
MATERIAL ELEMENT MODEL
FOR EXTRINSIC SEMICONDUCTORS
WITH DEFECTS OF DISLOCATION∗

Maria Paola Mazzeo† Liliana Restuccia‡

Abstract

In a previous paper we outlined a geometric model for the ther-
modynamic description of extrinsic semiconductors with defects of dis-
location. Applying a geometrization technique, within the rational
extended irreversible thermodynamics with internal variables, the dy-
namical system for simple material elements of these media, the expres-
sions of the entropy function and the entropy 1-form were obtained. In
this contribution we deepen the study of this geometric model. We
give a detailed description of the defective media under consideration
and of the dislocation core tensor, we introduce the transformation
induced by the process and, applying the closure conditions for the
entropy 1-form, we derive the necessary conditions for the existence of
the entropy function. These and other results are new in the paper.
The derivation of the relevant entropy 1-form is the starting point to
introduce an extended thermodynamical phase space.

MSC: 73B20,73B99.

keywords: Extended and rational irreversible thermodynamics, extrinsic
semiconductors, solids with defects, dislocations.
∗Accepted for publication on January 20, 2011.
†mazzeo@dipmat.unime.it University of Messina, Department of Mathematics, Viale

F. Stagno D’Alcontres 31, 98166 Messina, Italy;
‡lrest@dipmat.unime.it University of Messina, Department of Mathematics, Viale F.

Stagno D’Alcontres 31, 98166 Messina, Italy;

188

Annals of the Academy of Romanian Scientists
Series on Mathematics and its Applications

ISSN 2066 - 6594 Volume 3, Number 1 / 2011

In Memoriam Adelina Georgescu



Material element model for defective extrinsic semiconductors 189

Introduction

Since in nature there exist no ideal crystals without defects, the aim of
this paper is to study the behavior of deformable extrinsic semiconductors
with defects of dislocation. The dislocation lines disturb the periodicity of
the crystal lattice (see [10] and [22]) and their structure resembles a network
of infinitesimally thin channels. The models for defective extrinsic semicon-
ductors may have relevance in several fundamentals technological sectors as
electronic microscopy, nanotechnology and technology for integrated circuits
VLSI (Very Large Scale Integration).

Semiconductor crystals, as germanium and silicon, are tetravalent ele-
ments [11]. In Fig.1a we have the representation of a germanium crystal
that has a behaviour of an insulator at a temperature of 0◦K. But at room
temperature, 300◦K (see Fig.1b), electrons of the crystal can gain enough
thermal energy to jump to the conduction band.

Figure 1: A symbolic representation in 2D of a germanium crystal structure:
(a) at 0◦K and (b) at 300◦K with a broken covalent bond

To modify the electrical conductivity of an intrinsic semiconductor, impu-
rity atoms adding one electron or one hole are introduced inside the crystal,
by means of different techniques of "doping". Using pentavalent impurities,
as antimony, a n-type extrinsic semiconductor is obtained, having more free
electrons that may flow (see Fig.2a). By trivalent impurities, as indium, a
p-type extrinsic semiconductor crystal is achieved, having more holes that
may flow freely (see Fig.2b).
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Figure 2: A symbolic representation in 2D of a germanium crystal struc-
ture:(a) doped by an atom of a pentavalent impurity (Antimony); (b) doped
by an atom of a trivalent impurity (Indium)

In a previous paper [27], in the framework of the rational extended ir-
reversible thermodynamics with internal variables [20], a thermodynamical
model for defective extrinsic semiconductors was developed, introducing a
dislocation density tensor à la Maruszewski [16] and its flux as internal
variables. In [17] taking into account the results obtained in [27], a ther-
modynamical geometric model was outlined for simple material elements
(see [2], [3], [4], [5], [23], [24] and [25]) of these media. The dynamical system
and the expressions for the entropy function and the entropy 1-form were
obtained. In this paper we deepen the study of this geometric model. In
Section 1 we introduce the dislocation core tensor which describes the dislo-
cation lines distribution. In Section 2 we give a detailed thermodynamical
description of the defective media under consideration, taking into account
the densities and the currents of the free electrons and holes coming from the
intrinsic base. Finally, in Section 3 we introduce the transformation induced
by the process and, applying the closure conditions for the entropy 1-form,
we obtain the necessary conditions for the existence of the entropy function.
The derivation of the entropy 1-form is the starting point to introduce a ther-
modynamical phase space [26]. Furthermore, from the necessary conditions
for the existence of the entropy function, constitutive laws can be obtained
by a suitable method [7].

In [1], [6], [8], [9], [15] and [18] geometric models for perfect extrinsic
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semiconductors, for defective piezoelectric media, for high Tc superconductors
of type-II, for porous structures, for polarizable media with internal variables
and for deformable dielectrics with a non-Euclidean structure, respectively,
were derived in the same geometrized framework.

1 The dislocation core tensor model

In extrinsic semiconductor crystals with defects of dislocation the geometry
of the internal structure of these materials can influence the physical fields
occurring in the body. These defects, acquired during a process of fabrication,
can self propagate, because of changed and favorable surrounding conditions.
Thus, they can provoke a premature fracture. The dislocation lines disturb
the periodicity of the lattice of the crystal and their structure resembles a
network of capillary channels inside the elastic solid (see [11], [16] and [22]).
The interatomic distances are not conserved in the direct neighborhood of
the dislocation lines in comparison to the distances in the remaining part of
the lattice (see Fig.3a).

Figure 3: (a) An edge dislocation structure; (b) Characteristics of the pore-
core structure (h̄� R) (after [16])

Moreover, the dislocation lines have their intrinsic orientation, which
means, among others, that two dislocations of opposite signs annihilate when
lines come close to each other. Their existence should not be omitted in the
analysis of such kinetic processes as diffusion of mass or charges, transport of
heat, recombination of charge carriers, etc. Thus, we introduce a dislocation
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Figure 4: Averaging scheme. Characteristics of a channel structure (see [12])

core tensor à la Maruszewski [16] and its flux in the thermodynamical state
space of independent variables for describing these defects. The definition
and the introduction of the dislocation core tensor is based (see Fig. 3b) on
a Kubik’s geometrical model for porous channels. In [12] Kubik considers
a representative elementary sphere volume Ω of a porous structure having
capillary tubes, large enough to provide a representation of all the statistical
properties of the channel space Ωch (see Fig. 4). Ω = Ωs + Ωch, where Ωs

is the solid space. Since all the channels are considered to be interconnected
the effective volume porosity is completely defined as fv = Ωch

Ω . The analysis
is restricted to media which are homogeneous with respect to volume poros-
ity fv , i.e. fv remains constant in the medium. To avoid confusion all the
microscopic quantities are written with respect to the coordinate system ξi ,
whereas all the macroscopic quantities are written with respect to the coor-
dinate system xi. Let α(ξ) be any scalar, vectorial or second order tensorial
quantity describing a microscopic property of the flux of some physical field
flowing through the channel space Ωch and written with respect to a coordi-
nate system ξi. We assume that such quantity is zero in the solid space Ωs.
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The volume averaging procedures give

α̂(x) =
1

Ωch

∫
Ωch

α(ξ)dΩ, ᾱ(x) =
1
Ω

∫
Ωch

α(ξ)dΩ, (1)

where the quantities α̂(x) and ᾱ(x) (written with respect to the a coordinate
system xi) describe at macroscopic level the same property of the flux of
the physical field under consideration. They are averaged quantities on the
channel-volume and on the bulk-volume, respectively. Similarly, we define
the averaged quantity α(ξ) on the channel-area as follows

∗
α (x,µ) =

1
Γch

∫
Γ

α(ξ)dΓ, (2)

where Γ is the central sphere section and Γch represents the channel-area of
Γ. The orientation of Γ in Ω is given by the normal vector µ. Γ = Γs + Γch,
where Γs is the solid-area. By definition the quantity α(ξ) is zero on the
solid-surface Γs. In such a medium, following [12], Maruszewski defines the
so called dislocation tensor, as follows

ᾱ(x)i = Rij(x,µ)
∗
αj (x,µ). (3)

Eq. (3) gives a linear mapping between the averaged quantity on the bulk-
volume ᾱ(x) and the average of the same quantity on the channel-area

∗
α

(x,µ). In [12] Kubik gives an interpretation of Rij considering the flux of a
quantity ᾱ(x) on a bulk-volume as a superposition of three unidimensional
fluxes (along three mutually perpendicular channels) having average values
∗
αi (x,µ) on the orthogonal section areas of these channels. In [16] a new
tensor, that refers Rij to the central sphere section Γ, is defined in the
following way

Rij(x,µ) = Γaij(x,µ).

aij is called dislocation core tensor and its unit is m−2. The components of
aij form a kind of continuous representation of the number of dislocations
which cross the surface Γ. Investigations show that aij is also dependent on
time.
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2 Governing equations for extrinsic semiconductors
with defects of dislocation

Now, we introduce a thermodynamic model for a defective extrinsic semi-
conductor developed in [27] by one of us (L.R.) in the framework of Thermo-
dynamics of irreversible processes with internal variables. In this paper, we
deepen the thermodynamic description of this medium taking into account
the densities and currents of the free electrons and holes that come from the
intrinsic base of the semiconductor. Furthermore, we derive a set of constitu-
tive relations. We use the standard Cartesian tensor notation in rectangular
coordinate systems. We refer the motion of our material system to a current
Eulerian configuration Kt. We assume that in defective, extrinsic, thermoe-
lastic semiconductors the following fields interact with each other: the elastic
field described by the total stress tensor Tij and the small-strain tensor εij ;
the thermal field described by the temperature θ, its gradient and the heat
flux qi; the electromagnetic field described by the electromotive intensity Ei
(that represents, in the Galilean approximation, the electric field referred to
an element of the matter at time t, i.e. to the so called comoving frame Kc)
and the magnetic induction Bi per unit volume; the charge carrier fields de-
scribed by the densities of electrons n and holes p, their gradients and their
fluxes jni and jpi ; the dislocation field described by the dislocation core tensor
aij , its gradient and the dislocation flux Vijk.

The independent variables are represented by the set

C = {εij , Ei, Bi, n, p, θ, aij ,Vijk, jni , j
p
i , qi, n,i, p,i, θ,i, aij,k}. (4)

All the processes, occurring in the considered body, are governed by the
following laws:

Maxwell’s equations having the form:

εijkEk,j +
∂Bi
∂t

= 0, Di,i − ρZ = 0, (5)

εijkHk,j − jZi −
∂Di

∂t
= 0, Bi,i = 0, (6)

where E, B, D and H denote the electric field, the magnetic induction, the
electric displacement and the magnetic field, respectively. Furthermore,

Hi =
1
µ0
Bi, Ei =

1
ε0

(Di − Pi) , (7)
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where ε0 and µ0 denote the permittivity and permeability of vacuum and P
is the polarization per unit volume. The magnetization M is assumed to be zero.

The total charge density Z and the density of the total current jZ are
defined as follows:

Z = n+ n̄+ p+ p̄,

jZi = ρnvni + ρn̄vn̄i + ρpvpi + ρp̄vp̄i = ρZvi + jni + jn̄i + jpi + jp̄i ,

where n < 0, n̄ < 0, p > 0, p̄ > 0, jni = ρn(vni − vi), jn̄i = 0 (being
vn̄i = vi), jpi = ρp(vpi − vi), jp̄i = 0 (being vp̄i = vi), ρ denotes the mass
density, vi are the components of the barycentric velocity of the body, vni ,
vn̄i , vpi , vp̄i , are the velocities of the electric charges n, n̄, p, p̄ , respectively,
and jni , jn̄i , jpi , jp̄i their conduction currents, i.e. the electric currents
due to the relative motion of the electric charges respect to the barycentric
motion of the body. ρZvi is the electric current due to the convection.

In particular, n is a total negative electric charge density coming from:
the density of free electrons created doping the semiconductor by pentavalent
impurities, denoted by N (see Fig. 2a), and the density of free electrons
coming from the intrinsic base of the semiconductor, denoted by n∗ (see Fig.
1b). n̄ is the charge density of the fixed and negative ionized atoms of doping
tetravalent impurities, having velocity v (i.e. they are comoving with the
body). Thus, we have the following charge conservation laws

ρṄ + jNi,i = gN , ρṅ∗ + jn
∗

i,i = gn
∗
, ρ ˙̄n = ḡn ρṅ+ jni,i = gn, (8)

where the superimposed dot denotes the material derivative, ρ is the mass
density, n = N +

∗
n, jni,i = jNi,i + jn

∗
i,i , jn̄i,i = 0 and gn = gN + gn

∗
.

Similarly, p are the positive electric charge density coming from: the
density of holes created doping the semiconductor by tetravalent impurities,
denoted by P (see Fig. 2b), and the density of holes coming from the intrinsic
base of the semiconductor denoted by p∗ (see Fig.1b). p̄ is the charge density
of the fixed and positive ionized atoms of doping pentavalent impurities,
having velocity v (i.e. they are comoving with the body). Thus, we have the
following charge conservation laws

ρṖ + jPi,i = gP , ρṗ∗ + jp
∗

i,i = gp
∗
, ρ ˙̄p = ḡp ρṗ+ jpi,i = gp, (9)

where p = P + p∗ jpi,i = jPi,i + jp
∗

i,i , jp̄i,i = 0 and gp = gP + gp
∗
.

Furthermore, we assume that the concentrations n̄ and p̄ are practically
constant. Hence,
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˙̄n = ˙̄p = 0 and ḡn = ḡp = 0. (10)

gn and gp describe the recombination of electrons and holes and satisfy
the equation

gn + gp = 0. (11)

Also, we have
the evolution equations for the electron, hole and heat fluxes having the

form:
j̇ni = Jni (C), j̇pi = Jpi (C), q̇i = Qi(C), (12)

where Jn, Jp and Q are the electron, hole and heat flux sources;
the continuity equation:

ρ̇+ ρvi,i = 0, (13)

where the mass charge carriers have been neglected compared to ρ (see the
final remark about it in Section 3);

the momentum balance:

ρv̇i − Tji,j − ρZEi − εijk
(
jnj + jpj+

M
P j

)
Bk − PjEi,j − fi = 0, (14)

where
M
P i= Ṗi + Pivk,k − Pkvi,k, Ei = Ei + εijkvjBk, (15)

Tij denotes the total stress tensor and fi is the body force;
the momentum of momentum balance:

εijkTjk + ci = 0. (16)

In [27] it was demonstrated that the couple ci for unit volume is vanishing,
so that the stress tensor Tij is symmetric;

the internal energy balance:

ρė− Tjivi,j −
(
jnj + jpj

)
Ej − ρEiṖi + qi,i − ρr = 0, (17)

where vi are the components of the barycentric velocity of the body, e is the
internal energy density, r is the heat source distribution per unit volume,
Pi = ρPi and vi,j is the velocity gradient given by

vi,j = Lij = ˙Fik (Fkj)
−1 ,



Material element model for defective extrinsic semiconductors 197

where Fij denotes the deformation gradient;
the evolution equations for the dislocation density and the dislocation flux :

.
aij +Vijk,k −Aij(C) = 0,

.
V ijk −Vijk(C) = 0, (18)

whereAij and Vijk are the dislocation density and the dislocation flux sources.
All the admissible solutions of the proposed evolution equations should

be restricted by the following entropy inequality :

ρṠ + JSk,k −
ρr

θ
≥ 0, (19)

where S denotes the entropy per unit mass and JS is the entropy flux asso-
ciated with the fields of the set C. JS is defined by

JS =
1
θ
q + k, (20)

with k an additional term called extra entropy flux density.
In [27] in order to close the balance equation system the entropy inequality

was analyzed by Liu’s theorem [14]. For the entropy extra flux k the following
form was obtained

kk = −qk + µnjnk + µpjpk + πijVijk + ρvkψ, (21)

where µn ≡ ∂ψ
∂n , µp ≡ ∂ψ

∂p and πij ≡ ρ ∂ψ
∂aij

are thermodynamical po-
tentials, with ψ = e − θS − EiPi the free energy density. Using Smith’s
theorem [28], in the case of defective semiconductors only of n-type, isotropic
polynomial representations, satisfying the objectivity and material frame in-
difference principles (see [19] and [21]), were derived for the constitutive func-
tions, where the following forms were assumed for the quantities responsible
for the dislocation field

aij = aδij , Aij = Aδij , Vijk = Vkδij , Vijk = Vkδij . (22)

In this paper, using the results obtained in [27] by Liu’s theorem and, ap-
plying Smith’s theorem, we derive the constitutive relations for n and p type
semiconductors in the same above assumptions (22) for the dislocation field.
In particular, we have

Tij = β1
τ δij + β2

τ εij + β3
τ εikεkj + β4

τEiEj + β5
τ (εjkEiEk + εikEjEk) +

+β6
τ (εjkεksEiEs + εikεksEsEj), (23)
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Pi = (β1
Pδik + β2

Pεik + β3
Pεijεjk)Ek, (24)

µn = β1
nn+ β2

np+ β3
na+ β4

nθ + β5
nEkEk+

+(β6
nδij + β7

nεij + β8
nεjkεki + β9

nEiEj + β10
n εjkEiEk)εij , (25)

µp = β1
pn+ β2

pp+ β3
pa+ β4

pθ + β5
pEkEk+

+(β6
pδij + β7

pεij + β8
pεjkεki + β9

pEiEj + β10
p εjkEiEk)εij , (26)

π = β1
πn+ β2

πp+ β3
πa+ β4

πθ + β5
pEkEk+

+(β6
πδij + β7

πεij + β8
πεjkεki + β9

πEiEj + β10
π εjkEiEk)εij , (27)

gn = β1
gnn+ β2

gnp+ β3
gna+ β4

gnθ + β5
gnEkEk+

+(β6
gnδij + β7

gnεij + β8
gnεjkεki + β9

gnEiEj + β10
gnεjkEiEk)εij , (28)

and gp = −gn, where βατ , β
γ
P, β

ε
n, βεp, βεπ, βεgn (α = 1, 2, ..., 6,

γ = 1, 2, 3, ε = 1, 2, ..., 10) can be functions of the following invariants

n, p, θ, a, EiEi, εkk, εijεij , εijεjkεki, εijEiEj , εijεjkEiEk. (29)

Furthermore, we have obtained the following approximated expressions for
the evolution equations for the dislocation density, dislocation, electron, hole
and heat fluxes

.
a +Vk,k = δ1

aεkk + δ2
an+ δ3

ap+ δ4
aθ + δ5

aa+ δ6
aEi + δ7

aa,i + δ8
an,i +

+δ9
ap,i + δ10

a θ,i + δ11
a Vi + δ12

a j
n
i + δ13

a j
p
i + δ14

a qi, (30)
.
Vk= δ1

υEk + δ2
υa,k + δ3

υn,k + δ4
υp,k + δ5

υθ,k + δ6
υVk + δ7

υj
n
k + δ8

υj
p
k + δ9

υqk, (31)
.
j
n

k= δ1
nEk + δ2

na,k + δ3
nn,k + δ4

np,k + δ5
nθ,k + δ6

nVk + δ7
nj
n
k + δ8

nj
p
k + δ9

nqk, (32)
.
j
p

k= δ1
pEk + δ2

pa,k + δ3
pn,k + δ4

pp,k + δ5
pθ,k + δ6

pVk + δ7
pj
n
k + δ8

pj
p
k + δ9

pqk, (33)
.
qk= δ1

qEk + δ2
qa,k + δ3

qn,k + δ4
qp,k + δ5

qθ,k + δ6
qVk + δ7

q j
n
k + δ8

q j
p
k + δ9

qqk, (34)

where δζa, δηυ, δηn, δηp , δηq (ζ = 1, 2, ..., 14, η = 1, 2, ..., 9) can depend on
invariants built on the set C (see eq. (4)). The laws (23) - (34) are very
general, but it is possible to treat special problems describing the physical
reality in several situations by some simplifications.
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3 A geometric model for extrinsic semiconductors
with defects of dislocation

In this Section, following [2], [3], [4], [5], [23], [24] and [25], we deepen the
study of the geometric model for the thermodynamics of extrinsic defective
semiconductors outlined in [17], where the dynamical system for simple mate-
rial elements of these media, the expressions of the entropy function and the
entropy 1-form were obtained. In particular, we derive the transformation
induced by the process and, applying the closure conditions for the entropy
1-form, the necessary conditions for the existence of the entropy function.

Consider a material element and define the state space at time t as the
set Bt of all the state variables which "fit" the configuration of the element at
time t. Bt is assumed to have the structure of a finite dimensional manifold.
The "total state space" is the disjoint union B =

⋃
t{t} × Bt with a given

natural structure of fibre bundle over R where time flows (see [4] and [5]). We
call it the thermodynamic fiber bundle. We consider the case in which the
instantaneous state space Bt does not vary in time (i.e. there is an abstract
space B such that Bt ' B for all instants of time t) and the state space
B has the topology of the Cartesian product B ' R × B. Furthermore, we
consider an abstract space of processes (see [2], [3], [23], [24] and [25]) i.e. a
set Π of functions

P it : [0, t]→ G,

where [0, t] is any time interval, the space G being a suitable target space
defined by the problem under consideration, i a label ranging in an unspec-
ified index set for all allowed processes and t ∈ R the so called duration of
the process. For the given state space B we suppose that the set Π is such
that the following statements hold:

• ∃D : P it ∈ Π→ D(P it ) ≡ Di
t ∈ P(B).

D is the domain function, Di
t is the domain of the i-th process (of

duration t) and P(B) is the set of all the subsets of B;

• ∃R : P it ∈ Π→ R(P it ) ≡ Rit ∈ P(B). R is the range function and Rit is
called the range of the i-th process (of duration t);

• considering the restrictions

P it = P it |[0,τ ] (τ ≤ t) (35)
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new processes, called restricted processes, are obtained and they satisfy
the following condition:

∀τ < t D(P it ) ⊆ D(P iτ ). (36)

Incidentally, this implies that
⋂t
τ=0D(P iτ ) = D(P it ), where t is the

maximal duration.

Then, a continuous function is defined

χ : (t, P it ) ∈ R×Π→ ρit ∈ C0(B,B) (37)

with
ρit : b ∈ Di

t ⊆ B → ρit(b) = bt ∈ Rit ⊆ B, (38)

so that for any instant of time t and for any process P it ∈ Π a continuous
mapping, ρit, called transformation induced by the process is generated, which
gives point by point a correspondence between the initial state b and the final
state ρit(b) = bt.
Moreover, if P it and P

j
s are processes such that Dj

s∩Rit 6= ∅, then the function

(P js ◦ P it ) : [0, t+ s]→ G

defined by

(P js ◦ P it )(τ) =
{

P it (τ), τ ∈ [0, t]
P js (τ − t), τ ∈]t, t+ s]

(39)

is a process having the following domain

D(P js ◦ P it ) = (ρit)
−1(Dj

s ∩Rit) (40)

and, ∀b ∈ D(P js ◦ P it ), the transformation induced by the process P js ◦ P it is
defined by

ρijt+s(b) = [ρjs(ρ
i
t)(b)]. (41)

Now, we introduce a function of time

λib(τ) =
{
b if τ = 0 with b ∈ Di

t

ρit(b) if τ ∈]0, t]
(42)

such that the transformation for the medium is a function

δ : τ ∈ R −→ δ(τ) = (τ, λib(τ)) ∈ R×B. (43)
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With these positions the transformation is interpreted as a curve δ in the
union of all the state spaces such that it intersects the instantaneous state
space just once.
Now, we assume that the behavior of extrinsic thermoelastic semiconductors
with defects of dislocation is described by the following state variables

C = {Fij , Di, Bi, n, p, e, aij ,Vijk, jni , j
p
i , qi, n,i, p,i, θ,i, aij,k},

where we have taken into consideration the gradient of deformation Fij in-
stead of the strain tensor, following standard methods. The full state space
is then

B = Lin(V)⊕V⊕V⊕R⊕R⊕R⊕W1⊕W2⊕V⊕V⊕V⊕V⊕V⊕V⊕Lin(W1),

where V ' R3, W1 and W2 are vector spaces accounting for the internal
variables a and V , respectively.
Moreover, applying the usual method, we assume that for each pair (P it , b)
the following dynamical system holds (see [2], [3], [23], [24] and [25])

Ḟ = LF
Ḋ = H
Ḃ = Ξ
ρṅ = Gn

ρṗ = Gp

ρė = T · L + h
ȧ = γ

V̇ = V
j̇n = Jn

j̇p = Jp

q̇ = Q
∇̇n = N
∇̇p = P
∇̇θ = Θ
∇̇a = Γ,

(44)

where

Hi = εijkHk,j − (jni + jpi )− ρZvi, Ξi = −εijkEk,j , Gn = gn − jni,i,
Gp = gp − jpi,i, h = (jni + jpi )Ei − ρ̇

ρEiPi + EiṖi − qi,i + ρr,

γij = −Vijk,k +Aij ,
(45)
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(see eqn.s (5)1, (6)1, (8)4, (9)4, (17), (18) and (23) - (34)) and δ is defined
by eq. (43).
The constitutive functions θ, T, P, Jn, Jp, Q, A, V, gn and gp are defined
in the following way

θ : R×B → R++, T : R×B → Sym(V), P : R×B → V,

Jn : R×B → V, Jp : R×B → V, Q : R×B → V, A : R×B →W1,

V : R×B →W2, gn : R×B → R, gp : R×B → R.

The set (B,Π, θ,T,P,Jn,Jp,A,V,Q, gn, gp) defines the simple material
element for defective extrinsic semiconductors (see [24]).

Following standard procedures (see [3], [4] and [5]), in this geometrical
structure we are able to introduce an action s, called “entropy function”,
which is related to a reversible transformation between the initial and the
actual states b and bt, respectively, in the following way:

s(ρit, b, t) = −
∫ t

0

1
ρ
∇ · JSdτ, (46)

where JS is defined according to equation (20). Then, we get

s =
∫ t

0
− 1
ρθ
∇ · qdτ +

∫ t

0

1
ρθ2

q · ∇θdτ −
∫ t

0

1
ρ
∇ · kdτ. (47)

Using the internal energy balance equation and the relation L = ∇v = ḞF−1,
we obtain the following expression for ∇ · q

∇ · q = −ρė+ T · (ḞF−1) + (jn + jp) · E − ρ̇

ρ
E ·P + E · Ṗ, (48)

so that the final expression for the entropy function is calculated as an integral
along a path into the space R × B of all thermodynamic variables together
with the independent time variable

s(ρit, b, t) =
∫
δ

Ω, with

Ω = − 1
ρθ

(TF−T ) · dF− 1
ρθ

E · dD +
1
θ
de+

[
1
ρθ2

q · ∇θ − 1
ρθ

(jn + jp) · E
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+
1
ρ2θ

ρ̇E ·P +
ε0

ρθ
E · Ė− 1

ρ
∇ · k

]
dτ, (49)

where we have used the relation T · (ḞF−1) = (TF−T ) · Ḟ (being F−T =
(F−1)T and T denoting matrix transposition). In eq.(49) the entropy func-
tion defines a 1-form Ω in R × B called the entropy 1-form. In components
the entropy 1-form Ω becomes:

Ω = ωµdq
µ + ω0dt = ωAdq

A (A = 1, 2, ..., 16),

where
qA = (F,D,B, n, p, e,a,V , jn, jp,q,∇n,∇p,∇θ,∇a, t)

and
ωA =

[(
− 1
ρθ

TF−T
)
,

(
1
ρθ

E
)
, 0, 0, 0,

(
1
θ

)
, 0, 0, 0, 0, 0, 0,

0, 0, 0,
(

1
ρθ2

q · ∇θ − 1
ρθ

(jn + jp) · E +
1
ρ2θ

ρ̇E ·P +
ε0

ρθ
E · Ė− 1

ρ
∇ · k

)]
.

Thus, by external differentiation, a 2-form is obtained:

dΩ =
∂wA
∂qB

dqB ∧ dqA (A,B = 1, 2, ..., 16).

Since dΩ can be written in the following form

dΩ =
∑
B<A

∂wA
∂qB

dqB ∧ dqA +
∑
B>A

∂wA
∂qB

dqB ∧ dqA

=
∑
B<A

(
∂wA
∂qB

− ∂wB
∂qA

)
dqB ∧ dqA,

applying the closure conditions for the entropy 1-form, we obtain the neces-
sary conditions for the existence of the entropy function s during the pro-
cesses under consideration setting

∂wA
∂qB

=
∂wB
∂qA

.

In our case we have

∂e

(
− 1
ρθTF−T

)
= ∂F

(
1
θ

)
, ∂D

(
− 1
ρθTF−T

)
= ∂F

[
− 1
ρθE
]
,
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∂D
(

1
θ

)
= ∂e

[
− 1
ρθE
]
, ∂ωA

∂qB = 0 (A = 1, 2, 6, 16; B = 3, 4, 5, 7, ..., 15),

∂t

(
− 1
ρθTF−T

)
= ∂F

[
1
ρθ2 q · ∇θ− 1

ρθ (jn+jp) · E+ 1
ρ2θ ρ̇E ·P+ 1

ρθ ε0E · Ė−
1
ρ∇ · k

]
,

∂t
(

1
θ

)
= ∂e

[
1
ρθ2

q · ∇θ − 1
ρθ (jn+jp) · E+ 1

ρ2θ
ρ̇E ·P + 1

ρθ ε0E · Ė−
1
ρ∇ · k

]
,

∂t

[
− 1
ρθE

]
= ∂D

[
1
ρθ2 q · ∇θ − 1

ρθ (jn + jp) · E + 1
ρ2θ ρ̇E ·P + 1

ρθ ε0E · Ė−
1
ρ∇ · k

]
.

We remark that in semiconductor crystals ρ is practically constant, so
that all results derived in the paper containing the time derivative of ρ can
be disregarded. The above relations give the necessary conditions character-
izing a sort of "irrotationality" of the entropy 1-form during the analyzed
transformation. If the entropy 1-form in eq. (49) is closed and its coefficients
are regular, this form is exact and the existence of an upper-potential satisfy-
ing relation S(bt)−S(b) ≥ s is ensured, for all P it ∈ Π, with bt = ρit(b) [3].
Starting from the entropy 1-form it is possible to introduce and investigate
an extended thermodynamical phase space in a suitable way [26].
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