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Abstract

In the framework of the theory of open systems based on com-
pletely positive quantum dynamical semigroups, we give a descrip-
tion of the continuous-variable quantum correlations (quantum entan-
glement and quantum discord) for a system consisting of two non-
interacting bosonic modes embedded in a thermal environment. We
solve the Kossakowski-Lindblad master equation for the time evolu-
tion of the considered system and describe the entanglement and dis-
cord in terms of the covariance matrix for Gaussian input states. For
all values of the temperature of the thermal reservoir, an initial sep-
arable Gaussian state remains separable for all times. We study the
time evolution of logarithmic negativity, which characterizes the de-
gree of entanglement, and show that in the case of an entangled initial
squeezed thermal state, entanglement suppression takes place for all
temperatures of the environment, including zero temperature. We an-
alyze the time evolution of the Gaussian quantum discord, which is a
measure of all quantum correlations in the bipartite state, including
entanglement, and show that it decays asymptotically in time under
the effect of the thermal bath. This is in contrast with the sudden
death of entanglement. Before the suppression of the entanglement,
the qualitative evolution of quantum discord is very similar to that of
the entanglement. We describe also the time evolution of the degree of
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classical correlations and of quantum mutual information, which mea-
sures the total correlations of the quantum system.
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1 Introduction

The study of quantum correlations is a key issue in quantum information
theory [1] and quantum entanglement represents the indispensable physical
resource for the description and performance of quantum information pro-
cessing tasks, like quantum teleportation, cryptography, superdense coding
and quantum computation [2]. However, entanglement does not describe
all the non-classical properties of quantum correlations. Recent theoretical
and experimental results indicate that some non-entangled mixed states can
improve performance in some quantum computing tasks [3]. Zurek [4, 5]
defined the quantum discord as a measure of quantum correlations which
includes entanglement of bipartite systems and it can also exist in separable
states. The total amount of correlations contained in a quantum state is
given by the quantum mutual information which is equal to the sum of the
quantum discord and classical correlations [6].

In recent years there is an increasing interest in using non-classical en-
tangled states of continuous variable systems in applications of quantum
information processing, communication and computation [7]. In this re-
spect, Gaussian states, in particular two-mode Gaussian states, play a key
role since they can be easily created and controlled experimentally. Due
to the unavoidable interaction with the environment, in order to describe
realistically quantum information processes it is necessary to take decoher-
ence and dissipation into consideration. Decoherence and dynamics of quan-
tum entanglement in continuous variable open systems have been intensively
studied in the last years [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].

In this review paper we describe, in the framework of the theory of open
systems based on completely positive quantum dynamical semigroups, the
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dynamics of continuous variable quantum entanglement and quantum dis-
cord of a subsystem consisting of two uncoupled bosonic modes (harmonic
oscillators) interacting with a common thermal environment. We are inter-
ested in discussing the correlation effect of the environment, therefore we
assume that the two modes are independent, i.e. they do not interact di-
rectly. The initial state of the open system is taken of Gaussian form and
the evolution under the quantum dynamical semigroup assures the preser-
vation in time of the Gaussian form of the state. In particular, we consider
unimodal squeezed states, squeezed vacuum states, and symmetric and non-
symmetric squeezed thermal states as initial states [22, 23, 24]. We show
that entanglement suppression (entanglement sudden death) takes place for
all temperatures of the environment, including zero temperature. We ana-
lyze the time evolution of Gaussian quantum discord, which is a measure of
all quantum correlations in the bipartite state, including entanglement, and
show that discord decays asymptotically in time under the effect of the ther-
mal bath. This is contrast with the sudden death of entanglement. Before
the suppression of the entanglement, the qualitative evolution of quantum
discord is very similar to that of the entanglement.

The paper is organized as follows. In Sect. 2 the notion of the quantum
dynamical semigroup is defined using the concept of a completely positive
map. Then we give the general form of the Kossakowski-Lindblad quantum
mechanical master equation describing the evolution of open quantum sys-
tems in the Markovian approximation. We mention the role of complete pos-
itivity in connection with the quantum entanglement of systems interacting
with an external environment. In Sec. 3 we write the equations of motion in
the Heisenberg picture for two independent bosonic modes interacting with
a general environment and give the general solution of the evolution equa-
tion for the covariance matrix, i.e. we derive the variances and covariances
of coordinates and momenta corresponding to a generic two-mode Gaussian
state. Then, by using the Peres-Simon necessary and sufficient condition for
separability of two-mode Gaussian states [25, 26], we investigate in Sec. 4
the dynamics of quantum correlations (quantum entanglement and Gaus-
sian quantum discord) for the considered subsystem. We describe also the
time evolution of the degree of classical correlations and of quantum mutual
information. A summary and conclusions are given in Sec. 5. In Appendix
we present some elementary notions and examples of quantum correlations
(entanglement) in quantum information theory, and describe the influence
of diffusion and dissipation on the dynamics of a harmonic oscillator inter-
acting with an environment, in particular with a thermal bath.
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2 Axiomatic theory of open quantum systems

The time evolution of a closed physical system is given by a dynamical
group Ut, uniquely determined by its generator H, which is the Hamiltonian
operator of the system. The action of the dynamical group Ut on any density
matrix ρ from the set D(H) of all density matrices in the Hilbert space H
of the quantum system is defined by

ρ(t) = Ut(ρ) = e−
i
~Htρe

i
~Ht (1)

for all t ∈ (−∞,∞). According to von Neumann, density operators ρ ∈
D(H) are trace class (Tr ρ < ∞), self-adjoint (ρ† = ρ), positive (ρ > 0)
operators with Tr ρ = 1. All these properties are conserved by the time
evolution defined by Ut.

In the case of open quantum systems, the time evolution Φt of the density
operator ρ(t) = Φt(ρ) has to preserve the von Neumann conditions for all
times. It follows that Φt must have the following properties:

(i) Φt(λ1ρ1 + λ2ρ2) = λ1Φt(ρ1) + λ2Φt(ρ2) for λ1, λ2 ≥ 0, λ1 + λ2 = 1, i.
e. Φt must preserve the convex structure of D(H),

(ii) Φt(ρ
†) = Φ†

t(ρ),

(iii) Φt(ρ) > 0,

(iv) Tr Φt(ρ) = 1.

The time evolution Ut for closed systems must be a group Ut+s = UtUs.
We have also U0(ρ) = ρ and Ut(ρ) → ρ in the trace norm when t→ 0. The
dual group Ũt acting on the observables A ∈ B(H), i.e. on the bounded
operators on H, is given by

Ũt(A) = e
i
~HtAe−

i
~Ht. (2)

Then Ũt(AB) = Ũt(A)Ũt(B) and Ũt(I) = I, where I is the identity operator
on H. Also, Ũt(A) → A ultraweakly when t → 0 and Ũt is an ultraweakly
continuous mapping [27, 28, 29]. These mappings have a strong positivity
property called complete positivity:∑

i,j

B†
i Ũt(A

†
iAj)Bj ≥ 0, Ai, Bi ∈ B(H). (3)

In the axiomatic approach to the description of the evolution of open
quantum systems [27, 28, 29], one supposes that the time evolution Φt of
open systems is not very different from the time evolution of closed systems.
The simplest dynamics Φt which introduces a preferred direction in time,
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characteristic for dissipative processes, is that in which the group condition
is replaced by the semigroup condition [27, 30, 31]

Φt+s = ΦtΦs, t, s ≥ 0. (4)

The complete positivity condition has the form:∑
i,j

B†
i Φ̃t(A

†
iAj)Bj ≥ 0, Ai, Bi ∈ B(H), (5)

where Φ̃t denotes the dual of Φt acting on B(H), defined by the duality
condition

Tr(Φt(ρ)A) = Tr(ρΦ̃t(A)). (6)

Then the conditions TrΦt(ρ) = 1 and Φ̃t(I) = I are equivalent. Also the
conditions Φ̃t(A) → A ultraweakly when t → 0 and Φt(ρ) → ρ in the trace
norm when t→ 0, are equivalent. For the semigroups with these properties
and with a more weak property of positivity than Eq. (5), namely

A ≥ 0 → Φ̃t(A) ≥ 0, (7)

it is well known that there exists a (generally unbounded) mapping L̃ – the
generator of Φ̃t, and Φ̃t is uniquely determined by L̃. The dual generator of
the dual semigroup Φt is denoted by L:

Tr(L(ρ)A) = Tr(ρL̃(A)). (8)

The evolution equations by which L and L̃ determine uniquely Φt and Φ̃t,
respectively, are given in the Schrödinger and Heisenberg picture by

dΦt(ρ)

dt
= L(Φt(ρ)) (9)

and

dΦ̃t(A)

dt
= L̃(Φ̃t(A)). (10)

These equations replace in the case of open systems the von Neumann-
Liouville equations

dUt(ρ)

dt
= − i

~
[H,Ut(ρ)] (11)
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and

dŨt(A)

dt
=
i

~
[H, Ũt(A)], (12)

respectively. For applications, Eqs. (9) and (10) are only useful if the
detailed structure of the generator L(L̃) is known and can be related to the
concrete properties of the open systems described by such equations. For
the class of dynamical semigroups which are completely positive and norm
continuous, the generator L̃ is bounded. In many applications the generator
is unbounded.

According to Lindblad [29], the following argument can be used to justify
the complete positivity of Φ̃t: if the open system is extended in a trivial way
to a larger system described in a Hilbert space H⊗K with the time evolution
defined by

W̃t(A⊗B) = Φ̃t(A)⊗B, A ∈ B(H), B ∈ B(K), (13)

then the positivity of the states of the compound system will be preserved by
W̃t only if Φ̃t is completely positive. With this observation a new equivalent
definition of the complete positivity is obtained: Φ̃t is completely positive
if W̃t is positive for any finite dimensional Hilbert space K. The physical
meaning of complete positivity can mainly be understood in relation to the
existence of entangled states, the typical example being given by a vector
state with a singlet-like structure that cannot be written as a tensor prod-
uct of vector states. Positivity property guarantees the physical consistency
of evolving states of single systems, while complete positivity prevents in-
consistencies in entangled composite systems, and therefore the existence of
entangled states makes the request of complete positivity necessary [32].

A bounded mapping L̃ : B(H) → B(H) which satisfies L̃(I) = 0, L̃(A†) =
L̃†(A) and

L̃(A†A)− L̃(A†)A−A†L̃(A) ≥ 0 (14)

is called dissipative. The 2-positivity property of the completely positive
mapping Φ̃t:

Φ̃t(A
†A) ≥ Φ̃t(A

†)Φ̃t(A), (15)

with equality at t = 0, implies that L̃ is dissipative. Conversely, the dissi-
pativity of L̃ implies that Φ̃t is 2-positive. L̃ is called completely dissipative
if all trivial extensions of L̃ to a compound system described by H ⊗ K
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with any finite dimensional Hilbert space K are dissipative. There exists a
one-to-one correspondence between the completely positive norm continu-
ous semigroups Φ̃t and completely dissipative generators L̃. The following
structural theorem gives the most general form of a completely dissipative
mapping L̃ [29].

Theorem. L̃ is completely dissipative and ultraweakly continuous if
and only if it is of the form

L̃(A) =
i

~
[H,A] +

1

2~
∑
j

(V †
j [A, Vj ] + [V †

j , A]Vj), (16)

where Vj ,
∑

j V
†
j Vj ∈ B(H), H ∈ B(H)s.a..

The dual generator on the state space (Schrödinger picture) is of the
form

L(ρ) = − i

~
[H, ρ] +

1

2~
∑
j

([Vjρ, V
†
j ] + [Vj , ρV

†
j ]). (17)

Eqs. (9) and (17) give the explicit form of the Kossakowski-Lindblad master
equation, which is the most general time-homogeneous quantum mechanical
Markovian master equation with a bounded Liouville operator [29, 31, 33,
34]:

dΦt(ρ)

dt
= − i

~
[H,Φt(ρ)] +

1

2~
∑
j

([VjΦt(ρ), V
†
j ] + [Vj ,Φt(ρ)V

†
j ]). (18)

The assumption of a semigroup dynamics is only applicable in the limit of
weak coupling of the subsystem with its environment, i.e. for long relaxation
times [35]. We mention that the majority of Markovian master equations
found in the literature are of this form after some rearrangement of terms,
even for unbounded generators. It is also an empirical fact for many phys-
ically interesting situations that the time evolutions Φt drive the system
towards a unique final state ρ(∞) = limt→∞Φt(ρ(0)) for all ρ(0) ∈ D(H).

3 Time evolution of two independent bosonic
modes interacting with an environment

We are interested in the dynamics of quantum correlations in a subsys-
tem composed of two non-interacting (independent) bosonic modes (har-
monic oscillators) in weak interaction with a thermal environment, so that
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their reduced time evolution can be described by a Markovian, completely
positive quantum dynamical semigroup. If Φ̃t is the dynamical semigroup
describing the irreversible time evolution of the open quantum system in the
Heisenberg representation, then the Kossakowski-Lindblad master equation
has the following form for an operator A (see Eqs. (10), (16)) [29, 31, 33, 34]:

dΦ̃t(A)

dt
=
i

~
[H, Φ̃t(A)] +

1

2~
∑
j

(V †
j [Φ̃t(A), Vj ] + [V †

j , Φ̃t(A)]Vj). (19)

Here, H denotes the Hamiltonian of the open system and the operators
Vj , V

†
j , defined on the Hilbert space of H, represent the interaction of the

open system with the environment. We are interested in the set of Gaus-
sian states, therefore we introduce quantum dynamical semigroups which
preserve this set and in this case our model represents a Gaussian noise
channel. Consequently H is chosen as a polynomial of second degree in
the coordinates x, y and momenta px, py of the two quantum oscillators and

Vj , V
†
j are taken polynomials of first degree in these canonical observables.

Then in the linear space spanned by the coordinates and momenta there
exist only four linearly independent operators Vj=1,2,3,4 [36]:

Vj = axjpx + ayjpy + bxjx+ byjy, (20)

where axj , ayj , bxj , byj are complex coefficients. The Hamiltonian H of the
two uncoupled non-resonant modes of identical mass m and frequencies ω1

and ω2 is given by

H =
1

2m
(p2x + p2y) +

m

2
(ω2

1x
2 + ω2

2y
2). (21)

The fact that Φ̃t is a dynamical semigroup implies the positivity of
the following matrix formed by the scalar products of the four vectors
ax,ay,bx,by, whose entries are the components axj , ayj , bxj , byj , respec-
tively:

1

2
h̄ =


(axax) (axbx) (axay) (axby)
(bxax) (bxbx) (bxay) (bxby)
(ayax) (aybx) (ayay) (ayby)
(byax) (bybx) (byay) (byby)

 (22)

Its matrix elements have to be chosen appropriately to suit various phys-
ical models of the environment. For a quite general environment able to
induce noise and damping effects, we take this matrix of the following form,
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where all the coefficients Dxx, Dxpx ,... and λ are real quantities, representing
the diffusion coefficients and, respectively, the dissipation constant:


Dxx −Dxpx − i~λ/2 Dxy −Dxpy

−Dxpx + i~λ/2 Dpxpx −Dypx Dpxpy

Dxy −Dypx Dyy −Dypy − i~λ/2
−Dxpy Dpxpy −Dypy + i~λ/2 Dpypy .


(23)

It follows that the principal minors of this matrix are positive or zero.
From the Cauchy-Schwarz inequality the following relations hold for the
coefficients defined in Eq. (23) (from now on we put, for simplicity, ~ = 1):

DxxDpxpx −D2
xpx ≥ λ2

4
, DyyDpypy −D2

ypy ≥ λ2

4
,

DxxDyy −D2
xy ≥ 0, DpxpxDpypy −D2

pxpy ≥ 0,

DxxDpypy −D2
xpy ≥ 0, DyyDpxpx −D2

ypx ≥ 0. (24)

The matrix of the coefficients (23) can be conveniently written as (T denotes
the transposed matrix) (

C1 C3

C3
T C2

)
, (25)

in terms of 2× 2 matrices C1 = C1
†, C2 = C2

† and C3. This decomposition
has a direct physical interpretation: the elements containing the diagonal
contributions C1 and C2 represent diffusion and dissipation coefficients cor-
responding to the first, respectively the second, system in absence of the
other, while the elements in C3 represent environment generated couplings
between the two modes, taken initially independent.

We introduce the following 4× 4 bimodal covariance matrix:

σ(t) =


σxx(t) σxpx(t) σxy(t) σxpy(t)
σxpx(t) σpxpx(t) σypx(t) σpxpy(t)
σxy(t) σypx(t) σyy(t) σypy(t)
σxpy(t) σpxpy(t) σypy(t) σpypy(t)

 (26)

where the correlations of operators Ri and Rj , i, j = 1, .., 4, with R =
{x, px, y, py}, are defined by using the density operator ρ of the initial state
of the quantum system, as follows:

σRiRj (t) =
1

2
Tr[ρ(RiRj +RjRi)(t)]− Tr[ρRi(t)]Tr[ρRj(t)]. (27)
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The problem of solving the master equation for the operators in Heisen-
berg representation can be transformed into a problem of solving first-order
in time, coupled linear differential equations for the covariance matrix ele-
ments. Namely, from Eq. (19) we obtain by direct calculation the following
systems of equations for the quantum correlations of the canonical observ-
ables [36]:

dσ(t)

dt
= Y σ(t) + σ(t)Y T + 2D, (28)

where

Y =


−λ 1/m 0 0

−mω2
1 −λ 0 0

0 0 −λ 1/m
0 0 −mω2

2 −λ

 (29)

D =


Dxx Dxpx Dxy Dxpy

Dxpx Dpxpx Dypx Dpxpy

Dxy Dypx Dyy Dypy

Dxpy Dpxpy Dypy Dpypy

 (30)

Introducing the notation σ(∞) ≡ limt→∞ σ(t), the time-dependent solu-
tion of Eq. (28) is given by [36]

σ(t) =M(t)[σ(0)− σ(∞)]MT(t) + σ(∞), (31)

where the matrixM(t) = exp(Y t) has to fulfill the condition limt→∞M(t) =
0. In order that this limit exists, Y must only have eigenvalues with negative
real parts. The values at infinity are obtained from the equation

Y σ(∞) + σ(∞)Y T = −2D. (32)

4 Dynamics of quantum correlations

To describe the dynamics of quantum correlations, we use two types of
measures: logarithmic negativity for entanglement, and quantum discord.

4.1 Time evolution of entanglement and logarithmic
negativity

A well-known sufficient condition for inseparability is the so-called Peres-
Horodecki criterion [25, 37], which is based on the observation that the
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non-completely positive nature of the partial transposition operation of the
density matrix for a bipartite system (transposition with respect to degrees
of freedom of one subsystem only) may turn an inseparable state into a
nonphysical state. The signature of this non-physicality, and thus of quan-
tum entanglement, is the appearance of a negative eigenvalue in the eigen-
spectrum of the partially transposed density matrix of a bipartite system.
The characterization of the separability of continuous variable states using
second-order moments of quadrature operators was given in Refs. [26, 38].
For Gaussian states, whose statistical properties are fully characterized by
just second-order moments, this criterion was proven to be necessary and
sufficient: a Gaussian continuous variable state is separable if and only if
the partial transpose of its density matrix is non-negative (positive partial
transpose (PPT) criterion).

The two-mode Gaussian state is entirely specified by its covariance ma-
trix (30), which is a real, symmetric and positive matrix with the following
block structure:

σ(t) =

(
A C
CT B

)
, (33)

where A, B and C are 2 × 2 Hermitian matrices. A and B denote the
symmetric covariance matrices for the individual reduced one-mode states,
while the matrix C contains the cross-correlations between modes. When
these correlations have non-zero values, then the states with detC ≥ 0 are
separable states, while for detC < 0 it may be possible that the states are
entangled.

The 4 × 4 covariance matrix (33) (where all first moments can be set
to zero by means of local unitary operations which do not affect the entan-
glement) contains four local symplectic invariants in form of the determi-
nants of the block matrices A,B,C and covariance matrix σ. Based on the
above invariants, Simon [26] derived the following PPT criterion for bipartite
Gaussian continuous variable states: the necessary and sufficient condition
for separability is S(t) ≥ 0, where

S(t) ≡ detAdetB + (
1

4
− | detC|)2

−Tr[AJCJBJCTJ ]− 1

4
(detA+ detB) (34)

and J is the 2× 2 symplectic matrix

J =

(
0 1
−1 0

)
. (35)
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For Gaussian states, the measures of entanglement of bipartite systems
are based on the invariants constructed from the elements of the covariance
matrix [8, 12]. In order to quantify the degree of entanglement of the two-
mode states it is suitable to use the logarithmic negativity. For a Gaussian
density operator, the logarithmic negativity is completely defined by the
symplectic spectrum of the partial transpose of the covariance matrix. It
is given by EN = max{0,− log2 2ν̃−}, where ν̃− is the smallest of the two
symplectic eigenvalues of the partial transpose σ̃ of the two-mode covariance
matrix σ [11]:

2ν̃2∓ = ∆̃∓
√

∆̃2 − 4 detσ (36)

and ∆̃ is the symplectic invariant (seralian), given by ∆̃ = detA+ detB −
2 detC.

In our model, the logarithmic negativity is calculated as [39, 40]

EN (t) = max{0,−1

2
log2[4g(σ(t))]}, (37)

where

g(σ(t)) =
1

2
(detA+ detB)− detC

−

([
1

2
(detA+ detB)− detC

]2
− detσ(t)

)1/2

. (38)

It determines the strength of entanglement for EN (t) > 0, and if EN (t) ≤ 0,
then the state is separable.

We suppose that the asymptotic state of the considered open system is
a Gibbs state corresponding to two independent bosonic modes in thermal
equilibrium at temperature T. Then the quantum diffusion coefficients have
the following form [34]:

mω1Dxx =
Dpxpx

mω1
=
λ

2
coth

ω1

2kT
,

mω2Dyy =
Dpypy

mω2
=
λ

2
coth

ω2

2kT
, (39)

Dxpx = Dypy = Dxy = Dpxpy = Dxpy = Dypx = 0.

The elements of the covariance matrix can be calculated from Eqs. (31),
(32).
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In the following, we analyze the dependence of the Simon function S(t)
and of the logarithmic negativity EN (t) on time t and temperature T of the
thermal bath, with the diffusion coefficients given by Eqs. (39). We consider
two types of the initial Gaussian states: separable and entangled.

1) We consider a separable initial Gaussian state, with the two modes
initially prepared in their single-mode squeezed states (unimodal squeezed
state) and with its initial covariance matrix taken of the form

σs(0) =
1

2


cosh 2r sinh 2r 0 0
sinh 2r cosh 2r 0 0

0 0 cosh 2r sinh 2r
0 0 sinh 2r cosh 2r

 (40)

where r denotes the squeezing parameter. In this case S(t) becomes strictly
positive after the initial moment of time (S(0) = 0), so that the initial
separable state remains separable for all values of the temperature T and
for all times.

2) We take an entangled initial Gaussian state of the form of a two-mode
vacuum squeezed state, with the initial covariance matrix given by

σe(0) =
1

2


cosh 2r 0 sinh 2r 0

0 cosh 2r 0 − sinh 2r
sinh 2r 0 cosh 2r 0

0 − sinh 2r 0 cosh 2r

 (41)

We observe that for all temperatures T, at certain finite moment of time,
which depends on T, EN (t) becomes zero and therefore the state becomes
separable. This is the so-called phenomenon of entanglement sudden death
[23, 41]. It is in contrast to the quantum decoherence, during which the loss
of quantum coherence is usually gradual [17, 42].

3) We assume that the initial Gaussian state is a two-mode squeezed
thermal state, with the covariance matrix of the form [43]

σst(0) =


a 0 c 0
0 a 0 −c
c 0 b 0
0 −c 0 b

 (42)
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with the matrix elements given by

a = n1 cosh
2 r + n2 sinh

2 r +
1

2
cosh 2r,

b = n1 sinh
2 r + n2 cosh

2 r +
1

2
cosh 2r, (43)

c =
1

2
(n1 + n2 + 1) sinh 2r,

where n1, n2 are the average number of thermal photons associated with
the two modes and r denotes the squeezing parameter. In the particular
case n1 = 0 and n2 = 0, (42) becomes the covariance matrix of the two-
mode squeezed vacuum state (41). A two-mode squeezed thermal state is
entangled when the squeezing parameter r satisfies the inequality r > rs
[43], where

cosh2 rs =
(n1 + 1)(n2 + 1)

n1 + n2 + 1
. (44)

0

10

20

30

t

0

1

2

3

4

T

-2

0

2

4

6

EN

Figure 1: Logarithmic negativity EN versus time t and temperature T for
an entangled initial non-symmetric squeezed thermal state with squeezing
parameter r = 3, n1 = 3, n2 = 1 and λ = 0.1, ω1 = 1, ω2 = 2. We take
m = ~ = k = 1.

The evolution of entangled initial squeezed thermal states with the co-
variance matrix given by Eq. (42) is illustrated in Fig. 1, where we represent
the dependence of the logarithmic negativity EN (t) on time t and tempera-
ture T for the case of an initial non-symmetric Gaussian state (a ̸= b). For
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all temperatures T, including zero temperature, at certain finite moment of
time, which depends on T, EN (t) becomes zero and therefore the state be-
comes separable. One can show that the dissipation favors the phenomenon
of entanglement sudden death – with increasing the dissipation parameter
λ, the entanglement suppression happens earlier. The same qualitative be-
haviour of the time evolution of entanglement was obtained previously in
the particular case n1 = 0 and n2 = 0 corresponding to an initial two-mode
squeezed vacuum state and in the case of symmetric initial squeezed thermal
states.

One can assert that the asymmetry (a ̸= b) of the initial Gaussian state
favors the suppression of entanglement. The most robust under the influence
of the environment is the entanglement of symmetric (a = b) initial squeezed
thermal states. An even stronger influence on the entanglement has the
non-resonant character of the two modes: by increasing the ratio of the
frequencies of the two modes, the entanglement sudden death happens earlier
in time. The longest surviving entanglement takes place when the modes
are resonant (ω1 = ω2). This effect due to the non-resonance of the modes is
stronger for small values of the frequencies, and it diminishes, for the same
ratio of frequencies, by increasing the values of frequencies.

In our model, in which we suppose that the asymptotic state of the
considered open system is a Gibbs state corresponding to two independent
bosonic modes in thermal equilibrium, a separable initial state remains sep-
arable in time, and it is not possible to generate entanglement. This is
in contrast with the possibility of entanglement generation starting, for in-
stance, with a separable state in the case of two non-interacting two-level
systems immersed in a common bath [32]. At the same time we notice that
in the case of two identical harmonic oscillators interacting with a general
environment, characterized by general diffusion and dissipation coefficients,
we obtain that for separable initial states and for definite values of these co-
efficients, entanglement generation or a periodic generation and collapse of
entanglement take place [40, 44]. In discussing the entanglement decay, it is
interesting to mention that models have been elaborated to realize quantum
feedback control of continuous variable entanglement for a system consisting
of two interacting bosonic modes plunged into an environment, based on a
local technique [45], or on a nonlocal homodyne measurement [46].

The dynamics of entanglement of the two modes strongly depends on
the initial states and the coefficients describing the interaction of the system
with the thermal environment (dissipation constant and temperature). As
expected, the logarithmic negativity has a behaviour similar to that one of
the Simon function in what concerns the characteristics of the state of being
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separable or entangled [39, 40, 42, 44].

4.2 Asymptotic entanglement

On general grounds, one expects that the effects of decoherence is dom-
inant in the long-time regime, so that no quantum correlations (entangle-
ment) is expected to be left at infinity. Indeed, using the diffusion coefficients
given by Eqs. (39), we obtain from Eq. (32) the following elements of the
asymptotic matrices A(∞) and B(∞) :

mω1σxx(∞) =
σpxpx(∞)

mω1
=

1

2
coth

ω1

2kT
, σxpx(∞) = 0,

mω2σyy(∞) =
σpypy(∞)

mω2
=

1

2
coth

ω2

2kT
, σypy(∞) = 0 (45)

and of the entanglement matrix C(∞) :

σxy(∞) = σxpy(∞) = σypx(∞) = σpxpy(∞) = 0. (46)

Then the Simon expression (34) takes the following form in the limit of large
times:

S(∞) =
1

16

(
coth2

ω1

2kT
− 1
)(

coth2
ω2

2kT
− 1
)
, (47)

and, correspondingly, the equilibrium asymptotic state is always separable
in the case of two non-interacting bosonic modes immersed in a common
thermal reservoir.

In Refs. [20, 21, 39, 40, 42, 44] we described the dependence of the
logarithmic negativity EN (t) on time and mixed diffusion coefficient for
two modes interacting with a general environment. In the present case of a
thermal bath, the asymptotic logarithmic negativity is given by (for ω1 ≤ ω2)

EN (∞) = − log2 coth
ω2

2kT
. (48)

It depends only on temperature, and does not depend on the initial Gaussian
state. EN (∞) < 0 for T ̸= 0 and EN (∞) = 0 for T = 0, and this confirms
the previous statement that the asymptotic state is always separable.

4.3 Gaussian quantum discord

The separability of quantum states has often been described as a prop-
erty synonymous with the classicality. However, recent studies have shown
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that separable states, usually considered as being classically correlated,
might also contain quantum correlations. Quantum discord was introduced
[4, 5] as a measure of all quantum correlations in a bipartite state, including
– but not restricted to – entanglement. Quantum discord has been defined as
the difference between two quantum analogues of classically equivalent ex-
pression of the mutual information, which is a measure of total correlations
in a quantum state. For pure entangled states quantum discord coincides
with the entropy of entanglement. Quantum discord can be different from
zero also for some mixed separable state and therefore the correlations in
such separable states with positive discord are an indicator of quantum-
ness. States with zero discord represent essentially a classical probability
distribution embedded in a quantum system.

For an arbitrary bipartite state ρ12, the total correlations are expressed
by quantum mutual information [47]

I(ρ12) =
∑
i=1,2

S(ρi)− S(ρ12), (49)

where ρi represents the reduced density matrix of subsystem i and S(ρ) =
−Tr(ρ ln ρ) is the von Neumann entropy. Henderson and Vedral [6] proposed
a measure of bipartite classical correlations C(ρ12) based on a complete set
of local projectors {Πk

2} on the subsystem 2: the classical correlation in the
bipartite quantum state ρ12 can be given by

C(ρ12) = S(ρ1)− inf{Πk
2}
{S(ρ1|2)}, (50)

where S(ρ1|2) =
∑

k p
kS(ρk1) is the conditional entropy of subsystem 1 and

inf{S(ρ1|2)} represents the minimal value of the entropy with respect to

a complete set of local measurements {Πk
2}. Here, pk is the measurement

probability for the kth local projector and ρk1 denotes the reduced state of
subsystem 1 after the local measurements. Then the quantum discord is
defined by

D(ρ12) = I(ρ12)− C(ρ12). (51)

Originally the quantum discord was defined and evaluated mainly for
finite dimensional systems. Recently [48, 49] the notion of discord has been
extended to the domain of continuous variable systems, in particular to the
analysis of bipartite systems described by two-mode Gaussian states. Closed
formulas have been derived for bipartite thermal squeezed states [48] and
for all two-mode Gaussian states [49].
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The Gaussian quantum discord of a general two-mode Gaussian state
ρ12 can be defined as the quantum discord where the conditional entropy
is restricted to generalized Gaussian positive operator valued measurements
(POVM) on the mode 2 and in terms of symplectic invariants it is given by
(the symmetry between the two modes 1 and 2 is broken) [49]

D = f(
√
β)− f(ν−)− f(ν+) + f(

√
ε), (52)

where

f(x) =
x+ 1

2
log

x+ 1

2
− x− 1

2
log

x− 1

2
, (53)

ε =



2γ2 + (β − 1)(δ − α) + 2|γ|
√
γ2 + (β − 1)(δ − α)

(β − 1)2
,

if (δ − αβ)2 ≤ (β + 1)γ2(α+ δ)

αβ − γ2 + δ −
√
γ4 + (δ − αβ)2 − 2γ2(δ + αβ)

2β
,

otherwise,

(54)

α = 4detA, β = 4detB, γ = 4detC, δ = 16detσ, (55)

and ν∓ are the symplectic eigenvalues of the state, given by

2ν2∓ = ∆∓
√

∆2 − 4 detσ, (56)

where ∆ = detA+ detB + 2detC. Notice that Gaussian quantum discord
only depends on | detC|, i.e., entangled (detC < 0) and separable states are
treated on equal footing.

The evolution of the Gaussian quantum discord D is illustrated in Fig.
2, where we represent the dependence of D on time t and temperature T
for an entangled initial non-symmetric Gaussian state, taken of the form of
a two-mode squeezed thermal state (42), for such values of the parameters
which satisfy for all times the first condition in formula (54). The Gaus-
sian discord has nonzero values for all finite times and this fact certifies the
existence of non-classical correlations in two-mode Gaussian states, either
separable or entangled. Gaussian discord asymptotically decreases in time,
compared to the case of logarithmic negativity, which has an evolution lead-
ing to a sudden suppression of entanglement. For entangled initial states the
Gaussian discord remains strictly positive in time and in the limit of infinite
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Figure 2: Gaussian quantum discord D versus time t and temperature T for
an entangled initial non-symmetric squeezed thermal state with squeezing
parameter r = 3, n1 = 3, n2 = 1 and λ = 0.1, ω1 = 1, ω2 = 2. We take
m = ~ = k = 1.

time it tends asymptotically to zero, corresponding to the thermal product
(separable) state, with no correlations at all. One can easily show that for
a separable initial Gaussian state with covariance matrix (42) the quantum
discord is zero and it keeps this values during the whole time evolution of
the state.

From Fig. 2 we notice that, in agreement with the general properties
of the Gaussian quantum discord [49], the states can be either separable
or entangled for D ≤ 1 and all the states above the threshold D = 1 are
entangled. We also notice that the decay of quantum discord is stronger
when the temperature T is increasing. It should be remarked that the decay
of quantum discord is very similar to that of the entanglement before the
time of the sudden death of entanglement. Near the threshold of zero loga-
rithmic negativity (EN = 0), the nonzero values of the discord can quantify
the non-classical correlations for separable mixed states and one considers
that this fact could make possible some tasks in quantum computation [50].
The discord is increasing with the squeezing parameter r and it is decreasing
with increasing the ratio of the frequencies ω1 and ω2 of the two modes and
the difference of parameters a and b.
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4.4 Classical corellations and quantum mutual information

The measure of classical correlations for a general two-mode Gaussian
state ρ12 can also be calculated and it is given by [49]

C = f(
√
α)− f(

√
ε), (57)

while the expression of the quantum mutual information, which measures
the total correlations, is given by

I = f(
√
α) + f(

√
β)− f(ν−)− f(ν+). (58)
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Figure 3: Quantum mutual information I versus time t and temperature T
for an entangled initial non-symmetric squeezed thermal state with squeez-
ing parameter r = 3, n1 = 3, n2 = 1 and λ = 0.1, ω1 = 1, ω2 = 2. We take
m = ~ = k = 1. There are also represented the Gaussian quantum discord
and classical correlations.

In Fig. 3 we illustrate the evolution of classical correlations C and quan-
tum mutual information I, as functions of time t and temperature T for an
entangled initial Gaussian state, taken of the form of a two-mode squeezed
thermal state (42). These two quantities manifest a qualitative behaviour
similar to that one of the Gaussian discord: they have nonzero values for all
finite times and in the limit of infinite time they tend asymptotically to zero,
corresponding to the thermal product (separable) state, with no correlations
at all. One can also see that the classical correlations and quantum mutual
information decrease with increasing the temperature of the thermal bath.
One can show that the classical correlations and quantum mutual informa-
tion increase with increasing the squeezing parameter r and the difference of
parameters a and b. At the same time classical correlations increase with the
ratio of the frequencies ω1 and ω2 of the two modes, while quantum mutual
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information is decreasing with increasing this ratio. For comparison these
quantities as well as quantum discord are represented on the same graphic.
In the considered case the value of classical correlations is larger than that
of quantum correlations, represented by the Gaussian quantum discord.

5 Conclusion

We have given a brief review of the theory of open quantum systems
based on completely positive quantum dynamical semigroups and mentioned
the necessity of the complete positivity for the existence of entangled states
of systems interacting with an external environment. In the framework of
this theory, by using the Peres-Simon necessary and sufficient condition for
separability of two-mode Gaussian states, we investigated the Markovian
dynamics of quantum correlations for a subsystem composed of two non-
interacting bosonic modes embedded in a thermal bath. We have analyzed
the influence of the environment on the dynamics of quantum entanglement
and quantum discord for Gaussian initial states. We have described the
time evolution of the logarithmic negativity, which characterizes the degree
of entanglement of the quantum state, in terms of the covariance matrix
for squeezed vacuum states and squeezed thermal states, for the case when
the asymptotic state of the considered open system is a Gibbs state cor-
responding to two independent quantum harmonic oscillators in thermal
equilibrium. For all values of the temperature of the thermal reservoir, an
initial separable Gaussian state remains separable for all times. The dynam-
ics of the quantum entanglement strongly depends on the initial states and
the parameters characterizing the environment (temperature and dissipa-
tion constant). For an entangled initial squeezed vacuum state and squeezed
thermal state, entanglement suppression (entanglement sudden death) takes
place for all values of the temperatures of the environment, including zero
temperature. The time when the entanglement is suppressed decreases with
increasing the temperature and dissipation.

We described also the time evolution of Gaussian quantum discord, which
is a measure of all quantum correlations in the bipartite state, including en-
tanglement. The values of quantum discord decrease asymptotically in time.
This is in contrast to the sudden death of entanglement. The time evolu-
tion of quantum discord is very similar to that of entanglement before the
sudden suppression of the entanglement. Quantum discord is decreasing
with increasing the temperature. After the sudden death of entanglement
the nonzero values of discord manifest the existence of quantum correlations
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for separable mixed states. One considers that the robustness of quantum
discord could favorize the realization of scalable quantum computing in con-
trast to the fragility of the entanglement [50]. We described also the time
evolution of classical correlations and quantum mutual information, which
measures the total correlations of the quantum system.

The existence of quantum correlations between the two bosonic modes
interacting with a common environment is the result of the competition be-
tween entanglement and quantum decoherence. From the formal point of
view, entanglement suppression corresponds to the finite time vanishing of
the Simon separability function or, respectively, of the logarithmic negativ-
ity.

Presently there is a large debate relative to the physical interpretation
existing behind the fascinating phenomena of quantum decoherence and
existence of quantum correlations - quantum entanglement and quantum
discord. Due to the increased interest manifested towards the continuous
variables approach [7, 51] to quantum information theory, the present re-
sults, in particular the existence of quantum discord and the possibility
of maintaining a bipartite entanglement in a thermal environment for long
times, might be useful in controlling entanglement and discord in open sys-
tems and also for applications in the field of quantum information processing
and communication.

6 Appendix

1. Quantum information is the study of the information processing
tasks that can be accomplished using quantum mechanical systems [1].

Quantum theory, formalized in the first few decades of the 20th century,
contains elements that are radically different from the classical description
of Nature. An important aspect in these fundamental differences is the
existence of quantum correlations in the quantum formalism. In the clas-
sical description of Nature, if a system is formed by different subsystems,
complete knowledge of the whole system implies that the sum of the infor-
mation of the subsystems makes up the complete information for the whole
system. This is no longer true in the quantum formalism. In the quantum
world, there exist states of composite systems for which we might have the
complete information, while our knowledge about the subsystems might be
completely random. One may reach some paradoxical conclusions if one
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applies a classical description to states which have characteristic quantum
signatures. During the last decades, it was realized that these fundamen-
tally nonclassical states, also denoted as entangled states, can provide us
with something else than just paradoxes. They may be used to perform
tasks that cannot be achieved with classical states. As benchmarks of this
turning point in our view of such nonclassical states, one might mention
the spectacular discoveries of (entanglement-based) quantum cryptography,
quantum dense coding, and quantum teleportation [52].

Let us consider a bipartite system, which is traditionally supposed to
be in possession of Alice (A) and Bob (B), who can be located in distant
regions. Let Alice’s physical system be described by the Hilbert space HA
and that of Bob by HB. Then the joint physical system of Alice and Bob is
described by the tensor product Hilbert space HA ⊗HB.

A pure state, i.e., a projector |ψAB >< ψAB| on a vector |ψAB >∈
HA ⊗HB, is a product state if the states of local subsystems are also pure
states, that is, if |ψAB >= |ψA > ⊗|ψB > . However, there are states that
cannot be written in this form. These states are called entangled states.

An example of entangled state is the well-known singlet state (|01 >
−|10 >)/

√
2 (Bell state), where |0 > and |1 > are two orthonormal states.

A mixed state described by a density operator ρAB of a two-party system
is separable if and only if it can be represented as a convex combination of
the product states:

ρAB =
∑
i

piρ
i
A ⊗ ρiB,

where pi is a probability distribution. Otherwise, the mixed state is said to
be inseparable (entangled).

An important operational entanglement criterion is the positive partial
transposition (PPT) criterion for detecting entanglement: given a bipartite
state ρAB, find the eigenvalues of any of its partial transpositions with re-
spect to one of the subsystems (transposition is equivalent to time reversal,
or, expressed in terms of continuous variables, sign change of the momenta).
A negative eigenvalue immediately implies that the state is entangled. Ex-
amples of states for which the partial transposition has negative eigenvalues
include the singlet state.

The notion of entanglement appeared explicitly in the literature first
in 1935, long before the dawn of the relatively young field of quantum in-
formation, and without any reference to discrete-variable qubit states. In
fact, the entangled states treated in this 1935 paper by Einstein, Podolsky,
and Rosen (EPR) were two-particle states quantum mechanically correlated
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with respect to their positions and momenta. The concept of entanglement
has played an important role in quantum physics ever since its discovery
last century and has now been recognized as a key resource in quantum
information science.

The superposition principle leads to the existence of entangled states of
two or more quantum systems and such states are characterized by the exis-
tence of correlations between the systems, the form of which cannot be sat-
isfactorily accounted for by any classical theory. These have played a central
role in the development of quantum theory since early in its development,
starting with the famous paradox or dilemma of EPR. No less disturbing
than the EPR dilemma is the problem of Schrödinger cat, an example of the
apparent absurdity of following entanglement into the macroscopic world.
It was Schrödinger who gave us the name entanglement (in German, ”Ver-
schränkung”); he emphasized its fundamental significance when he wrote,
”I would call this not one but the characteristic trait of quantum mechanics,
the one that enforces the entire departure from classical thought”.

The prime example for an entangled Gaussian state is the pure two-mode
squeezed (vacuum) state, described by the Gaussian Wigner function

Wsvs =
4

π2
× exp{−e−2r[(xA + xB)

2 + (pA − pB)
2]−

e+2r[(xA − xB)
2 + (pA + pB)

2]},

where xA, pA, xB, pB are the coordinates and momenta of the the two-mode
system and r is the squeezing parameter.

A unique measure of bipartite entanglement for pure states is given by
the partial von Neumann entropy. This is the von Neumann entropy, of the
reduced system after tracing out either subsystem: TrρA ln ρA = TrρB ln ρB,
where ρA = TrBρAB, ρB = TrAρAB.

In order to quantify the degrees of entanglement of an infinite-dimensional
bipartite system states it is suitable to use the logarithmic negativity. The
logarithmic negativity of a bipartite system consisting of two subsystems A
and B is EN = log2 ∥ρTB∥1, where ρTB means the partial transpose of a
mixed state density matrix operator ρAB with respect to subsystem B. The
operation ∥ · ∥1 denotes the trace norm, which for any Hermitian operator
O is defined as ∥O∥1 ≡ Tr|O| ≡ Tr

√
O†O and it is calculated as the sum of

absolute values of the eigenvalues of O.
Logarithmic negativity quantifies the degree of violation of PPT criterion

for separability, i.e. how much the partial transposition of ρ fails to be
positive and it is based on negative eigenvalues of the partial transpose of the
subsystem density matrix. For a Gaussian density operator, the negativity
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is completely defined by the symplectic spectrum of the partial transpose of
the covariance matrix.

2. The damped quantum harmonic oscillator is considered in the
framework of the theory of open systems based on completely positive quan-
tum dynamical semigroups [33, 34]. The basic assumption is that the general
form of a bounded mapping L given by Lindblad theorem is also valid for
an unbounded completely dissipative mapping L:

L(ρ) = − i

~
[H, ρ] +

1

2~
∑
j

([Vjρ, V
†
j ] + [Vj , ρV

†
j ]).

This assumption gives one of the simplest way to construct an appropri-
ate model for this quantum dissipative system. Another simple condition
imposed to the operators H,Vj , V

†
j is that they are functions of the basic ob-

servables of the one-dimensional quantum mechanical system q and p with
[q, p] = i~I, where I is the identity operator on H of such kind that the
obtained model is exactly solvable. A precise version for this last condition
is that linear spaces spanned by the first degree (respectively second degree)
noncommutative polynomials in p and q are invariant to the action of the
completely dissipative mapping L. This condition implies that Vj are at
most first degree polynomials in p and q and H is at most a second degree
polynomial in p and q.

Beacause in the linear space of the first degree polynomials in p and q
the operators p and q give a basis, there exist only two C-linear independent
operators V1, V2 which can be written in the form

Vi = aip+ biq, i = 1, 2,

with ai, bi complex numbers. The constant term is omitted because its
contribution to the generator L is equivalent to terms in H linear in p and
q which for simplicity are chosen to be zero. Then H is chosen of the form

H = H0 +
µ

2
(pq + qp), H0 =

1

2m
p2 +

mω2

2
q2.

With these choices the Markovian master equation can be written:

dρ

dt
= − i

~
[H0, ρ]−

i

2~
(λ+ µ)[q, ρp+ pρ] +

i

2~
(λ− µ)[p, ρq + qρ]

−Dpp

~2
[q, [q, ρ]]− Dqq

~2
[p, [p, ρ]] +

Dpq

~2
([q, [p, ρ]] + [p, [q, ρ]]).
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Here we used the notations:

Dqq =
~
2

∑
j=1,2

|aj |2, Dpp =
~
2

∑
j=1,2

|bj |2,

Dpq = Dqp = −~
2
Re

∑
j=1,2

a∗jbj , λ = −Im
∑
j=1,2

a∗jbj ,

where Dpp, Dqq and Dpq are the diffusion coefficients and λ the friction
constant. They satisfy the following fundamental constraints:

i) Dpp > 0

ii) Dqq > 0

iii) DppDqq −Dpq
2 ≥ λ2~2/4.

We introduce the following notations:

σq(t) = Tr(ρ(t)q),

σp(t) = Tr(ρ(t)p),

σqq = Tr(ρ(t)q2)− σ2q (t),

σpp = Tr(ρ(t)p2)− σ2p(t),

σpq(t) = Tr(ρ(t)
pq + qp

2
)− σp(t)σq(t).

In the Heisenberg picture the master equation has the following sym-
metric form:

dΦ̃t(A)

dt
= L̃(Φ̃t(A)) =

i

~
[H0, Φ̃t(A)]−

i

2~
(λ+ µ)([Φ̃t(A), q]p+ p[Φ̃t(A), q])

+
i

2~
(λ− µ)(q[Φ̃t(A), p] + [Φ̃t(A), p]q)−

Dpp

~2
[q, [q, Φ̃t(A)]]

−Dqq

~2
[p, [p, Φ̃t(A)]] +

Dpq

~2
([p, [q, Φ̃t(A)]] + [q, [p, Φ̃t(A)]]).

Denoting by A any selfadjoint operator we have

σA(t) = Tr(ρ(t)A), σAA(t) = Tr(ρ(t)A2)− σ2A(t).

It follows that
dσA(t)

dt
= TrL(ρ(t))A = Trρ(t)L̃(A)
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and

dσAA(t)

dt
= TrL(ρ(t))A2−2

dσA(t)

dt
σA(t) = Trρ(t)L̃(A2)−2σA(t)Trρ(t)L̃(A).

An important consequence of the precise version of solvability condition
is the fact that whenA is put equal to p or q, then dσp(t)/dt and dσq(t)/dt are
functions only of σp(t) and σq(t) and dσpp(t)/dt, dσqq(t)/dt and dσpq(t)/dt
are functions only of σpp(t), σqq(t) and σpq(t). This fact allows an immedi-
ate determination of the functions of time σp(t), σq(t), σpp(t), σqq(t), σpq(t).
Indeed we obtain:

dσq(t)

dt
= −(λ− µ)σq(t) +

1

m
σp(t),

dσp(t)

dt
= −mω2σq(t)− (λ+ µ)σp(t)

and
dσqq(t)

dt
= −2(λ− µ)σqq(t) +

2

m
σpq(t) + 2Dqq,

dσpp
dt

= −2(λ+ µ)σpp(t)− 2mω2σpq(t) + 2Dpp,

dσpq(t)

dt
= −mω2σqq(t) +

1

m
σpp(t)− 2λσpq(t) + 2Dpq.

The integration of these systems of equations of motion is straightfor-
ward. There are two cases: a) µ > ω (overdamped) and b) µ < ω (under-
damped). In the case a) with the notation ν2 = µ2 − ω2 we obtain:

σq(t) = e−λt((cosh νt+
µ

ν
sinh νt)σq(0) +

1

mν
sinh νtσp(0)),

σp(t) = e−λt(−mω
2

ν
sinh νtσq(0) + (cosh νt− µ

ν
sinh νt)σp(0)).

If λ > ν, then σq(∞) = σp(∞) = 0. If λ < ν, then σq(∞) = σp(∞) → ∞.
In the case b) with the notation Ω2 = ω2 − µ2, we obtain:

σq(t) = e−λt((cosΩt+
µ

Ω
sinΩt)σq(0) +

1

mΩ
sinΩtσp(0)),

σp(t) = e−λt(−mω
2

Ω
sinΩtσq(0) + (cosΩt− µ

Ω
sinΩt)σp(0))

and σq(∞) = σp(∞) = 0.
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In order to integrate the system of equations for the covariances it is
convenient to consider the vector

X(t) =

(
mωσqq(t)

1

mω
σpp(t)σpq(t)

)
.

Introducing the following matrices: in the overdamped case (µ > ω, ν2 =
µ2 − ω2)

T =
1

2ν
(µ+ νµ− ν2ωµ− νµ+ ν2ω − ω − ω − 2µ) ,

K = (−2(λ− ν)000− 2(λ+ ν)000− 2λ) ,

and in the underdamped case (µ < ω, Ω2 = ω2 − µ2)

T =
1

2iΩ
(µ+ iΩµ− iΩ2ωµ− iΩµ+ iΩ2ω − ω − ω − 2µ) ,

K = (−2(λ− iΩ)000− 2(λ+ iΩ)000− 2λ) ,

the solution can be written in the form [33, 34]

X(t) = (TeKtT )(X(0)−X(∞)) +X(∞).

Between the asymptotic values of σqq(t), σpp(t), σpq(t) and the diffusion
coefficients Dqq, Dpp, Dpq there exist the following connection, which is the
same for both cases, underdamped and overdamped:

Dqq = (λ− µ)σqq(∞)− 1

m
σpq(∞),

Dpp = (λ+ µ)σpp(∞) +mω2σpq(∞),

Dpq =
1

2
(mω2σqq(∞)− 1

m
σpp(∞) + 2λσpq(∞)).

These relations show that the asymptotic values σqq(∞), σpp(∞), σpq(∞) do
not depend on the initial values σqq(0), σpp(0), σpq(0).

If the asymptotic state is a Gibbs state (T denotes the temperature of
the thermal bath)

ρG(∞) = e−
H0
kT /Tr(e−

H0
kT ),

then

σqq(∞) =
~

2mω
coth

~ω
2kT

, σpp(∞) =
~mω
2

coth
~ω
2kT

, σpq(∞) = 0
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and

Dpp =
λ+ µ

2
~mω coth

~ω
2kT

, Dqq =
λ− µ

2

~
mω

coth
~ω
2kT

, Dpq = 0

and the fundamental constraints are satisfied only if λ > µ and

(λ2 − µ2) coth2
~ω
2kT

≥ λ2.

If the initial state is the ground state of the harmonic oscillator, then

σqq(0) =
~

2mω
, σpp(0) =

m~ω
2

, σpq(0) = 0.

The explicit time dependence of σqq(t), σpp(t), σpq(t) can be given for
both under- and overdamped cases if we have the matrix elements of TeKtT .
In the overdamped case (µ > ω, ν2 = µ2 − ω2) we have (in this case the
restriction λ > ν is necessary):

TeKtT =
e−2λt

2ν2
(a11a12a13a21a22a23a31a32a33) ,

with
a11 = (µ2 + ν2) cosh 2νt+ 2µν sinh 2νt− ω2,
a12 = (µ2 − ν2) cosh 2νt− ω2,
a13 = 2ω(µ cosh 2νt+ ν sinh 2νt− µ),
a21 = (µ2 − ν2) cosh 2νt− ω2,
a22 = (µ2 + ν2) cosh 2νt− 2µν sinh 2νt− ω2,
a23 = 2ω(µ cosh 2νt− ν sinh 2νt− µ),
a31 = −ω(µ cosh 2νt+ ν sinh 2νt− µ),
a32 = −ω(µ cosh 2νt− ν sinh 2νt− µ),
a33 = −2(ω2 cosh 2νt− µ2).
In the underdamped case (µ < ω, Ω2 = ω2 − µ2) we have

TeKtT = −e
−2λt

2Ω2
(b11b12b13b21b22b23b31b32b33)

with
b11 = (µ2 − Ω2) cos 2Ωt− 2µΩsin 2Ωt− ω2,
b12 = (µ2 +Ω2) cos 2Ωt− ω2,
b13 = 2ω(µ cos 2Ωt− Ωsin 2Ωt− µ),
b21 = (µ2 +Ω2) cos 2Ωt− ω2,
b22 = (µ2 − Ω2) cos 2Ωt+ 2µΩsin 2Ωt− ω2,
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b23 = 2ω(µ cos 2Ωt+Ωsin 2Ωt− µ),
b31 = −ω(µ cos 2Ωt− Ωsin 2Ωt− µ),
b32 = −ω(µ cos 2Ωt+Ωsin 2Ωt− µ),
b33 = −2(ω2 cos 2Ωt− µ2).
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