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Abstract

We present the main elements of the exponential fitting technique
for building up linear approximation formulae. We cover the two main
components of this technique, that is the error analysis and the way
in which the coefficients of the new formulae can be determined. We
present briefly the recently developed error analysis of Coleman and
Ixaru, whose main result is that the error of the formulae based on the
exponential fitting (ef, for short) is a sum of two Lagrange-like terms, in
contrast to the case of the classical formulae where it consists of a single
term. For application we consider the case of two quadrature formulae
(extended Newton-Cotes and Gauss), which are indistinguishable in
the frame of the traditional error analysis, to find out that the Gauss
rule is more accurate. As for the determination of the coefficients, we
show how the ef procedure can be applied for deriving formulae of clas-
sical type. We re-obtain wellknown formulae and also derive some new
ones.
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1 Introduction

The exponential fitting (ef for short) is a powerful technique for the con-
struction of approximation formulae for operations on functions with special
behaviour, in particular when these are oscillatory functions. The following
simple examples are of help for understanding the object of this technique.

First derivative. The simplest approximation for this operation is the popular
central difference formula

f ′(X) ≈ 1
2h

[f(X + h)− f(X − h)] , (1.1)

which gives good results when f has a smooth variation on [X − h,X + h].
Much less known is the fact that when f is an oscillatory function of form

f(x) = f1(x) sin(ωx) + f2(x) cos(ωx) (1.2)

with smooth f1 and f2, then the slightly modified formula

f ′(X) ≈ θ

2h sin(θ)
[f(X + h)− f(X − h)], where θ = ωh , (1.3)

becomes appropriate; it tends to the former when θ → 0.
Second derivative. Three-point approximation

f ′′(X) ≈ 1
h2
{a1[f(X + h) + f(X − h)] + a2f(X)}, (1.4)

has the constant coefficients a1 = 1, a2 = −2 for the classical case, but the
θ dependent coefficients

a1(θ) =
θ

sin θ
and a2(θ) =

θ(sin θ − 2 cos θ)
sin θ

for oscillatory functions of form (1.2).
Quadrature. Trapezium rule∫ X+h

X−h
f(z)dz ≈ h[a1f(X + h) + a2f(X − h)] , (1.5)

has the classical coefficients a1 = a2 = 1 but

a1(θ) = a2(θ) =
sin(θ)
θ cos(θ)

,

for functions of form (1.2).
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Interpolation. Let f(X ± h) be given and we want to interpolate at some
x′ ∈ (X − h, X + h) with the formula

f(x′) ≈ a−f(X − h) + a+f(X + h). (1.6)

In the classical case (usual linear interpolation) the coefficients a± depend
only on x′; with t = (x′ −X)/h these are a±(x′) = (1 ± t)/2. However, for
treating oscillatory functions they depend also on θ,

a±(x′, θ) =
sin[(1± t)θ]

sin(2θ)
.

For other examples see e.g. [1], [2], [3].
The purpose of the exponential fitting procedure is to produce such new forms
for the approximation formulae and to evaluate their error. The expression
’exponential fitting’ indicates that the procedure has a larger area: in general
it covers the cases where f is a linear combination of exponential functions
with different frequencies. The oscillatory function (1.2) represents only one
of the possible combinations of such functions (two imaginary frequencies
±iω are actually involved in it) but in practice this case is by far the most
popular of all. The reason is related to the existence of a tremendously large
variety of phenomena governed by oscillatory functions; think, for example,
of phenomena involving oscillations, rotations, vibrations, wave propagation,
behavior of quantum particles etc.
The paper is organized in two parts. In the first part (Section 2) we consider
the error analysis while in the second part (Sections 3-5) we show how the ef
technique is used to build up new formulae. In the first part we present briefly
the recently developed error analysis of Coleman and Ixaru [4], whose results
might be of interest well beyond the area covered by the ef procedure. The
main finding of this analysis is that the error of the ef-based approximation
formulae is a sum of two Lagrange-like terms, in contrast to the case of the
classical formulae (that is where the coefficients are constants) where it con-
sists of a single term. For application we consider the case of two quadrature
formulae (extended Newton-Cotes and Gauss), which are indistinguishable
in the frame of the existing error analysis, to find out that the Gauss rule is
more accurate.
The unusual feature in the second part is that we apply the ef procedure for
deriving formulae of classical type. We re-obtain wellknown formulae and
also derive some new ones.
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2 A two-term Lagrange-like formula of the error

When the value of a function f at X + h is approximated by a truncated
Taylor expansion about X, that is by fK(X + h) =

∑K
k=0 h

kf (k)(X)/k!, the
resulting error may be expressed in the Lagrange form

E[f ] = f(X + h)− fK(X + h) =
hK+1

(K + 1)!
f (K+1)(η) , (2.7)

for some η ∈ (X, X + h), if f (K+1)(x) is continuous on (X, X + h). That
error may also be written, less usefully, as the formal expansion

E[f ] =
∞∑

k=K+1

hk

k!
f (k)(X) . (2.8)

Expressions of Lagrange type are also available for the truncation errors of
many other classical approximations. For example, the error of the sim-
plest approximation for the first derivative, eq.(1.1), has the Lagrange-like
expression

E[f ] = −1
6
h2f (3)(η) (2.9)

where η ∈ (X − h, X + h), but a formal expansion as in eq.(2.8) can also be
written, whose leading term is

lte = −1
6
h2f (3)(X) . (2.10)

Note that in both cases considered above the expression of the leading term
is the same as that in the Lagrange form except for the interchange of X and
η.
Expressions of the leading term of the error can be easily built up for both
classical and new forms of the coefficients. Also, since the new coefficients
tend to the classical ones when θ → 0 the same holds true for the leading
term of the error. For example, approximation (1.3) has

lte = h2 sin(θ)− θ
θ2 sin(θ)

[f (3)(X) + ω2f ′(X)] , (2.11)

see [1]. When θ → 0 (for fixed h this implies ω → 0 and viceversa) this lte
obviously tends to (2.10) which is the same as the whole E[f ] of (2.9) except



168 Liviu Ixaru

for the interchange of X and η. This induces the impression that such a
link may be more general, in the sense that for any ef-based approximation
formula it is sufficient to build up the expression of the lte (which, as said,
can be derived without difficulty) and to accept simply that this expression
represents also the whole error E[f ] if X is replaced by some η.

The problem of whether the suggested link can be sustained has been
investigated recently by Coleman and Ixaru [4] for linear ef-based approxi-
mation formulae on the basis of a theory developed in the book of Ghizzetti
and Ossicini [5]. Coleman and Ixaru have shown that E[f ] can be written
as a sum of two Lagrange-like terms from which only one survives in the
limit θ → 0. The consequence is that the link is justified in the limit case
but it does not hold true for big θ, that is, in the region where the ef-based
approximation formulae are actually helpful.

The work [5] is concerned with quadrature formulae of the form∫ b

a
g(x)f(x) dx ≈

n∑
i=1

m−1∑
k=0

Akif
(k)(xi), (2.12)

whose error

E[f ] =
∫ b

a
g(x)f(x) dx−

n∑
i=1

m−1∑
k=0

Akif
(k)(xi) (2.13)

is such that E[f ] = 0 when f is a solution of a linear differential equation
Lf = 0 of order m. It is assumed that

a ≤ x1 < x2 < · · · < xn ≤ b

and it is convenient to define x0 = a and xn+1 = b, to allow for cases where
the end-points of the integration interval are not quadrature abscissas.

The operator L has the form

L =
m∑

k=0

wk(x)Dm−k , x ∈ [a, b] , where Dp =
dp

dxp
, (2.14)

with w0(x) = 1. Smoothness conditions on the coefficients wk are specified
in [5].

We place the discussion on the case when the coefficients Aki correspond-
ing to the given L are known, to find the expression of the error E[f ]. The
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presence of g(x) in the integrand allows for considerable flexibility. Not only
the quadrature formulae are covered by (2.12) but many others, including
any known linear approximation formula which is consistent with L of the
given form, for operations such as the numerical differentiation, quadrature,
solving differential or integral equations, interpolation etc.

For illustration let us examine the approximation formulae listed above
from this perspective.

- First derivative. The classical and ef-based formulae, eqs.(1.1) and (1.3),
respectively, are of form (2.12) for g(x) ≡ 0, n = m = 3, x1 = X−h, x2 = X,
x3 = X + h, A02 = A11 = A13 = A21 = A22 = A23 = 0, and A12 = −1.
The other coefficients are −A01 = A03 = 1/(2h) for the classical formula and
−A01 = A03 = θ/[2h sin(θ)] for the other. Since the classical formula is exact
for f = 1, x, x2 i.e. when f satisfies f (3)(x) = 0, it follows that L = D3.
Likewise, the ef-based formula is exact when f = 1, sin(ωx), cos(ωx) and
since these are three linear independent solutions of differential equation
f (3) + ω2f ′ = 0 it results that L = D(D2 + ω2) in this case.

- Second derivative, eq.(1.4). This corresponds to (2.12) if we take g(x) ≡
0, n = 3, m = 4, x1 = X−h, x2 = X, x3 = X+h, A22 = −1, A21 = 0 = A23

and A1k = A3k = 0 for k = 1, 2, 3. The other coefficients are A01 = A03 =
1/h2, A02 = −2/h2 for the classical case, and A01 = A03 = a1(θ)/h2, A02 =
a2(θ)/h2 for the ef-based case. The expressions of the operator are L = D4

and L = (D2 + ω2)2, respectively.
- Trapezium rule for the quadrature, eq.(1.5): g(x) ≡ 1, n = m = 2,

a = x0 = x1 = X − h, b = x2 = x3 = X + h, A11 = 0 = A12. The other
coefficients depend on the version. They are A01 = A02 = h for the classical
version and A01 = A02 = h sin(θ)/[θ cos(θ)] for the ef-based version. As for
the expression of the operator, this is L = D2 and L = D2 +ω2, respectively.

- Two point interpolation, eq.(1.6): g(x) ≡ δ(x − x′), n = m = 2,
a = x0 = x1 = X − h, b = x2 = x3 = X + h, A11 = A12 = 0. For the
classical version we have A01 = a−(x′), A02 = a+(x′) and L = D2 while
A01 = a−(x′, θ), A02 = a+(x′, θ) and L = D2 + ω2 for the ef-based version.

The theory of Ghizzetti and Ossicini allows writing E[f ] in integral form,

E[f ] =
∫ b

a
Φ(x)Lf(x) dx, (2.15)
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where function Φ(x) is determined piecewise in terms of some other functions,
namely

Φ(x) = φi(x) for xi < x < xi+1, i = 0, . . . , n.

The functions φi(x) are constructed as follows. Let K be the resolvent kernel
corresponding to the operator L, i.e., K(x, z) is the solution of Lu(x) = 0
such that [

∂k

∂xk
K(x, z)

]
x=z

= δk,m−1, (2.16)

for k = 0, 1, . . . ,m− 1. This is used to build up function φ0(x) by

φ0(x) = −
∫ x

a
K(t, x)g(t) dt . (2.17)

Once K(t, x) and φ0(x) are known the other φ-functions are generated by
recurence,

φi+1(x) = φi(x) +
m−1∑
k=0

Ak,i+1

[
∂k

∂tk
K(t, x)

]
t=xi+1

. (2.18)

Let us denote

T0 =
∫ b

a
Φ(x)dx.

The significance of this T0 is that it represents the front factor in the ex-
pression of the leading term of the error. This is easily seen if we take some
reference point X on (a, b), and use the Taylor series for Lf(x) around X,

Lf(x) = Lf(X) +
(x−X)

1!
d

dx
Lf(x)|x=X +

(x−X)2

2!
d2

dx2
Lf(x)|x=X + . . .

The leading term of the error is integral (2.15) in which only the first term
of this expansion is retained:

lte =
∫ b

a
Φ(x) dx× Lf(X) = T0 Lf(X) (2.19)

Indeed, the integrals with the next terms will result in higher order con-
tributions, proportional to h, h2, ...; to see this use the second mean-value
theorem. On the other hand, if Φ(x) does not change the sign on (a, b), then,
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assuming that f ∈ Cm(a, b), the same second mean-value theorem applied
on integral (2.15) gives that

E[f ] = T0 Lf(η) (2.20)

for some η ∈ (a, b), such that only in this case one can say that the ex-
pressions of lte and of E[f ] coincide except for the interchange of X and η.
However, Φ(x) may not be of constant sign. For illustration, function Φ(x)
corresponding to the ef-based approximation of the second derivative (1.4) is

Φ(x) = h
θ(1− |x∗|) cos[θ(1− |x∗|)]− sin[θ(1− |x∗|)]

2θ2 sin θ
,

where x∗ = (x − X)/h ∈ [−1, 1] is associated to x ∈ [X − h, X + h], see
[4]. Experimental evidence, also presented in [4], shows that this Φ(x) is of
constant sign if θ ∈ (0, θ1 ≈ 4.4934) but it changes the sign for bigger values
of θ.

To treat the case when Φ(x) changes the sign on (a, b) we follow [4] to
write Φ(x) = Φ+(x) + Φ−(x), where

Φ+(x) :=
{

Φ(x) for all x such that Φ(x) ≥ 0
0 otherwise

and

Φ−(x) :=
{

Φ(x) for all x such that Φ(x) ≤ 0
0 otherwise

The integral in (2.15) can be expressed as the sum of two integrals,

E[f ] =
∫ b

a
Φ+(x)Lf(x) dx+

∫ b

a
Φ−(x)Lf(x) dx . (2.21)

and, since functions Φ±(x) are of constant sign, the mean-value theorem can
be applied to both integrals to give

E[f ] = Lf(η+)
∫ b

a
Φ+(x) dx+ Lf(η−)

∫ b

a
Φ−(x) dx, (2.22)

for some η+ , η− ∈ (a , b). With

T± =
∫ b

a
Φ±(x) dx
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this reads simply

E[f ] = T+Lf(η+) + T−Lf(η−) , (2.23)

which is the announced two-term Lagrange-like expression of the error.
To summarize, the error of approximation formula (2.12) admits a La-

grange-like expression whose number of terms depends on the behavior of
Φ(x) on (a, b): it consists of a single term if Φ(x) does not change the sign
but of two terms otherwise. As a matter of fact, no case in which Φ(x)
changes its sign is known to us if L is of the simple form L = Dm (this covers
the familiar formulae with constant coefficients such as Simpson, Newton-
Cotes or Gauss). In all these cases the error expressions consist in a single
Lagrange-like term.
As for new applications, note that the expression of Φ(x) can be build up in
analytic form but the determination of functions Φ±(x) needs a numerical
approach. A final check for the accuracy of the later determination consists
in verifying that T0 = T+ + T−.
Note also that formula (2.23), whose derivation uses for start the work of
Ghizzetti and Ossicini [5], is more general than needed for linear ef-based
approximations since it assumes that the coefficients wk in the operator L
may depend on x, while in the exponential fitting these are simply constants.

Application

We consider two ef-based quadrature rules, see also [4].
• Extended Newton-Cotes rule, [7], [2]:

∫ b

a
f(x)dx =

∫ X+h

X−h
f(x)dx ≈ h

N∑
n=1

[a(0)
n f(X + x∗nh) + ha(1)

n f ′(X + x∗nh)] ,

(2.24)
on evenly-spaced abscissas x∗n = 2(n − 1)/(N − 1) − 1 (n = 1, 2, . . . , N).
The rule is called extended because it uses the values of f and its derivative,
to underline that its structure contrasts that of the versions in current use,
where only the values of f are used. As a matter of fact, the Simpson rule is
a particular case of the later (N = 3); for an adaptation of the Simpson rule
to oscillatory integrals see [9] and [10].
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• Gauss rule, [11], [2]:∫ b

a
f(x)dx =

∫ X+h

X−h
f(x)dx ≈ h

N∑
n=1

a(0)
n f(X + x∗nh) . (2.25)

The 2N coefficients, that is a(0)
n , a(1)

n for the first rule, and a(0)
n , x∗n for the

second (n = 1, . . . , N) are determined from the condition that the rule is
exact if f satisfies Lf = 0 for

L = (D2 + ω2)N = h−2N (D∗2 + θ2)N .

In the last member we have used the dimensionless x∗ = (x − X)/h and
D∗p = dp/dx∗p = hpDp. Both rules are exact if the integrand f is of form
(1.2) where f1, f2 are polynomials of degree N − 1 or less. The coefficients
of each rule depend on θ only.

The lte can be expressed either as in (2.19) or in terms of x∗,

lte = T0(D2 + ω2)Nf(X) = hT ∗0 (D∗2 + θ2)Nf(X) ,

where T ∗0 = h−(2N+1)T0. The advantage of the second representation is that
it makes the θ dependence more obvious. Indeed, T ∗0 depends on θ only, and
its expression is formally the same in both rules,

T ∗0 (θ) =
2−

∑N
n=1 a

(0)
n (θ)

θ2N
.

As said, the niche for such quadrature rules is that of highly oscillatory
integrands, i.e., when big values of θ are involved. Let then keep h fixed and
examine the behaviour of lte when ω (or θ) tends to infinity. Factor T ∗0 (θ)
decreases as θ−2N in both formulae because in each of these the coefficients
a

(0)
n (θ) tend to 0 when θ → ∞. The last factor, (D∗2 + θ2)Nf(X), which is

identical in the two, increases as θN , see [2], such that the prediction based
on the expression of the leading term is that the error should decrease as
θ−N in both formulae.
However, the two-term form of the error, eq.(2.23), leads to a different pic-
ture. It is convenient to write this equation under the equivalent form

E[f ](θ) = h[T ∗+(θ)(D∗2 + θ2)Nf(η+) + T ∗−(θ)(D∗2 + θ2)Nf(η−)] , (2.26)

where functions T ∗±(θ) satisfy T ∗+(θ) ≥ 0, T ∗−(θ) ≤ 0, and T ∗0 (θ) = T ∗+(θ) +
T ∗−(θ). The picture is different because the asymptotic behaviours of T ∗0 (θ),
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on one hand, and those of its components T ∗±(θ), on the other, are not nec-
essarily similar.
Indeed, Coleman and Ixaru have shown that for large θ and N ≥ 2 the sign
conserving functions T ∗±(θ) are well described by the approximation

T ∗±(θ) ≈ ±c(θ)θ−(2N−N̄) + c±(θ)θ−2N , (2.27)

where N̄ ≥ 0, and the functions c(θ) and c±(θ), with c+(θ) 6= −c−(θ), are
oscillating between constant limits; think, for example, of functions of the
form c(θ) = c+(θ) = 1 + cos θ and c−(θ) = −1 + cos θ. Consequently, the
errors will damp out as θN̄−N , and this is slower than the rule θ−N suggested
by the behaviour of the lte.
Coleman and Ixaru have also shown that the values of N̄ are different in the
two rules. They are N̄ = N − 2 for the extended Newton-Cotes rule but
N̄ = b(N − 1)/2c for the Gauss rule, that is N̄ = 0 for N = 2, N̄ = 1 for
N = 3, 4, and N̄ = 2 for N = 5, 6 etc. Thus the error damps out like θ−2

for the extended Newton-Cotes rule with any N ≥ 2 but faster and faster
when N is increased for the Gauss rule: θ−2 for N = 2, 3, θ−3 for N = 4, 5
etc. All these theoretical predictions are nicely confirmed in practice.
We can then conclude that the two-term Lagrange-like expression of the er-
ror [4] allows a solid theoretical understanding of the experimental evidence
that the ef-based approximation formulae are so well suited for operations on
oscillatory functions. It also warns us that the characterization of the error
in terms of the lte, as largely used in the literature, is often misleading.
The presented application is however rather special: only functions with
one frequency were involved and also the two selected quadrature rules (ex-
tended Newton-Cotes and Gauss) share the property of being defined for
any θ. However, such a property is quite exceptional in the family of the
ef-based formulae. The typical situation is when some values of θ exist at
which the formulae cannot be defined; these are called critical values, see [1],
[2]. For example, θn = (n + 1/2)π, n = 0, 1, 2, . . . are the critical values for
the trapezium rule (1.5) because the coefficients exhibit a factor cos(θ) in the
denominator. It would be then interesting to see applications on such cases,
and also on cases when linear combinations of functions of form (1.2) with
different frequencies are involved. Situations of the later type also appear
in some applications, as in the computation of the normalization constant
(two frequencies) or of the Slater integrals (eight frequencies) in quantum
mechanics, see, e.g. [2], [12], [13].
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It is also important to notice that the approach which has lead to the two-
term error formula is restrictive because in the present form it does not give
a direct answer for nonlinear approximations. For example, the two-step
hybrid algorithm for differential equations in which the phase-fitting tech-
nique is used [14], the conditionally P-stable ef-based method for differential
equations of form y′′ = f(x, y) [15], the ef-based extensions of Runge-Kutta
methods as in [16], [6],[17], [18], and references therein, cannot be approached
at this moment, and an adaptation is needed.

3 Exponential fitting technique for the construction
of the coefficients of approximation formulae

In the previous section we were concerned with the determination of the ex-
pression of the error when the coefficients of the approximation formulae are
assumed known. The complementary problem, that is the determination of
the coefficients, is of equal importance and this is what we consider in this
and the next sections in the frame of the ef approach. To fix the ideas we con-
tinue to focus our attention on quadrature formulae and, to make the things
even simpler, we restrict our concern on the two and three-point formulae
with constant coefficients, that is on the classically allowed extensions (in the
sense that the frequencies are simply set to zero) of the familiar trapezium
and Simpson rules, respectively.
There is a direct practical motivation for such extensions. When approaching
problems in natural sciences (physics, chemistry, biology etc.) a succession
of numerical operations has to be carried out, where the output from some
step is used as input in the next step. For example, let us assume that at
some moment we have to solve a second order differential equation, let this
be y′′ = f(x, y) on [a, b], and just after that we are interested in the eval-
uation of the integral of y over this interval. If the differential equation is
solved by the Runge-Kutta method, then we get not only the values of the
solution y at the mesh points but also of its first and second derivative; the
second derivative results directly from the expression of function f(x, y). If,
alternatively, the equation is solved by a finite difference scheme, then we
get the values of y and y′′ but not those of y′. As for the calculation of the
integral, plenty of versions are presented in the standard literature, see [19]
for example, but, surprisingly enough, these typically use only the values
of the integrand. Formulae which use also the values of sets of successive
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derivatives appeared only recently while formulae in which some of these
are missing do not exist although it is clear that all such extended formulae
are potentially more accurate whereas they exploit richier input information
than that contained in the integrand alone. Expressed in other words, the
new formulae provide an advantageous alternative to the standard formulae
which, for comparable accuracy, will need repeating the whole computation
on finer partitions, thus increasing the computational effort.
We consider the interval [−h, h], a partition of this by the meshpoints x0 =
x1 = −h, x2 = 0, x3 = x4 = h, and a quadrature rule of the form

Q[y] =
∫ h

−h
y(z)dz ≈

2∑
k=0

hk[ak1y
(k)(−h) + ak2y

(k)(0) + ak3y
(k)(h)] , (3.28)

that is a rule which potentially allows the computation of the integral in
terms of the values at the meshpoints of the integrand and of its first and
second derivatives. The error of this rule is

E[h,a; y] (3.29)

=
∫ h

−h
y(z)dz −

2∑
k=0

hk[ak1y
(k)(−h) + ak2y

(k)(0) + ak3y
(k)(h)]

where the arguments h and a (this collects all nine coefficients) are expli-
citly mentioned. The problem consists in the determination of the coeffi-
cients such that the error is minimal in a certain sense.
Various particular forms are of interest in terms of the available data. For
example, if only the values of y at the three points are known, then we have
to impose that all coefficients of the derivatives equal zero, i.e. only a01, a02

and a02 have to be determined.
Our investigation follows three steps:
1. Find the expressions of E[h,a; y] for y(x) = xn, n = 0, 1, 2, 3, · · · .
2. Evaluate the values of the coefficients such that E[h,a; y] = 0 for as many
successive y(x) = xn as possible (it is assumed that this is actually the way
which leads to coefficients which ensure the minimal error for the considered
rule) and determine, on this basis, the expression of the operator L, eq.(2.14).
3. Determine the Lagrange-like expression of the error.
Step 1 regards the general form (3.28) while steps 2-3 will treat each partic-
ular case separately. We have the following



Approximation formulae generated by exponential fitting 177

Lemma 1. The expressions of E[h,a; y] for y(x) = xn, n = 0, 1, 2, 3, · · ·
are of the form

E[h,a; xn] = hn+1En(a) , (3.30)

where En(a), called reduced moments, are

E0(a) = 2− (a01 + a02 + a03) ,
E1(a) = −(−a01 + a03 + a11 + a12 + a13) , (3.31)

E2(a) =
2
3
− [a01 + a03 + 2(−a11 + a13 + a21 + a22 + a23)] ,

En(a) = −[−a01 + a03 + n(a11 + a13) + n(n− 1)(−a21 + a23)] ,
for odd n ≥ 3 ,

En(a) =
2

n+ 1
− [a01 + a03 + n(−a11 + a13) + n(n− 1)(a21 + a23)] ,

for even n ≥ 4 .

Proof Elementary evaluations on y(x) = xn give:

y(h) = (−1)ny(−h) = hn, y(0) = δn0, for any n ≥ 0,
y′(h) = y′(−h) = y′(0) = 0 for n = 0 ,
y′(h) = (−1)n−1y′(−h) = nhn−1, y′(0) = δn1 for n > 0 ,
y′′(h) = y′′(−h) = y′′(0) = 0 for n = 0, 1 ,
y′′(h) = (−1)ny′′(−h) = n(n− 1)hn−2, y′′(0) = 2δn2 for n > 1 ,

and ∫ h

−h
y(z)dz =


2

n+ 1
hn+1 for even n

0 for odd n

If these are introduced in (3.30) the expressions under eq.(3.31) result di-
rectly.
Q. E. D.
Another element of general interest in the subsequent considerations is the
resolvent kernel of operator L = Dm. We have

Lemma 2. The resolvent kernel of L = Dm, m ≥ 1 is

K(t, z) =
1

(m− 1)!
(t− z)m−1. (3.32)
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Proof The general solution of the differential equation Dm u(x) = 0 is
the (m− 1)-th degree polynomial

u(x) =
m−1∑
i=0

aix
i .

Its successive derivatives are

∂k

∂xk
u(x) =

m−(k−1)∑
i=0

(i+ 1)(i+ 2) · · · (i+ k)ai+kx
i, k = 1, 2, · · · ,m− 1 .

The particular solution which satisfies the initial conditions

∂k

∂xk
u(x)|x=0 = δk,m−1

is
up(x) =

1
(m− 1)!

xm−1 ,

and the resolvent kernel is this particular solution with argument x = t− z.
Q. E. D.
For the construction of functions φi(x), eqs.(2.17)-(2.18), the expressions
of the integral and successive partial derivatives of the kernel will often be
involved:

I(X,x) :=
∫ x

X
K(t, x)dt = − 1

m!
(X − x)m , (3.33)

Kk(X,x) :=
∂k

∂tk
K(t, x)|t=X =

1
(m− k − 1)!

(X − x)m−k−1,

k = 0, 1, · · · ,m− 1.

Since x0 = x1 = −h and x3 = x4 = h, the function Φ(x) will have only two
piecewise determinations:

Φ(x) =


φ1(x) = −I(−h, x) +

2∑
k=0

hkak1Kk(−h, x) for −h < x < 0

φ2(x) = φ1(x) +
2∑

k=0

hkak2Kk(0, x) for 0 < x < h

(3.34)
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In the following we examine two families of quadrature rules of the form
(3.28). These are the two-point rules, denoted Q2

s, where only data at the
meshpoints ±h are accepted, and three-point rules, denoted Q3

s, where data
at all three meshpoints are accepted. Index s = 1, 2, 3, 4 identifies versions
in the corresponding family in terms of what are actually the data accepted
for input:

- Versions Q2
1 and Q3

1. Accepted input data: y. These are the trapezium
and Simpson rule, respectively.

- Versions Q2
2 and Q3

2. Accepted input data: y and y′.

- Versions Q2
3 and Q3

3. Accepted input data: y and y′′.

- Versions Q2
4 and Q3

4. Accepted input data: y, y′ and y′′.

4 Two-point rules

Remark: Since for these rules we always have ak2 = 0, k = 0, 1, 2, function
φ2(x) has the same expression as φ1(x) and therefore only one determination
is active in eq.(3.34): Φ(x) = φ1(x) for −h < x < h.
For the trapezium rule Q2

1 the following result is wellknown, e.g. [19] :

Theorem 1. The coefficients and the Lagrange-like expression of the error
for version Q2

1 are

a01 = a03 = 1 and E[h,a; y] = −2
3
h3y′′(η) ,

for some η ∈ (−h, h).
Proof This result can be proved in various ways but here we reconsider

the proof again mainly as a first and simple illustration on how the ef-based
procedure works.
Since only the values y(±h) are accepted, all coefficients in eq.(3.28) are set
to zero except for a01 and a03 which have to be determined. We cover the
above mentioned steps 2-3.
Step 2. Since the number of coefficients to be determined is 2 the same is
the number of the involved successive reduced moments. For brevity reasons
hereinafter the reduced moments will be called simply moments and the
parameter a will be omitted when they are written.
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The first two moments are E0 = 2 − (a01 + a03), E1 = −(−a01 + a03), and
the linear system E0 = E1 = 0 has the solution a01 = a03 = 1. For these
coefficients we have E2 = −4/3 6= 0 such that the error vanishes when y(x)
is a first degree polynomial or, equivalently, when y(x) is any solution of the
simple second order differential equation y′′ = 0, that is L = Dm withm = 2.
As a matter of fact, after the coefficients have been determined a compulsory
practice is to check how many next moments are also vanishing. This is
because in some situations it may happen that this holds true for a number
of such extra moments and therefore the degree of the polynomial may be
higher than the number of coefficients. We will meet such a situation for
version Q3

3.
Step 3. For m = 2 we have:

I(−h, x) = −1
2

(h+ x)2, K0(−h, x) = −(h+ x),

and then

φ0(x) =
1
2

(h+ x)2, φ1(x) = φ0(x) + ha01K0(−h, x) =
1
2

(x2 − h2) .

φ1(x) does not change the sign on (−h, h) (it is negative) and therefore the
error is of one-term Lagrange form (2.20) with

T0 =
∫ h

−h
φ1(x) dx = −2

3
h3 ,

and this completes the proof.
The following theorem covers the three extensions of the trapezium rule:

Theorem 2. The extended trapezium rules and the Lagrange-like expression
of their errors are as follows:
- Version Q2

2 :

Q[y] ≈ h[y(−h) + y(h)] +
1
3
h2[y′(−h)− y′(h)],

E[h,a; y] =
2
45
h5y(4)(η) ; (4.35)

- Version Q2
3 :

Q[y] ≈ h[y(−h) + y(h)]− 1
3
h3[y′′(−h) + y′′(h)],

E[h,a; y] =
4
15
h5y(4)(η) ; (4.36)
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- Version Q2
4 :

Q[y] ≈ h[y(−h) + y(h)] +
2
5
h2[y′(−h)− y′(h)]

+
1
15
h3[y′′(−h) + y′′(h)],

E[h,a; y] = − 2
1575

h7y(6)(η) , (4.37)

for some η ∈ (−h, h). The value of η may vary from one version to another.

Remarks:
1. The coefficients of the rules Q2

2 and Q2
4 are known, [8], but the expressions

of their error are new. The rule Q2
3 is entirely new.

2. One should not remain with the impression that these rules apply only
when the integration limits are −h and h. If these are X − h and X + h the
coefficients are the same. For example, Q2

2 reads:∫ X+h

X−h
y(z)dz ≈ h[y(X − h) + y(X + h)] +

1
3
h2[y′(X − h)− y′(X + h)]

Its error is as in eq.(4.35) but η ∈ (X − h,X + h).
Proof This follows the same pattern as for the previous theorem. However,
hereinafter we treat explicitly only the rule Q2

3 which is really new.
Four parameters have to be determined for this version, namely, a01, a03, a21

and a23, and the first four moments are E0 = 2− (a01 +a03), E1 = −(−a01 +
a03), E2 = 2/3−[a01 +a03 +2(a21 +a23)], E3 = −[−a01 +a03 +6(−a21 +a23)],
see (3.31).
The algebraic system E0 = E1 = E2 = E3 = 0 has the solution

a01 = a03 = 1, a21 = a23 = −1
3
.

With these we get E4 = 32/5 6= 0 and therefore L = Dm with m = 4.
Function φ1(x) is

φ1(x) = −I(−h, x) + ha01K0(−h, x) + h3a21K2(−h, x)

=
1
4!

(h+ x)4 − 1
3!
h(h+ x)3 − 1

3
h3(h+ x) .

Separate investigation shows that this φ1(x) is positive on (−h, h) and
then the error is of form (2.20) with

T0 =
∫ h

−h
φ1(x) dx =

4
15
h5 .

Q. E. D.
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5 Three-point rules

The following theorem exists:

Theorem 3. The set of three-point rules and the Lagrange-like expression
of their errors are as follows:
- Version Q3

1 (standard Simpson rule):

Q[y] ≈ h[y(−h) + 4y(0) + y(h)]/3,

E[h,a; y] = − 1
90
h5y(4)(η) ; (5.38)

- Version Q3
2:

Q[y] ≈ 1
15
h[7y(−h) + 16y(0) + 7y(h)] +

1
15
h2[y′(−h)− y′(h)],

E[h,a; y] =
1

4725
h7y(6)(η) ; (5.39)

- Version Q3
3:

Q[y] ≈ 1
21
h[5y(−h) + 32y(0) + 5y(h)]

− 1
315

h3[y′′(−h)− 32y′′(0) + y′′(h)] ,

E[h,a; y] =
1

396900
h9y(8)(η) ; (5.40)

- Version Q3
4:

Q[y] ≈ 1
105

h[41y(−h) + 128y(0) + 41y(h)] +
2
35
h2[y′(−h)− y′(h)]

+
1

315
h3[y′′(−h) + 16y(0) + y′′(h)],

E[h,a; y] = − 1
130977000

h11y(10)(η) , (5.41)

for some η ∈ (−h, h). The value of η may vary from one version to another.

Remark: the coefficients of the Simpson rule Q3
1 and the expression of its

error can be found in any standard textbook, e.g., [19]. The coefficients of
versions Q3

2 and Q3
4 are also known, [8], but the expressions of their error are

new. The rule Q3
3 is entirely new.
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Proof Technically, this follows the same steps as for the previous theorem
but the volume of calculations is a bit larger. This is due to the fact that
the number of involved moments is bigger, on one hand, and that function
Φ(x) now has two piecewise expressions: φ1(x) and φ2(x). In the following
we give details only on the new version Q3

3.
- Parameters to be determined and their total number N : ak1, ak2, ak3, k =
0, 2, i.e., N = 6 parameters.
- Expressions of the first N moments: E0 = 2 − (a01 + a02 + a03), E1 =
−(−a01 + a03), E2 = 2/3− [a01 + a03 + 2(a21 + a22 + a23)], E3 = −[−a01 +
a03 + 6(−a21 + a23)], E4 = 2/5− [a01 + a03 + 12(a21 + a23)], E5 = −[−a01 +
a03 + 20(−a21 + a23)].
- Solution of the algebraic system En = 0, n = 0, 1, · · · , N − 1: a01 = a03 =
5/21, a02 = 32/21, a21 = a23 = −1/315, a22 = 32/315.
- Extra checks and the value of m: E6 = E7 = 0 but E8 = 32/315 6= 0,
therefore L = Dm with m = 8. (Notice that the extra check was crucial
for this case. Otherwise we might have been tempted to wrongly assign the
value m = 6.)
- Components of function Φ(x):

φ1(x) = −I(−h, x) + ha01K0(−h, x) + h3a21K2(−h, x)

=
1
8!

(h+ x)8 − 5
21 · 7!

h(h+ x)7 +
1

315 · 5!
h3(h+ x)5 ,

φ2(x) = φ1(x) + ha02K0(0, x) + h3a22K2(0, x)

= φ1(x)− 32
21 · 7!

hx7 − 32
315 · 5!

h3x5 .

By separate investigation we find that this Φ(x) is positive on (−h, h) and
then the error is of the form (2.20).
- Value of T0:

T0 =
∫ 0

−h
φ1(x) dx+

∫ h

0
φ2(x) dx =

1
396900

h9 .

Q. E. D.

The results listed above for the quadrature rules Q2 and Q3 allow draw-
ing some conclusions. First, in all cases the error has the one-term Lagrange
form Chm+1ym(η) where C is some constant (called the error constant) and
m is the order of the differential equation Ly = 0. Second, we see that, as
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expected, the accuracy increases with the number of input data in the cor-
responding versions. Thus the three-point versions are more accurate than
their two-point counterparts (compare the orders) and within each of these
two families the order increases with the number of data at each point (one
for Qp

1 versions, two for versions Qp
2 and Qp

3 and three for Qp
4, p = 2, 3).

Third, and this is a new issue, the results allow answering a question of a
different nature: how does the type of data used in versions with the same
number of input data/point influence the accuracy? This is the case of ver-
sions Qp

2 and Qp
3 where the two data are y and y′, and y and y′′, respectively.

For the two-point versions the order is not modified but the error constant
is smaller for Q2

2 and therefore the values of y′ are more helpful in increasing
the accuracy than those of y′′. This is in contrast with the three-point ver-
sions where the use of y′′ is more advantageous because the corresponding
version, that is Q3

3, has a bigger order than Q2
2.

Numerical illustration
We compute the integral

Q =
∫ 1

0
e5x sin 5x dx =

1
10
e5x[sin(5x)− cos(5x)]|10 (5.42)

by all versions of two and three-point rules. We use h = 1/2, 1/4, 1/8, 1/16,
1/32 and 1/64, that is with N = 1, 2, 4, 8, 16 and 32 two-step intervals. Once
the version and h are fixed the integral is computed numerically by that
version on each of the N two-step intervals and the individual results are
summed. Let denote the value computed this way as Qcomput(h). This and
its error, ∆Q(h) = Q−Qcomput(h), depend also on the version, of course.

The error ∆Q(h) behaves as hm because it is the sum of the N individual
errors and N ·hm+1 ∼ hm. As a consequence the ratio of the errors from the
same version at 2h and h, ∆Q(2h)/∆Q(h), should be around 2m. Possible
deviations from this value are due to the influence of the variation of factor
y(m) over four successive intervals of width h. This variation tends to be
less and less important when h→ 0 and therefore that ratio will tend to the
theoretical value in this limit.
We have written a fortran program in double precision and in Table 1 we
give the error ∆Q(h) for the two-point versions. It is seen that, as expected,
the decrease of the error with h becomes faster and faster when the number
of acccepted data is increased. It is also confirmed the fact that the error
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Table 1: Stepwidth dependence of the absolute errors of the results given by
the four versions of rule Q2 for integral (5.42). Notation a(b) means a · 10b.

h Q2
1 Q2

2 Q2
3 Q2

4

1/ 2 0.53(+02) 0.11(+02) 0.14(+03) -0.16(+02)
1/ 4 0.14(+02) 0.30(+01) 0.20(+02) -0.29(+00)
1/ 8 0.29(+01) 0.24(+00) 0.14(+01) -0.35(-02)
1/16 0.67(+00) 0.15(-01) 0.93(-01) -0.50(-04)
1/32 0.17(+00) 0.97(-03) 0.58(-02) -0.76(-06)
1/64 0.41(-01) 0.61(-04) 0.36(-03) -0.12(-07)

Table 2: The same as in Table 1 for the versions of rule Q3. The error
from Q3

4 for h = 1/64 is zero within machine accuracy for double precision
computations (of approximately 16 decimal figures).

h Q3
1 Q3

2 Q3
3 Q3

4

1/ 2 0.52(+00) 0.25(+01) 0.98(-01) 0.14(-01)
1/ 4 -0.70(+00) 0.50(-01) -0.14(-02) 0.18(-04)
1/ 8 -0.59(-01) 0.60(-03) -0.80(-05) 0.13(-07)
1/16 -0.38(-02) 0.83(-05) -0.33(-07) 0.12(-10)
1/32 -0.24(-03) 0.13(-06) -0.13(-09) 0.11(-13)
1/64 -0.15(-04) 0.20(-08) -0.52(-12) 0.00(+00)

decrease is similar for versions Q2
2 and Q2

3 and that for each stepwidth h the
error for the latter is by a factor 6 larger. Table 2 gives the same data for
the three-point versions. The errors decrease faster than for the two-point
formulae and also, as predicted but in contrast to the two-point case, the
errors from Q3

3 are massively better than from Q3
3, especially for small h.

Table 3 collects the ratios ∆Q(2h)/∆Q(h). The theoretical predictions that
these should tend to 4, 16, 16, 64 for Q2 versions, and to 16, 64, 256, 1024 for
Q3 versions when h→ 0 are clearly confirmed.
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Table 3: The ratio ∆Q(2h)/∆Q(h) for various values of the stepwith h.

h Q2
1 Q2

2 Q2
3 Q2

4 Q3
1 Q3

2 Q3
3 Q3

4

1/ 4 3.9 3.5 7.2 54.7 -0.7 51.1 -67.6 742.3
1/ 8 4.7 12.9 13.7 81.8 12.0 83.4 180.3 1361.9
1/16 4.3 15.4 15.6 70.8 15.3 71.6 242.4 1159.7
1/32 4.1 15.9 15.9 65.8 15.8 66.1 253.0 1081.7
1/64 4.0 16.0 16.0 64.5 16.0 64.5 254.0 −
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