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Abstract
The autonomous second order nonlinear ordinary differential equa-

tion (ODE) introduced in 1883 by Lord Rayleigh, is the equation which
appears to be the closest to the ODE of the harmonic oscillator with
dumping.

In this paper we present a numerical study of the periodic and
chaotic attractors in the dynamical system associated with the general-
ized Rayleigh equation. Transition between periodic and quasiperiodic
motion is also studied. Numerical results describe the system dynam-
ics changes (in particular bifurcations), when the forcing frequency is
varied and thus, periodic, quasiperiodic or chaotic behaviour regions
are predicted.
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1 Introduction

The nonautonomous second order nonlinear ODE with time dependent sinu-
soidal forcing term, given by Diener [1979, 1],
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x +ax = g sinωt, (1)
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is a generalisation of the Rayleigh equation
..
x +

.
x
3

3 −
.
x +x = 0 [Diener, 1979,

1]. Here, x : R → R, x = x(t) is the unknown function and the dot over x
stands for the differentiation with respect to t. The control parameters are
ε, a, g (forcing amplitude) and and ω (forcing frequency).

Some aspects concerning šcanardš bifurcations are analyzed in [Diener,
1979, 1] and [Diener, 1979, 2] for the periodically forced generalization of
Rayleigh equation (1). From mathematical perspective the nonautonomous
system of nonlinear ODEs associated with this equation is one of a class of
periodically forced nonlinear oscillators, as the van der Pol (VP) and Bon-
hoeffer van der Pol (BVP) systems are. The behaviour of these systems was
much numerically investigated in [Flaherty and Hoppensteadt, 1978], [Met-
tin et al., 1993] and [Barns and Grimshaw, 1997], due to their applications
in electronics and physiology.

With (1), the two-dimensional non-linear non-autonomous system of ODEs{ .
x1= x2,
.
x2= −a

εx1 + 1
ε

(
x2 −

x3
2
3

)
+ g

ε sinωt,
(2)

and the three-dimensional nonlinear autonomous system
.
x1= x2,
.
x2= −a

εx1 + 1
ε

(
x2 −

x3
2
3

)
+ g

ε sinx3,
.
x3= ωmod2π,

(3)

are associated. A three-dimensional dynamical system with phase space R2×
S1 can be associated with (3). In [Sterpu et al., 2000], for the unforced
case g = 0, the existence of a unique limit cycle for the dynamical system
associated with the system,{ .

x1= x2,
.
x2= −a

εx1 + 1
ε

(
x2 −

x3
2
3

)
,

(4)

for the case a · ε > 0, is proved.
Therefore, the system (3) without periodic forcing (g = 0) exhibits a

natural oscillation and we consider a sinusoidal forcing imposed on it (g 6=
0). Fixing the parameters ε, a, and g, as ω increases away from zero, the
interaction between the frequencies of these two oscillations determines the
resulting dynamics. Periodic as well as chaotic motion may occur.
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Figure 1: Bifurcation diagram for parameters ε=0.1250, a=0.5, g=0.6666
and 2.7045 ≤ ω ≤ 2.9250.

The lack of equilibria and the great number of parameters make the
study of such a system difficult. Numerical methods often provide a useful
and sometimes the only tool for study.

We intend to establish ω intervals for which specific behaviour concerning
the attractors of the system (3) could be expected. By logistic reasons we
investigated a region in the four-dimensional parameter space (ε, a, g, ω)
given by 0 < ε ≤ 1, 0 < a ≤ 1, 0 < g ≤ 1, 2.7045 ≤ ω ≤ 2.9250 in case of
Sec. 3 and 0 < ε ≤ 1, 0 < a ≤ 1, 1 < ω ≤ 3, 0 < g ≤ 2 in case of Sec. 4.

The diagnostics used to establish structural changes of the system (3)
involve representations of solutions in the phase space R2 × S1, time series,
Poincaré sections at intervals of forcing period 2π

ω , bifurcation diagrams with
ω − x2 coordinates, evaluations of the eigenvalues of the linearized Poincaré
map-matrix, evaluations of the Lyapunov exponents. All the numerical com-
putations were carried out through the application of a variable step-size four
order Runge-Kutta method [Băzăvan, 1999]. The 3D-representation uses a
centre projection [Băzăvan, 1994].
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The bifurcation diagram plotted in Fig. 1, for the case ε = 0.1250,
a = 0.5, g = 0.6666 and ω in the interval 2.7045 ≤ ω ≤ 2.9250 shows the
typical system behaviour which will be interpreted in the next sections.

The mathematical model used in our numerical study is presented in Sec.
2. The Sec. 3 is concerned with the numerical study of alternating periodic
and chaotic attractors in the behaviour of the system (3). Numerical results
in Sec. 4 are concerned with the proof of the existence of the quasiperiodic
motion and the study of the transition from quasiperiodic to periodic motion
in the system (3).

2 The mathematical model

In order to present the mathematical model used in the numerical study from
Secs. 3 and 4, we shortly write (3) in the form

.
x= f (x) , (5)

where f is defined on the R2 × S1 cylinder.
We define the Poincaré map as follows. Let

∑
=
{

(x1, x2, x3) ∈ R2 × S1,x3 = 0mod
2π
ω

}
be a surface of section [Băzăvan, 2001], which is transversally crossed by the
orbits of (5). The Poincaré map P :

∑
→
∑

is defined by

P (x0) = x (t,x0) =
∫ 2π

ω

0
f (x (t,x0)) dt, (6)

where x0 ∈
∑

and x(t, x0) is the solution of the Cauchy problem x(0) = x0

for (5). We denote by Pn the n-times iterated map.
Let ξ(t, x0) be a periodic solution of (5) with period T = n · 2π

ω , lying on
a closed orbit and consider the map P of the initial point x0. Then, to this
closed orbit an n-periodic orbit of P corresponds. Numerically, the period T
(i.e. n from the expression of T ) can be determined by integrating Eq. (5)
with the initial condition x0 and sampling the orbit points xk = P (xk−1),
k ≥ 1 at discrete times tk = k · 2πω , until P k(x0) = x0. Then, n = k [Băzăvan,
2001].
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The stability discussion of the periodic orbit ξ(t, x0) is reduced to the
stability discussion of the fixed point x0 of Pn, i.e. Pn(x0) = x0. The linear
stability of the n-periodic orbit of P is determined from the linearized-map
matrix DPn of Pn. Using the Floqet theory [Reithmeier, 1991], [Glendin-
ning, 1995] the matrix DPn of Pn can be obtained by integrating the lin-
earized system (5) for a small perturbation y ∈ R2×S1. The time history of
the initial perturbation y(0) = y0 is described by the linearized ODE around
the periodic solution ξ.

The stability of the periodic solution ξ(t, x0) is determined by the eigen-
values of the matrixDPn [Reithmeier, 1991], [Glendinning, 1995], [Kuznetsov,
1998]. We note that one of the eigenvalues of this matrix always equals 1
[Glendinning, 1995], and that the remained two eigenvalues, also called the
Poincaré map multipliers, influence the stability. We denote these eigenvalues
by λ1 and λ2.

Figure 2: The largest Lyapunov exponent for (3), for parameter values
ε=0.1250, a=0.5, g=0.6666 and 2.7045 ≤ ω ≤ 2.9250.

3 Periodic and chaotic attractors

In this section, by varying the parameter ω and keeping constant ε, a and g
we study bifurcations associated with changes of stability in the periodically
forced Rayleigh system (3).
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The multipliers of the Poincaré map Pn, computed for ε = 0.1250, a =
0.5, g = 0.6666 and various ω values in the interval 2.7045 ≤ ω ≤ 2.9250,
give information about the stability changes of an n-periodic orbit of (3) for
which the map P is associated (see Sec. 2). Thus, the periodic orbit is
stable only if |λ1,2| < 1, [Reithmeier, 1991], [Glendinning, 1995], [Kuznetsov,
1998]. If, for a critical ω value, the multipliers satisfy λ1 = −1, −1 < λ2 < 0,
[Reithmeier, 1991], [Glendinning, 1995], [Kuznetsov, 1998], the periodic orbit
loses its stability through a period-doubling bifurcation. The motion becomes
chaotic if, monotonically increasing ω, for sufficiently values, this process
is repeated. This period doubling sequence leading to a chaotic state was
reported in [Mettin, et al., 1993], [Barnes and Grimshaw, 1997] and [Sang-
Yoon and Bumbi, 1998] for VP and BVP oscillators and inverted pendulum
respectively. We also note that the reverse process can occur for the case of
an unstable orbit. That is, when a multiplier λ of an unstable orbit increases
through −1 the orbit becomes stable via period-doubling bifurcations.

Figure 3: Bifurcation diagram for parameter values ε=0.1250, a=0.5,
g=0.6666 and 2.7045 ≤ ω ≤ 2.7120.



14 Petre Băzăvan

As Fig. 1 shows, the system (3) exhibits the mentioned period-doubling
sequences. Obvious chaotic regions interrupt periodic windows and then,
chaotic attractors replace periodic attractors due to a destabilisation process
through a period-doubling sequence. The reverse process, the stabilisation
one, determines that periodic attractors replace chaotic attractors [Băzăvan,
2001].

Figure 4: Closedtrajectories, time series andPoincaré sections for system(3).

In order to ascertain these alternating regular and chaotic regions, the
largest Lyapunov exponent measuring the convergence or divergence of neigh-
bouring trajectories [Ott, 1993], [Barnes and Grimshaw, 1997] was plotted
in Fig. 2 for the same parameter values as in Fig. 1. Negative values of
this exponent correspond to periodic windows and positive values to chaotic
regions.
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In Fig. 3, which is a magnification of the bifurcation diagram in Fig.
1, for 2.7045 ≤ ω ≤ 2.7120, the typical route to chaotic state through a
period-doubling sequence is more clearly seen. For 2.7045 ≤ ω < 2.7083 two
period-3 attractors are present.

Figure 5: The points Xn+5 = P 5 (Xn) for parameter values (a) ω=2.7225,
(b) ω=2.7230, (c) ω=2.7235, (d) ω=2.7240.

The simultaneous presence of two attractors and the "jump" of the trajec-
tories from one attractor to the other are characteristic to this system. Phase
space with one of these period-3 solutions is represented on an invariant torus
in Fig. 4a for ω = 2.7045. For the solution in Fig. 4a, corresponding time
series and Poincaré section with the three intersecting points are plotted in
Figs. 4b-c. At ω ≈ 2.7083 the function curves split and the two solutions
double their period as shows Fig. 3. The doubled periodic orbit, correspond-
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ing to those from Fig. 4a, is represented in Fig. 4d for ω = 2.7090. From
the time series and the Poincaré section, plotted in Figs. 4e-f, the period six
of the limit cycle is obvious.

The first period-doubling bifurcation at ω ≈ 2.7083 is followed by many
subsequent period-doubling bifurcations. The length of the intervals of ω
between these bifurcations decreases. Using magnifications of bifurcation
diagram in Fig. 3, smaller ω step (i.e. 10−6 ) and computing the λ1,2 multi-
pliers, for this period-doubling cascade the first five terms of the Feigenbaum
progression ωi−ωi−1

ωi+1−ωi , [Kuznetsov, 1998], were estimated : 5.25, 5.18, 4.95,
4.81 and 4.72 [Băzăvan, 2001]. The convergence to the universal constant
4.6692 of this decreasing sequence is followed.

For 2.7106 < ω < 2.7240 the behaviour of the system is chaotic. The
chaotic attractor, corresponding time series and Poincaré section are repre-
sented in Figs. 4g-i for ω = 2.7120. At this ω value the largest Lyapunov
exponent was computed to be 0.1812 [Băzăvan, 2001] providing the chaotic
state of the system. As Fig. 1 shows, for ω ≈ 2.7240, the chaotic attractor
is replaced by a period-5 attractor.

In order to illustrate this change from a chaotic attractor to a periodic
attractor, the sequences of x2 coordinates of the points Xn+5 = P 5 (Xn)
are plotted in Figs. 5a-d [Băzăvan, 2001]. For ω = 2.7225 the diagonal
xn+5

2 = xn2 is intersected in three separate locations. Here xn2 represents
the x2 coordinate of the point Xn. A channel between the diagonal and
the return map curve is observed. As ω increases, the return map curve
approaches the diagonal and at ω = 2.7240 it is tangent in five distinct
locations. A saddle-node bifurcation is encountered. The chaotic attractor
is abruptly destroyed and replaced by a period-5 attractor. Note that, as the
ω parameter increases, the density of the return points grows in the regions
of the future attractor and diminishes in the other ones. This measure of
the return points changes continuously with the continuous variation in the
control parameter.

4 Transition between periodic and
quasiperiodic motion

The dynamical system associated with (3) involves the interaction between
two periodic motions, each with a different frequency. When the ratio of the
frequencies is irrational the dynamical system behaves in a manner which is
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Figure 6: Bifurcation diagram for the dynamical system (3).

neither periodic or chaotic. This motion is called quasiperiodic. More pre-
cisely, the natural periodic motion, studied in [16] for the unforced case is
modulated by a second periodic motion given by the sinusoidal term when
g > 0. The system behaves in a manner with the motion never quite re-
peating any previous motion. This behaviour is generically followed by the
system locking into a periodic motion, as the control parameter for the sys-
tem is varied [18].

In our numerical study we investigated the region

ε = 0.125, a = 0.5, ω = 2.84, 0 < g ≤ 0.75. (7)

An overview of the numerical results which typify the system is given by
the bifurcation diagram in Fig. 6.
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Figure 7: The first Lyapunov exponent for the dynamical system (3).

In the first part of the subinterval 0 < g < 0.3 we observe an apparent
regularity of the return points. This region which can indicate a quasiperiodic
or chaotic behaviour is followed by a region with clear periodic motion. This
last region is interrupted by short chaotic regions. We prove the existence of
the quasiperiodic behaviour in two ways.

The first argument is the first Lyapunov exponent value. Recall that a
leading Lyapunov exponent of zero verifies quasiperiodic behaviour [18].

Figure 7 is a graph of the control parameter (the forcing amplitude g)
against the first Lyapunov exponent for the same parameter range as the
bifurcation diagram of Fig. 6. In the interval 0 < g < 0.3 the exponent was
consistently within −0.01 of 0. This is the first numerical confirmation of
the quasiperiodic behaviour.

The intersection points of the trajectories of the system (3) with the
associated Poincaré section represent the second argument. At g1 = 0.07 the
section is represented in the Figure 8a.

The drift ring is associated with quasiperiodic motion. Integrating with
a large period, the curve does not modify the shape. The fact that the
points are situated on a closed curve and the constant shape related to the
integration time confirm the quasiperiodic behaviour [18].

In proportion as g increases in the interval 0 < g < 0.3 the return points
remain on the same curve but the density increases markedly in some loca-
tions (Fig. 8b for g2 = 0.25). At g3 = 0.3 there are only three intersection
points in the Poincaré section (Fig. 8c) and on the bifurcation diagram the
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Figure 8: Poincaré sections for the dynamical system (3).

quasiperiodic region is replaced by a periodic window. The motion changes
from quasiperiodic to periodic, with the emergence of a period-3 attractor.
This is due to the saddle-node bifurcation of the Poincaré map P 3,

xn+3 = P 3 (xn) , x0 ∈ R2 × S1, n ≥ 0.

We numerically prove this fact. We use the projection of the graph of P 3

on the plane (yn, yn+3), n ≥ 0, where we denote by y the x2 coordinate of
the point x ∈ R2 × S1.

In Figure 9a for g4 = 0.07, when the motion is quasiperiodic, there are
two intersection points of P 3 with the diagonal yn = yn+3. At the intersection
the magnitude of the slope not equals 1. As g increases the curve approaches
the diagonal in other locations (Fig. 9b for g5 = 0.28). These locations
suggest the imminent tangential intersections. At g6 = 0.2961 there are three
tangential intersections (Fig. 9c) and we have a saddle-node bifurcation of
the map P 3. When g7 = 0.3 (Fig. 9d) the graph of the map P 3 is a single
point which is situated on the diagonal. This fact confirms the existence of
the period-3 attractor.
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Figure 9: The Poincaré map P 3 associated with the dynamical system (3).

Conclusions

The numerical study in this paper shows that the periodically forced Rayleigh
system possesses a lot of phenomena encountered in many other nonlinear
systems. Some of them as period-doubling and saddle-node bifurcations, al-
ternating periodic and chaotic attractors, alternating periodic and quasiperi-
odic motion, simultaneous presence of more than one periodic attractors were
outlined here.
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