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Abstract

We discuss a differential equations treatment of the implicit func-
tions problem. Our approach allows a precise and complete description
of the solution, of continuity and differentiability properties. The crit-
ical case is also considered.

The investigation is devoted to dimension two and three, but ex-
tensions to higher dimension are possible.
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1 Introduction

The implicit function theorem is a classical subject and I just quote two
monographs, Krantz and Parks [14], Dontchev and Rockafellar [9], providing
rich information on this topic, from Dini’s work to recent research results.
Let me mention the constructive approaches of Bridges et al [2], Diener and
Schuster [8], the nonsmooth variants of Robinson [21], Clarke [6], Dontchev
and Rockafellar [9], the continuous locally injective case of Kumagai [15] and
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Jittorntrum [12], the global theorems of Rheinboldt [22], Palais [18], Cristea
[7], Zhang and Ge [10], the power series solutions of Torriani [29], Sokal [25],
etc.

The local character of the implicit function theorem is wellknown and
some papers bring clarifications in this respect, Holtzmann [11], Chang, He
and Prabhu [3] or on the continuous dependence of the solution on the data,
its regularity Ombach [19], Citti and Manfredini [5], etc.

In this paper, we discuss an approach based on the use of differential
equations in dimension two (Section 2) and in dimension three (Section 3).

In the literature, the (ordinary) differential equation of the implicit func-
tions F (t, x) = 0, t ∈ R, x ∈ R

(1.1)
dx

dt
= −(D2F (t, x))−1D1F (t, x)

or the level set equation

(1.2)
∂ϕ

∂t
= v|∇xϕ|

from the level set method (in free boundary or shape optimization problems)
are wellknown, Mirică [16], Krantz and Parks [14], Osher and Sethian [20],
Sethian [24]. In fact, [14] gives a rather complete analysis of (1.1). However,
the equations that we use are different and we shall comment on this in the
next sections.

Our method seems new and (as in [24]) is ”simple and explicit”. It pro-
vides a fairly complete description of the solution as parametrized geometric
objects and may be extended to higher dimension.

We use certain elements of differential geometry, Thorpe [26], and we
also mention the deep characterizations of manifolds or surfaces discussed in
Ciarlet [4] and its references (in connection with shell theory).

Our hypotheses are slightly weaker than in the classical case. We also
introduce generalized solutions in the critical case.

2 The two dimensional case

Let Ω ⊂ R2 be an open subset and g : Ω→ R satisfy g ∈ C1(Ω) and

(2.1) |g(x, y)|+ |∇g(x, y)| > 0 in Ω,



Implicit parametrizations 195

where | · | denotes both the modulus or the Euclidean norm. We examine
the implicit equation

(2.2) g(x, y) = 0 in Ω.

It is known that ∇g(x, y) is the normal vector to the level lines of g, in
particular to the solution of (2.2). Therefore the vector

(2.3) tg(x, y) =
(
−∂g
∂y

(x, y),
∂g

∂x
(x, y)

)
6= 0

(sometimes called curl in R2) and gives the tangent to the curve (2.2).
We introduce the ordinary differential system

(2.4)
x′(t) = −∂g

∂y (x(t), y(t))

y′(t) = ∂g
∂x(x(t), y(t))

with initial condition

(2.5) x(0) = x0, y(0) = y0

where g(x0, y0) = 0 is assumed.
Note that (2.4) is a Hamiltonian - type system.

Proposition 1 We have

g(x(t), y(t)) = 0, ∀ t ∈ Imax.

Proof. Imax is the maximal existence interval for the solution of (2.4),
(2.5), according to the Peano theorem (and not necessarily unique). Then,
we notice

d

dt
[g(x(t), y(t))] = ∇g(x(t), y(t)) · tg(x(t), y(t)) = 0

on Imax, by (2.3). This ends the proof together with (2.5) and the condition
on (x0, y0).
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Remark 1 Assumption (2.1) amounts to |∇g(x, y)| > 0 in this case. The
same approach may be applied to general level curves g(x, y) = k, k ∈ R,
and ∇g(x, y) = 0 is allowed in this case. Therefore (2.1) is weaker than the
classical condition. However, if ∇g(x, y) = 0, then the system (2.4), (2.5)
provides just the constant solution x(t) = x0, y(t) = y0.

Therefore, the interesting case remains ∇g(x0, y0) 6= 0, and the solution
of (2.4), (2.5) is in fact unique in the class of smooth simple curves (by the
implicit function theorem and an argument involving (2.4)). In particular,
the solution of (2.4), (2.5) may have no self-intersection.

The system (2.4), (2.5) may be studied for g ∈ C1(Ω) or even weaker
assumptions. Then, uniqueness may not be valid or constant solutions may
occur.

Remark 2 The equation (1.1), in this case, becomes

dy

dx
= −gx(x, y(x))

gy(x, y(x))

under hypothesis gy(x0, y0) 6= 0 and is clearly different from (2.4). The same
remark for (1.2).

Remark 3 Assumption (2.1) has been already used in [27], [28] in con-
nection with shape optimization problems. The condition (2.1), in arbitrary
dimension is to be put in connection with an important property due to Stam-
pacchia: if h ∈ H1(Rd) and h = 0 a.e. in E ⊂ Rd (some measurable subset),
then ∇h = 0 a.e. in E. The statement may be found in Brezis [1], p.195 and
a proof in Kinderlehrer and Stampacchia [13], p.51 (inside a more general
theorem).

Proposition 2 If g ∈ H1(Rd), d ∈ N arbitrary, then the level sets of g
have zero measure if |∇g| > 0 a.e. in Rd

Proof. This is a simple contradiction argument based on the Stampacchia
property.

Remark 4 The system (2.4) (and its extensions to dimension three in the
next section) has the capacity to generate the complete solution of (2.2) be-
tween the critical points of g, even in case this is not the graph of a function.
We suggest the name ”implicit parametrization theorem” for such results.
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In [9], the term ”parametrization” is also used, with another sense (see Ch.
2C). In [14], parametrizations constructed in a different way are used in
Thm. 4.2.3., in the application of the homotopy method.

Let Ω1 denote the open subset of Ω

Ω1 = Ω \ {(x, y) ∈ Ω; ∇g(x, y) = 0}.

Proposition 3 For any (x0, y0) ∈ Ω1, let (x(t), y(t)) denote the level line of
g passing through (x0, y0), i.e. the solution of (2.4), (2.5), and let (T−, T+)
denote its maximal existence interval. If (x(t), y(t)) is nonperiodic, then any
accumulation point for t → T± is either the point at infinity or belongs to
∂Ω1.

Proof. This follows by (2.4), (2.5) and standard results for ordinary
differential equations.

The solution is unique by Remark 1.

Remark 5 If the solution of the Cauchy problem (2.4), (2.5) is periodic
(which occurs when the corresponding level line is closed) then (T−, T+) =
(−∞,+∞) and the trajectory (x(t), y(t)) is a compact subset of Ω1.

Let us consider now the perturbed implicit equation

(2.6) g̃(x, y, λ) = 0, (x, y) ∈ Ω, λ ∈ U

where U ⊂ Rm is open, 0 ∈ U and g̃(x, y, 0) = g(x, y).
For each λ ∈ U , we denote by (xλ(t), yλ(t)), t ∈ Iλ ⊂ R, the saturated

solution of the system (2.4), (2.5) applied to g̃(·, ·, λ). We preserve the
notation (x(t), y(t)) for λ = 0 and we assume that g̃(x, y, λ) is in C1(Ω×U)
with locally Lipschitzian gradient.

We introduce the perturbed system:

(2.7)
x′λ(t) = −∂g̃

∂y (xλ(t), yλ(t), λ(t)),

y′λ(t) = ∂g̃
∂x(xλ(t), yλ(t), λ(t)),

λ′(t) = 0,

(2.8) xλ(0) = xλ0 , yλ(0) = yλ0 , λ(0) = λ.
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Proposition 4 Let (T−, T+) be the maximal existence interval of the unique
solution of (2.7), (2.8) corresponding to (x0, y0) ∈ Ω1 and λ = 0 (that is
the solution of (2.4), (2.5)). For any η > 0, there is ε > 0, such that
for any λ with |λ| < ε and any xλ0 , y

λ
0 with |x0 − xλ0 | + |y0 − yλ0 | < ε,

the solution (xλ, yλ, λ) of (2.7), (2.8) is defined in [T− + η, T+ − η] and
the corresponding application is continuous from a ball around (x0, y0, 0) to
C1([T− + η, T+ − η])2.

Proof. This is a standard application of the continuity results with re-
spect to the initial conditions and to the parameters in ordinary differential
equations.

Remark 6 Clearly T− < 0 < T+ and η may be choosen small enough such
that T− + η < 0 < T+ − η.

Remark 7 The results of Propositions 3, 4 may be immediately transposed
to the implicit equation (2.2) and its perturbations with respect to the initial
conditions (2.5) or with respect to parameters. Some results of this type were
previously obtained by Ombach [19] by different methods.

It is possible to prove the locally Lipschitzian dependence on the initial
conditions and the parameters, as known in the theory of ODE’s. The
hypothesis that ∇g̃(x, y, λ) is locally Lipschitzian is the key point.

We consider now the case of critical points (x0, y0) ∈ Ω, g(x0, y0) = 0,
∇g(x0, y0) = 0. Hypothesis (2.1) is not fulfilled and we assume the existence
of (x̂n, ŷn) ∈ Ω, (x̂n, ŷn)→ (x0, y0) for n→∞ and ∇g(x̂n, ŷn) 6= 0, ∀ n.

Since g ∈ C1(Ω), we have g(x̂n, ŷn) = εn → 0 and ∇g(x̂n, ŷn) → 0. It
may happen that g(x̂n, ŷn) = 0, for certain values of n, even for all (but this
will play no role).

We denote by (xn(t), yn(t)), t ∈ In, the solutions of the system (2.4),
associated to initial conditions xn(0) = x̂n, yn(0) = ŷn and defined on some
maximal interval In.

Let D be a ”small” closed disc centered in (x0, y0) ∈ Ω ⊂ R2. Define the
compact sets (see explanation below)

Tn = {(x, y) ∈ D; (x, y) = (xn(t), yn(t)), t ∈ In}.

Since D is ”small”, it is ”far” from ∂Ω and in the definition of Tn just
some closed subinterval of In is in fact used, in general. However, by Propo-
sition 3, it is possible that the trajectory (xn(t), yn(t)) ends inside intD,



Implicit parametrizations 199

in some critical point of g(·, ·). In such a case, the graph of the solution
(x(t), y(t)) may be extended with its limit point and the definition of Tn
makes sense.

On a subsequence, we may assume, Tnk
→ Tα in the Hausdorff - Pompeiu

sense, [27]. Denote
T = ∪

α
Tα

where the union is taken after all the subsequences and all the sequences
(x̂n, ŷn) → (x0, y0) with ∇g(x̂n, ŷn) 6= 0. Each Tα is compact in R2, but T
may not be compact.

Proposition 5 T is contained in the level set {(x, y) ∈ Ω; g(x, y) = 0}.

Proof. Let (x, y) ∈ T arbitrary. There is (xn, yn) ∈ Tn such that (x, y) =
lim
n→∞

(xn, yn), due to the definition of the Hausdorff - Pompeiu metric.
Then g(x, y) = lim g(xn, yn) = lim εn = 0.

Definition 1 If g(x0, y0) = 0 and ∇g(x0, y0) = 0, we call the set T defined
above as a local generalized solution of (2.2) in Ω ⊂ R2.

Remark 8 The definition may be extended to higher dimension (see next
section). The converse of Proposition 5 is not necessarily true.

The construction of T around a critical point (x0, y0) cannot provide, in
principle, all the components in Ω of the null level set of g. In many critical
cases (for instance at local extremum points of g(·, ·)) T is just that point
and coincides in such cases with the solution of (2.4), (2.5).

It is also clear that by enlarging D → Ω (D may be just a compact
set with nonvoid interior), we can extend T and obtain what we call the
generalized solution of (2.2) in Ω.

Remark 9 Notice as well that the solution of (2.4), (2.5) (and, conse-
quently, of the implicit parametrization theorem) in the nondegenerate case
is a generalized solution too. If (xn, yn) → (x0, y0) and ∇g(x0, y0) 6= 0,
then ∇g(xn, yn) 6= 0, the obtained trajectories will satisfy locally the above
Hausdorff-Pompeiu convergence property by the continuity with respect to
the initial conditions. We get that T (see Def.1) is contained in the trajec-
tory of (2.4) associated to (x0, y0). The equality follows by taking (xn, yn)→
(x0, y0), g(xn, yn) = 0,∇g(xn, yn) 6= 0. Then, the corresponding solution to
(2.4) coincides with that associated to (x0, y0) by the uniqueness property.
By Def.1, we see that T is exactly the trajectory associated to (2.4), (2.5).
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Example 1 The construction in Proposition 5 is motivated by the example

g(x, y) = x2 − y2

around (0, 0). Clearly one obtains the complete solution of g(x, y) = 0 by the
above construction.

Notice the ”nonuniqueness” of the solution, in the classical terminology.

We shall continue our study with differentiability properties. We consider
the following simplified setting:

(2.9) g(x, y) + λh(x, y) = 0

where λ ∈ R and h : Ω→ R is of class C1 and we assume

(2.10) h(x0, y0) = 0.

The implicit relations (2.9), (2.10) may be viewed as a perturbation of
(2.2), (2.5). The aim is to associate to the implicit equation (2.2), an ”equa-
tion in variations” as in the theory of ODE’s. More general perturbations
may be considered instead of (2.9). The condition (2.10) is somewhat nec-
essary - in this way the perturbed trajectories defined by (2.9) are in some
”neighbourhood” of the solution of the problem (2.2), (2.5).

Remark 10 The equation (2.2) may have at least two solutions ”far” from
each other, one satisfying g(x0, y0) = 0 and another one satisfying g(x1, y1) =
0 with (x0, y0) 6= (x1, y1) and ”far away”. If (2.10) is not valid and, for in-
stance, h(x1, y1) = 0, then (2.9) would approximate clearly the second com-
ponent of the solution of (2.2) and not the solution of (2.2), (2.5). However,
it is possible to work even without condition (2.10), by performing certain
modifications in what follows. For simplicity, we discuss here just the rela-
tions (2.9), (2.10).

To them, we associate the differential system

(2.11) x′λ = −∂g
∂y

(xλ, yλ)− λ∂h
∂y

(xλ, yλ),

y′λ =
∂g

∂x
(xλ, yλ) + λ

∂h

∂x
(xλ, yλ),
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(2.12) xλ(0) = x0, yλ(0) = y0

that is a direct extension of (2.4), (2.5).
By Proposition 4, there is some compact interval I with 0 ∈ IntI such

that the solutions of (2.4), (2.5) and of (2.11), (2.12) (for |λ| sufficiently
small) are defined on I.

Denote by zλ =
xλ − x
λ

, wλ =
yλ − y
λ

, t ∈ I, λ 6= 0.

Proposition 6 Assume that g ∈ C2(Ω) and h ∈ C1(Ω) with locally Lip-
schitzian derivatives of the highest order. We have zλ → z, wλ → w in
C1(I).

Moreover, we get (2.20), (2.21) as the system in variations satisfied by
(z, w) and defined on the same interval as the solution in (2.4), (2.5).

Proof. Subtracting (2.11), (2.4) and dividing by λ, we infer

(2.13) z′λ = − 1
λ

(
∂g

∂y
(xλ, yλ)− ∂g

∂y
(x, y)

)
− ∂h

∂y
(xλ, yλ), t ∈ I,

w′λ =
1
λ

(
∂g

∂x
(xλ, yλ)− ∂g

∂x
(x, y)

)
+
∂h

∂x
(xλ, yλ), t ∈ I,

(2.14) zλ(0) = wλ(0) = 0.

By Proposition 4, we have that (xλ, yλ)→ (x, y) in C1(I)2, for λ→ 0.
Under our assumptions, (2.13) may be rewritten as follows

(2.15) z′λ = −∇
[
∂g

∂y
(θλ, µλ)

]
· (zλ, wλ)− ∂h

∂y
(xλ, yλ),

w′λ = ∇
[
∂g

∂x
(θ̃λ, µ̃λ)

]
· (zλ, wλ) +

∂h

∂x
(xλ, yλ),

where (θλ, µλ) and (θ̃λ, µ̃λ) are some intermediary points on the segment
between (xλ, yλ), (x, y) and the mean value theorem is applied. Moreover,
(θλ, µλ)→ (x, y), (θ̃λ, µ̃λ)→ (x, y) uniformly in I, for λ→ 0. We also get

(2.16) ∇
[
∂g

∂y
(θλ, µλ)

]
→ ∇

[
∂g

∂y
(x, y)

]
,

(2.17) ∇
[
∂g

∂x
(θ̃λ, µ̃λ)

]
→ ∇

[
∂g

∂x
(x, y)

]
,
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(2.18)
∂h

∂y
(xλ, yλ)→ ∂h

∂y
(x, y),

(2.19)
∂h

∂x
(xλ, yλ)→ ∂h

∂x
(x, y),

in C1(I)2, respectively C(I), due to the hypotheses on g, respectively h.
From (2.15) - (2.19), by the Gronwall lemma, we get that (zλ, wλ) is

bounded in C(I)2 and in C1(I)2, again by (2.15). Then, on a subsequence,
by the Arzela - Ascoli theorem, zλ → z, wλ → w in C(I). The convergence
is valid in C1(I), due to (2.15).

One can pass to the limit in (2.15) and infer:

(2.20) z′ = −∇
[
∂g

∂y
(x, y)

]
· (z, w)− ∂h

∂y
(x, y), in I,

w′ = ∇
[
∂g

∂x
(x, y)

]
· (z, w) +

∂h

∂x
(x, y), in I,

(2.21) z(0) = w(0) = 0.

All the above convergences are valid without taking subsequences since
the solution of (2.20), (2.21) is unique.

The system (2.20), (2.21) is the system in variations corresponding to
(2.4), (2.5) and the variations (2.9); it is linear and its unique solution is
defined exactly on the domain of definition of the solution to (2.4), (2.5).

Remark 11 More general perturbations, as in Proposition 4, may be dis-
cussed instead of (2.9) and ”equations in variations” may be obtained. It
is not clear how to express the equation in variations (2.20) as an implicit
function relation. It is in fact the equation in variations associated to (2.2).

The choice (2.9) of the perturbations of (2.2) is motivated by possible
applications in shape optimizations problems, Tiba et al. [27], [28] (the so-
called ”functional variations” in shape optimization). We underline that, in
this setting, the two dimensional case plays a particularly important role.

3 Dimension three

There are two subcases that we shall consider here. The first one can be
treated via ordinary differential equations:

(3.1) F (x, y, z) = 0, G(x, y, z) = 0
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where F,G : Ω ⊂ R3 → R are in C1(Ω), Ω open and

(3.2)
D(F,G)
D(y, z)

6= 0 in Ω.

By (3.2), the mappings in (3.1) are independent Nicolescu [17], Rudin
[23]. The implicit function theorem can be applied, but we shall construct
an implicit parametrization solving (3.1).

Let n1 = ∇F (x, y, z), n2 = ∇G(x, y, z) denote the normal vectors to the
two ”surfaces” defined by F , respectively G. They are not colinear due to
(3.2) and θ = n1 × n2 is nonzero in Ω.

Intuitively, θ represents the tangent to the ”curve” obtained as the in-
tersection of the two ”surfaces” mentioned above.

We introduce the ordinary differential system

(3.3)

x′(t) = θ1(t),

y′(t) = θ2(t),

z′(t) = θ3(t)

with the initial condition

(3.4) x(0) = x0, y(0) = y0, z(0) = z0,

where (x0, y0, z0) satisfies (3.1). By the Peano theorem, the system (3.3),
(3.4) has at least one solution defined on some maximal existence interval
Imax, around 0.

Proposition 7 We have

F (x(t), y(t), z(t)) = G(x(t), y(t), z(t)) = 0, ∀ t ∈ Imax.

Proof.

d

dt
G(x(t), y(t), z(t)) = Gxθ1(t) +Gyθ2(t) +Gzθ3(t) =

= Gx(FxGz − FzGy) +Gy(FzGx − FxGz) +Gz(FxGy − FyGx) = 0

by the definition of the vector product. Similarly for the first relation and
the proof is finished.
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Remark 12 In fact, the hypothesis used in Proposition 7 is that n1, n2 are

not colinear, that is the rank of the matrix
D(F,G)
D(x, y, z)

is equal to 2. This case

is considered in Mirică [16] as well and the equation (1.1) is different from
(3.3).

The system (3.3), (3.4) makes sense even without the rank 2 condition,
but in this case the solution is constant.

We discuss now the second case (of just one equation):

(3.5) f(x, y, z) = 0

which is assumed to be satisfied at least in some (x0, y0, z0) ∈ Ω and f ∈
C1(Ω).

Relation (3.5) has as solution a surface S contained in Ω, under appro-
priate assumptions that we don’t detail here.

Assume that S has the parametrization (ϕ(u, v), ψ(u, v), ξ(u, v)), (u, v) ∈
ω ⊂ R2 open subset.

The tangent vectors to S are (ϕu, ψu, ξu) and (ϕv, ψv, ξv) and the normal
vector is obtained as their vector product. It is colinear with ∇f(x, y, z).
We consider the system (formally):

(3.6)

ψuξv − ξuψv = fx(ϕ,ψ, ξ),

ξuϕv − ϕuξv = fy(ϕ,ψ, ξ),

ϕuψv − ψuϕv = fz(ϕ,ψ, ξ),

together with the condition

(3.7) ϕ(u0, v0) = x0, ψ(u0, v0) = y0, ξ(u0, v0) = z0

in some point (u0, v0) ∈ ω. In relation (3.6), the variables (u, v) ∈ ω are
omitted.

Proposition 8 If ϕ,ψ, ξ ∈ C1(ω) satisfy the system (3.6), (3.7), then
f(ϕ(u, v), ψ(u, v), ξ(u, v)) = 0, ∀ (u, v) ∈ ω.

Proof. The derivatives with respect to u, v ∈ ω of the composed function
are null. This follows by direct computation as in the previous Proposition 7.
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Remark 13 The existence or the uniqueness of the solution for (3.6), (3.7)
are not easy and we don’t discuss them here. The system (3.6), (3.7) is
clearly different from (1.1) or (1.2).

Remark 14 We notice the supplementary relations

(3.8) ϕufx(ϕ,ψ, ξ) + ψufy(ϕ,ψ, ξ) + ξufz(ϕ,ψ, ξ) = 0,

(3.9) ϕvfx(ϕ,ψ, ξ) + ψvfy(ϕ,ψ, ξ) + ξvfz(ϕ,ψ, ξ) = 0.

They are not independent from (3.6) as one may check by a simple com-
putation. In certain cases according to the form of f(·, ·, ·) one may select
three independent advantageous relations from (3.6), (3.8), (3.9). The equa-
tions (3.6) seem simpler than in Ciarlet [4], p.50 or p.111. Starting with
(1.1), a simpler system than (3.6) is obtained in [14]. The advantage of
(3.6) is that it may be written even in the critical case.

Remark 15 Another approach for the reconstruction of S, is to generate a
family of level curves, corresponding to ”any” fixed z (for instance):

x′(t) = −fy(x(t), y(t), z(t)),
y′(t) = fx(x(t), y(t), z(t)),

z′(t) = 0,
(x(0), y(0), z(0)) = (x0, y0, z) ∈ Ω,

where t ∈ Iz, some interval around 0, depending on z. Notice that the above
system formally generates a parametrization [x(t, z), y(t, z), z] locally around
(x0, y0, z0), for S.

Remark 16 Propositions 7, 8 show one way for the solution of the implicit
function (implicit parametrization) problem in arbitrary (finite) dimension.
Depending on the number of the independent equations (compared with the
space dimension) an appropriate form of the parametrization may be choosen
for the manifold that formally should give the solution. Then normal and tan-
gent vectors may be constructed. The comparison with the gradient (Jacobian
matrix) gives the equations that should provide the solution of the implicit
parametrization problem. The analysis of the existence and of uniqueness
properties of such systems of PDE’s (compare (3.6)) may be rather complex.
A direct solution is indicated in [14], Ch. 4.1., in a simpler case. One may
extend Definition 1 to the degenerate case, both for (3.1) or (3.5).
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