eα(t−s)‖U(t, s)P (s)x‖ ≤ Neβs‖P (s)x‖

(ed′2) eα(t−s)‖Q(s)x‖ ≤ Neβs‖U(t, s)Q(s)x‖
for all (t, s, x) ∈ T .
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Proof. It is sufficient to show that (ed2)⇔ (ed′2).
For (ed2)⇒ (ed′2) we have that

e(α−β)(t−s)‖Q(s)x‖ ≤ Neβte−β(t−s)‖U(t, s)Q(s)x‖ = Neβs‖U(t, s)Q(s)x‖

and for (ed′2)⇒ (ed2) we observe that

eα(t−s)‖Q(s)x‖ ≤ Neβs‖U(t, s)Q(s)x‖ = Neβt‖U(t, s)Q(s)x‖

for all (t, s, x) ∈ T .

As an immediate consequence we obtain

Corollary 1. If the dichotomic pair (U,P ) is exponentially dichotomic with
β ∈ [0, α) then

lim
t→∞

U(t, s)P (s)x = 0 for every (s, x) ∈ R+ ×X and

lim
t→∞
‖U(t, s)Q(s)x‖ =∞ for every (s, x) ∈ R+ ×X with Q(s)x 6= 0.

Remark 7. The condition β ∈ [0, α) is essential for the validity of the
previous corollary, phenomenon illustrated in Example 1, (x).

A characterization of the concept of exponential dichotomy is given by

Theorem 2. Let (U,P ) be a dichotomic pair. Then (U,P ) is exponentially
dichotomic if and only if there exist N ≥ 1, α > 0 and β ≥ 0 such that

(ed′′1) eα(t−s)‖U(t, s)P (s)x‖ ≤ Neβs‖P (s)x‖

(ed′′2) eα(t−s)‖V (t, s)Q(t)x‖ ≤ Neβt‖Q(t)x‖
for all (t, s, x) ∈ T .

Proof. We only have to prove the equivalence between the instability prop-
erties (i.e. (ed2)⇔ (ed′′2)). To prove that (ed′′2)⇒ (ed2), we observe that

eα(t−s)‖Q(s)x‖ (v2)
= eα(t−s)‖V (t, s)U(t, s)Q(s)x‖ =

= eα(t−s)‖V (t, s)Q(t)U(t, s)Q(s)x‖ ≤ Neβt‖U(t, s)Q(s)x‖

for all (t, s, x) ∈ T .
Similarly, by (v3), (ed2) and (v1) it results that

eα(t−s)‖V (t, s)Q(t)x‖ (v3)
= eα(t−s)‖Q(s)V (t, s)Q(t)x‖ ≤
≤ Neβt‖U(t, s)Q(s)V (t, s)Q(t)x‖ =

= Neβt‖Q(t)U(t, s)V (t, s)Q(t)x‖ (v1)
= Neβt‖Q(t)x‖

for all (t, s, x) ∈ T .



Exponential dichotomy concepts 215

As a particular case we obtain

Corollary 2. Let (U,P ) be a dichotomic pair. Then (U,P ) is uniformly
exponentially dichotomic if and only if there are N ≥ 1 and α > 0 such that

(ued′1) eα(t−s)‖U(t, s)P (s)x‖ ≤ N‖P (s)x‖

(ued′2) eα(t−s)‖V (t, s)Q(t)x‖ ≤ N‖Q(t)x‖

for all (t, s, x) ∈ T .

4 Weak exponential dichotomy

Let (U,P ) be a dichotomic pair, Q the complementary family of P and
V the skew-evolution operator associated to the pair (U,P ). We introduce
the following dichotomy concept:

Definition 6. We say that the pair (U,P ) is weakly exponentially di-
chotomic (w.e.d) if there are N ≥ 1, α > 0 and β ≥ 0 such that

(wed1) eα(t−s)‖U(t, s)P (s)‖ ≤ Neβs‖P (s)‖

(wed2) eα(t−s)‖V (t, s)Q(t)‖ ≤ Neβt‖Q(t)‖

for all (t, s) ∈ ∆.
In the particular case when β = 0 we say that (U,P ) is uniformly weakly
exponentially dichotomic (u.w.e.d).

Remark 8. It is obvious that u.w.e.d⇒ w.e.d. The converse implication is
not generally valid (for details, see Example 1 (vii)).

Remark 9. The following implications hold:

e.d⇒ w.e.d and u.e.d⇒ u.w.e.d

Open Problems.

1) We ask wether the reciprocal implications from Remark 9 hold.

2) For example, in [1], a ”weak exponential dichotomy” concept was intro-
duced in the uniform case, in the general framework of evolution op-
erators, in which the assumption of invertibility of the given evolution
operator on the kernels of the projections was dropped. Having in mind
such ”weak” behavior in our nonuniform case, we propose for solving or
disproving the following implication:
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(U,P ) is w.e.d ⇒


∃ N ≥ 1, α > 0, β ≥ 0 such that ∀(t, s) ∈ ∆

(wed′1) eα(t−s)‖U(t, s)P (s)‖ ≤ Neβs‖P (s)‖;
(wed′2) eα(t−s)‖Q(s)‖ ≤ Neβt‖U(t, s)Q(s)‖.

In what concerns Open Problem 2, we posses a partial result, given by
the following assertion.

Remark 10. The converse of the implication from Open Problem 2 is not
generally valid (see Example 2).

5 Strong exponential dichotomy

In this section we consider another exponential dichotomy concept used
in the papers of L. Barreira and C. Valls ([6], [7], [8]). Connections with the
previous dichotomy concepts are given. It is shown that in the particular
case when the family of projections is exponentially bounded then the ex-
ponential dichotomy concepts presented in this paper are equivalent.
Let (U,P ) be a dichotomic pair and let Q be the complementary family of
P . Let V be the skew-evolution operator associated to the pair (U,P ).

Definition 7. We say that the pair (U,P ) is strongly exponentially
dichotomic (s.e.d) if there are N ≥ 1, α > 0 and β ≥ 0 such that

(sed1) eα(t−s)‖U(t, s)P (s)x‖ ≤ Neβs‖x‖

(sed2) eα(t−s)‖V (t, s)Q(t)x‖ ≤ Neβt‖x‖

for all (t, s, x) ∈ T .

If the conditions (sed1) and (sed2) hold for β = 0 then we say that (U,P )
is uniformly strongly exponentially dichotomic (u.s.e.d).

Remark 11. It is obvious that u.s.e.d ⇒ s.e.d. The converse implication
is not generally true (see Example 1 (ix)).

Remark 12. If (U,P ) is s.e.d then from (sed1), for t = s, we obtain that

‖P (s)‖ ≤ Neβs for all s ≥ 0

i.e. P is exponentially bounded. In particular, if (U,P ) is u.s.e.d then P is
bounded.
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Remark 13. If (U,P ) is s.e.d then by substituting x by P (s)x in (sed1)
respectively by Q(s)x in (sed2) we obtain the implication s.e.d ⇒ e.d. In
particular, u.s.e.d ⇒ u.e.d. The converse implications are not generally
valid (see Example 1 (viii)).

Remark 14. Having in mind the wide usage of the e.d concept and the
s.e.d concept, it is reasonable to consider a dichotomy concept which has the
estimations in the operator norm (see Remark 15) as in the s.e.d concept,
but in the meantime, as in the case of the e.d concept, not to assume any
restriction on the family of projections (see Remark 12).

Remark 15. From Definition 7 it results that (U,P ) is s.e.d if and only if
there exist N ≥ 1, α > 0 and β ≥ 0 such that

(sed′1) eα(t−s)‖U(t, s)P (s)‖ ≤ Neβs

(sed′2) eα(t−s)‖V (t, s)Q(t)‖ ≤ Neβt

for all (t, s) ∈ ∆.
In particular, for β = 0 we have that (U,P ) is u.s.e.d if and only if there
are N ≥ 1 and α > 0 with the following properties:

(used′1) eα(t−s)‖U(t, s)P (s)‖ ≤ N

(used′2) eα(t−s)‖V (t, s)Q(t)‖ ≤ N
for all (t, s) ∈ ∆.

A difference between the result of Theorem 1 and its correspondent for
the s.e.d property is given by

Proposition 1. If the pair (U,P ) is s.e.d then there exists N ≥ 1, α > 0
and β ≥ 0 such that

(sed′′1) eα(t−s)‖U(t, s)P (s)‖ ≤ Neβs

(sed′′2) eα(t−s) ≤ Neβt‖U(t, s)Q(s)‖
for all (t, s) ∈ ∆.

Proof. It is sufficient to prove that (sed′2) ⇒ (sed′′2). Indeed, from (sed′2) ,
(v2) and (c1) we obtain that

eα(t−s) ≤ eα(t−s)‖Q(s)‖ = eα(t−s)‖V (t, s)Q(t)U(t, s)Q(s)‖
≤ Neβt‖U(t, s)Q(s)‖

for all (t, s) ∈ ∆.
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Remark 16. The converse of the above proposition is not generally valid
(see Example 2).

Remark 17. Having in mind the above proposition and remark, we can
observe that if we consider the s.e.d property in the general case of invariant
families of projections (without the invertibility on the unstable direction of
the evolution operator), we obtain a more general behavior. Such behaviors
were also pointed out in [1] (in the uniform case) and [2] (in the discrete
case).

The main result of this section is

Theorem 3. Let (U,P ) be a dichotomic pair with the property that P is
exponentially bounded. Then the following properties are equivalent:

(i) (U,P ) is strongly exponentially dichotomic;

(ii) (U,P ) is exponentially dichotomic;

(iii) (U,P ) is weakly exponentially dichotomic.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) follow from Remarks 13 and 9.
For (iii) ⇒ (i) assume that (U,P ) is w.e.d. Then there exist M ≥ 1 and
γ ≥ 0 such that for all t ≥ 0,

‖P (t)‖ ≤Meγt.

Then, for all (t, s) ∈ ∆, from (wed1) and (wed2) it follows that

eα(t−s)‖U(t, s)P (s)‖ ≤ Neβs‖P (s)‖ ≤ 2MNe(β+γ)s

and
eα(t−s)‖V (t, s)Q(t)‖ ≤ Neβt‖Q(t)‖ ≤ 2MNe(β+γ)t

which, by Remark 15, shows that (U,P ) is s.e.d.

As a particular case, we have

Corollary 3. Let (U,P ) be a dichotomic pair with the property that P is a
bounded family of projections. Then the following assertions are equivalent:

(i) (U,P ) is u.s.e.d;

(ii) (U,P ) is u.e.d;

(iii) (U,P ) is u.w.e.d.
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Remark 18. By Remarks 6, 8, 9, 13 and 16, we obtain the connections
between the dichotomy concepts studied in this paper. These are illustrated
in the following diagram:

u.s.e.d
6⇐

=⇒ u.e.d =⇒ u.w.e.d
6⇒⇐ u.s.e.d

⇓6⇑ ⇓6⇑ ⇓6⇑ ⇓6⇑
s.e.d

6⇐
=⇒ e.d =⇒ w.e.d

6⇒⇐ s.e.d

6 Examples and counterexamples

The aim of this section is to give some illustrative examples and coun-
terexamples which show that the converse of the implications presented in
the previous sections are not valid. We begin with some notations used in
what follows.

Let P be the set of all families of projections P : R+ → B(X) satisfying
the equality

P (t)P (s) = P (s) for all t, s ≥ 0.

We observe that if P ∈ P then its complementary Q verifies the relations

Q(t)Q(s) = Q(t) and Q(t)P (s) = 0 for all t, s ≥ 0.

We shall denote by U1 the set of all u : R+ → (0,∞) with the property
that there exist N ≥ 1, α > 0 and β ≥ 0 such that

eα(t−s)u(s) ≤ Neβsu(t) for all (t, s) ∈ ∆.

As a remarkable subset of U1 we point out the set denoted by U0, defined
as the set of all functions u : R+ → (0,∞) with the property that there are
N ≥ 1 and α > 0 such that

eα(t−s)u(s) ≤ Nu(t) for all (t, s) ∈ ∆.

As examples, we give u1, u2, u3 : R+ → (0,∞) defined by

u1(t) = e
3t

2+cos(3πt) , u2(t) = e
2t

1+{2t} , u3(t) = e2t

where {t} denotes the fractional part of t.
It is easy to see that u1 ∈ U1 r U0 (with N = α = 1, β = 2), u2 ∈ U1 r U0
(with N = α = β = 1 and u3 ∈ U0 (with N = α = 1).

An example of a dichotomic pair (U,P ) with P ∈ P is presented by the
following example.
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Example 1. Let X = l∞ the Banach space of all bounded real-valued se-
quences, endowed with the norm

‖x‖ = sup
n≥0
|xn|, where x = (x0, x1, . . . , xn, . . .) ∈ X.

For every nondecreasing function p : R+ → R+ we define P : R+ → B(X) by

P (t)x = (x0 + p(t)x1, 0, x2 + p(t)x3, 0, . . .)

for all t ≥ 0 and x = (x0, x1, . . .) ∈ X.
Then P is a family of projections which belongs to P and its complementary
is given by

Q(t)x = (−p(t)x1, x1,−p(t)x3, x3, . . .) .

Moreover, for all (t, s, x) ∈ T we have

‖P (t)‖ = 1 + p(t) and ‖Q(s)x‖ = max{1, p(s)} sup
n≥0
|x2n+1| ≤ ‖Q(t)x‖.

In particular:

• for p(t) = et − 1 we have that P is exponentially bounded;

• for p(t) = et
2 − 1 it results that P is not exponentially bounded.

For every u : R+ → (0,∞) we define U : ∆→ B(X) by

U(t, s) =
u(s)

u(t)
P (s) +

u(t)

u(s)
Q(t)

for all (t, s) ∈ ∆ where Q is the complementary family of P .
It is easy to verify that (U,P ) is a dichotomic pair and the skew-evolution
operator associated to (U,P ) is given by

V (t, s)Q(t) =
u(s)

u(t)
Q(s) for (t, s) ∈ ∆.

Moreover

U(t, s)P (s) =
u(s)

u(t)
P (s) and U(t, s)Q(s) =

u(t)

u(s)
Q(t) for all (t, s) ∈ ∆.

By Definitions 5, 6, 7, in the particular case of the above defined dichotomic
pair (U,P ), we obtain the following conclusions:

(i) (U,P ) is e.d if and only if u ∈ U1;
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(ii) (U,P ) is u.e.d if and only if u ∈ U0;

(iii) (U,P ) is s.e.d if and only if u ∈ U1 and P is exponentially bounded;

(iv) (U,P ) is u.s.e.d if and only if u ∈ U0 and P is bounded;

(v) (U,P ) is w.e.d if and only if u ∈ U1;

(vi) (U,P ) is u.w.e.d if and only if u ∈ U0;

From these characterizations we obtain, with the aid of functions u and
p from the definition of (U,P ), that

(vii) if u ∈ U1 r U0 then (U,P ) is e.d (hence also w.e.d) although (U,P ) is
not u.w.e.d (hence not u.e.d). Thus we obtain that e.d 6⇒ u.e.d and
w.e.d 6⇒ u.w.e.d;

(viii) if u ∈ U0 and P is not exponentially bounded (for example, if p(t) =
et

2 − 1) then (U,P ) is u.e.d (hence e.d) but (U,P ) is not s.e.d (hence
not u.s.e.d). Thus we have that e.d 6⇒ s.e.d and u.e.d 6⇒ u.s.e.d;

(ix) if u ∈ U1 r U0 and P is exponentially bounded and not bounded then
(U,P ) is s.e.d and it is not u.s.e.d. Hence s.e.d 6⇒ u.s.e.d;

(x) for u = u1 ∈ U1, with β = 2 /∈ [0, α) = [0, 1), we have that (U,P ) is
e.d with

lim
t→∞
‖U(t, s)P (s)x‖ = 0 and lim

t→∞
‖U(t, s)Q(s)x‖ =∞

for every x ∈ X with Q(s)x 6= 0. Thus, it results that the condition
β ∈ [0, α) is not necessary for the validity of Corollary 1.

Example 2. Let u, v : R+ → (0,∞) be two nondecreasing functions such
that there exist N ≥ 1, α > 0 and γ > 0 with the following properties:

Nu(t) ≥ eα(t−s)u(s) and v(t) ≥ eγt2

for all (t, s) ∈ ∆.
On X = l∞, the Banach space of bounded real-valued sequences endowed with
the sup-norm, we consider the family of projections P : R+ → B(X) defined
by P (s)x = y, where x = (x0, x1, . . . , xn, . . .) and y = (y0, y1, . . . , yn, . . .)
with

yn =

{
xn, n = 3k

0, otherwise
.
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The complementary family of P is given by Q(s)x = z = (z0, z1, . . . , zn, . . .)
with

zn =

{
0, n = 3k

xn, otherwise
.

Consider U : ∆ → B(X) defined by U(t, s)x = w = (w0, w1, . . . , wn, . . .),
where

wn =


u(s)
u(t)xn, n = 3k
u(t)
u(s)xn, n = 3k + 1
v(s)
v(t)xn, n = 3k + 2

It is easy to check that P is compatible with U . Moreover, for all (t, s, x) ∈ T
we have that

‖U(t, s)P (s)x‖ =
u(s)

u(t)
‖P (s)x‖ ≤ Ne−α(t−s)‖P (s)x‖ (1)

and

‖U(t, s)Q(s)x‖ = sup
n∈N

{
u(t)

u(s)
|x3n+1|,

v(s)

v(t)
|x3n+2|

}
≤

≤ max
n∈N

{
u(t)

u(s)
,
v(s)

v(t)

}
‖Q(s)x‖ =

u(t)

u(s)
‖Q(s)x‖. (2)

By choosing x′ = (x′0, x
′
1, . . . , x

′
n, . . .) with

x′n =

{
0, n = 3k

1, otherwise

we have that

‖U(t, s)Q(s)x′‖ =
u(t)

u(s)
‖Q(s)x′‖

hence

‖U(t, s)Q(s)‖ =
u(t)

u(s)
‖Q(s)‖ ≥ 1

N
eα(t−s)‖Q(s)‖. (3)

From relations (1) and (3) we have that the pair (U,P ) satisfies the
conditions (wed′1) and (wed′2) from Open Problem 2. Taking into account
that P is bounded, from (1) and (3) we get that for all (t, s) ∈ ∆,

‖U(t, s)P (s)‖ ≤ Ne−α(t−s) and ‖U(t, s)Q(s)‖ ≥ 1

N
eα(t−s) (4)
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hence the pair (U,P ) satisfies the conditions (sed′′1) and (sed′′2) from Propo-
sition 1.

On the other hand, for (t, s, x) ∈ T we have that

‖V (t, s)Q(t)x‖ = sup
n∈N

{
u(s)

u(t)
|x3n+1|,

v(t)

v(s)
|x3n+2|

}
. (5)

Assume by a contradiction that the pair (U,P ) is w.e.d. Then there exist
α > 0, β ≥ 0 and N ≥ 1 such that

‖V (t, s)Q(t)‖ ≤ Neβte−α(t−s)‖Q(t)‖ = Neβte−α(t−s). (6)

By choosing x0 = (0, 0, 1, 0, 0, 1, . . .) ∈ X with ‖Q(t)x0‖ = 1 we get from (5)
that for all (t, s) ∈ ∆,

‖V (t, s)Q(t)‖ ≥ v(t)

v(s)
. (7)

From (6) and (7), by taking s = 0, we obtain the contradiction

eγt
2 ≤ v(t) ≤ v(0)Ne(β−α)t, for all t ≥ 0.

Hence the pair (U,P ) is not w.e.d and by Theorem 3 it is not s.e.d.
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