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Abstract

Since the classical asymptotic theorems of Voronovskaya-type for
positive and linear operators are in fact based on the Taylor’s formula
which is a very particular case of Lagrange-Hermite interpolation for-
mula, in the recent paper Gal [3], I have obtained semi-discrete quanti-
tative Voronovskaya-type theorems based on other Lagrange-Hermite
interpolation formulas, like Lagrange interpolation on two and three
simple knots and Hermite interpolation on two knots, one simple and
the other one double. In the present paper we obtain a semi-discrete
quantitative Voronovskaya-type theorem based on Lagrange interpola-
tion on arbitrary p + 1 simple distinct knots.
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1 Introduction

Let us consider the well-known Bernstein polynomials defined by B,,(f)(z) =
ZZ:Opn,k(x)f (%)7 with pn,k(x) = (Z)l‘k(l - x)n—k’ [ € C[Ov 1]7 S [0> 1]a
n € N.

One of the most important result in approximation theory is the asymp-
totic Voronovskaya’s result on Bernstein polynomials obtained in [14] (see
also, e.g., the book of Lorentz [9], formula (1), p. 22) :

Theorem 1.1. If f € C?[0,1], then

lim n[B,(f)(z) — f(z)] = ol —a), f (@),

n—oo 2
uniformly on [0,1]. Here CP[0,1] denotes the space of all real functions
having a continuous derivative of order p € NU {0} on [0, 1].
In [1] (see also, e.g., the book of Lorentz [9], formula (4), p. 23), Bernstein
gave the following generalization :
Theorem 1.2. Ifp € N is even and f € CP[0,1], then

P (") (5
f&ﬂ”@mnuw}:aw—mmmf ”):a

r!
r=0

uniformly on [0, 1].

This result was proved for all p € N by Gavrea and Ivan [4] and Tachev
[12].

In [10], Mamedov extended Theorem 1.2 to positive linear operators, as
follows.

Theorem 1.3. Suppose that p € N is even, f € CP[0,1] and let L, :
C[0,1] — CI0,1], n € N, be a sequence of positive linear operators preserving
the constants and satisfying

Lu((- = 2P 2)() = o(La((- — 2)?)(@)), as n - ox,

for some z € [0,1] and for at least one integer j > 0.
Then, denoting

we have
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Here a,, = o(b,) means that there exists ¢, — 0 such that a, = ¢,b,, n € N.

A complete asymptotic expansion in a quantitative form in Theorem 1.3
was already given some 40 years ago by Sikkema-van der Meer [11].

The first quantitative estimates in Theorem 1.1 were obtained for f €
C3[0,1] by Ditzian-Ivanov in [2], for f € C%4[0,1] by Gonska-Rasa in [8],
pointwise estimates in terms of the modulus of continuity by Videnskij in
[13], p. 19, Theorem 15.2 and in terms of the least concave majorant by
Gonska-Pitul-Rasa in [7].

Also, quantitative estimates in Theorem 1.2 were obtained in terms of
the least concave majorant and a K-functional by Theorem 3.2 in Gonska
[6] and by Gavrea-Ivan in [5].

A general characteristic of all the above results is that their proofs are
based on the Taylor’s formula with remainder. But because the Taylor’s
formula is nothing else that a particular Lagrange-Hermite interpolation
formula with only one multiple knot, it is natural to seek for asymptotic for-
mulas based on Lagrange-Hermite interpolation formula with several simple
or multiple knots.

In the recent paper Gal [3], I have obtained semi-discrete quantitative
Voronovskaya-type theorems based on other Lagrange-Hermite interpola-
tion formulas, like Lagrange interpolation on 2 and 3 simple knots and Her-
mite interpolation on two knots, one simple and the other one double. In
the present paper we obtain a semi-discrete quantitative Voronovskaya-type
theorem based on Lagrange interpolation on arbitrary p € N simple knots.

Section 2 contains some preliminaries on Lagrange interpolation. In
Section 3 we obtain a semi-discrete quantitative Voronovskaya-type theorem
based on Lagrange interpolation on arbitrary p + 1 simple knots.

2 Preliminaries on Lagrange interpolation

Let us consider the Lagrange interpolation formula on p + 1 simple dis-

tinct knots yo, Y1, y2, ..., Yp, i.e. f(t) = Hp(f)(t) + Rp(f, o, ..., yp)(t), with
H,(f)(t) written in the Newton’s form

Hp(t) = f(yo) +

J

P
(t—yo) - (t —yj—1) Yo, - y53 f1,

=1

with [yo, ..., y;; f] the divided difference of f on the knots yo, ..., y; and with

the remainder Ry(f,yo,...,yp)(t) = (t —yo) - ... - (t — yp) - %, with &
belonging to the convex hull of the points ¢, yo, ..., yp.
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Denoting above yg := x, we can write

P

Hy(t) = f()+(t—2),y1; [+ Y _(E=2)(E—yn) oo (E=yi-1)[2, 91, 553 £,

j=2
with the remainder

()

Ry(£)tz,y1,syp) =t =)t —y1) oo (E—yp) p

)

where

p
€ — 2| < max{|t — |, [y1 — @, e, lyp — 2} < [t =]+ D |y; — al.
j=1

3 Main results

In this section we obtain a general semi-discrete quantitative Voronosvkaya-
type theorem for positive linear operators based on Lagrange interpolation
on an arbitrary number of knots.

Denoting by w(f;0) = sup{|f(u) — f(v)|[;u,v € [0,1],|u — v| < §} the
modulus of continuity, we can state the following result.

Theorem 3.1. Suppose thatp € N, f € CPT10,1] and let L,, : C[0,1] —
C[0,1], n € N, be a sequence of positive linear operators preserving the
constants. For all n € N and all distinct knots ,y....,yp € [0, 1] we have

[ Ln(F)(2) = f(2) = La((ex — 2))(2) - [z, 915 f]

- ZLn((el - x)Hi;ll(el - yk))(x) ' [.CE, Y1y -5 Yjs f]
j=2
(p+1) (o
- Lu((er =1 — ) o) L)

_2Ln(ler — 2| T yfer — g5 ()
- (p+1)!

Lo((er —2)® - I7_Jes —yi)(@) &
(x) +j§::1\yg $|

f(p+1);
Ly(ler — 2| - I7_  ler — y;])
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Proof. For all t,y; € [0,1], j =1,...,p, we can write

@) = Hp(S) O] =f () = f2) = (t =) - [2,91; f]

(t—2)(t—y1) o (= yj—1) - (2,91, 0, Y55 ]

M-

j=2
FErD ()
3! |

[F7D(E) = Fo) ()]

—(t —2)I_ (t — y;)
:|t — x| -Hé’:l\t — 5l
(p+1)!

4 . _ D R
St—acl.szllt—zv/glw(ﬁf(pﬂ);é.t ol + 30 Iy :cl)

(p+1)! g
t— | TP |t — v, t—a|+ >0 |y —=x
S‘ $|( _i_11)|| yjl [1+| | 2253—1 [v; ‘] .w(f(zﬂrl);(;).
p .

Applying L, to the above inequality, we immediately obtain

| Ln(f)(2) = f(z) = La((ex — 2))(2) - [2,51; f]

p

- Z Ln((el - J?)Hi;ll(el - yk))($) ’ ['1‘7 Y1, -5 Yjs f]
j=2
, FPD
- La(fer =)y e~ y))) - L)

ler — x|+ 370 |y; — ]
<L, (\61 — | 'H§=1‘el 1) [1 + 5; 11Yj (2)

(pi o Cw (f(p+1);5)

- [Ln(\el — x| - T_, [er — ;) (2)

Ln (Jev = al - T Jex =yl - [lex — 2l + X2_, Iy, — o] <x>]

+

o

m Cw (f(p+1);5) (z).
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Choosing here

n (Jer = al - T2_Jer =yl - [lex — 2l + 22, |y — 2] ) (@)

Ly(lex — :vl (I |€1 —yi (@)

Ln((er —x)? - II)_; Jer — Zp:
a Ln(]el—x]-l'[ 1‘61_3/1 -
we easily arrive at the desired formula. ]

Remark 3.2. Notice that for y; — z forall j =1, ..., p, since [z, y1; f] —

1! (
f/(.'ll'), ['I7y17y2;f] - fQ(]I)7 [x7y17y27'”7yj;f] A (I) and so one, it is easy
to see that the formula in Theorem 3 becomes the following asymptotic
quantitative Voronovskaya-type theorem

= o
L(f)(@) = £@) = 3 Lul(er = a)(a) - T2
j=1

Lofler =2l )(@) | ( ey, Lnller = 27) ()
b+ 1) (f (e — a:|p+1><x>) ’

recapturing thus the general Theorem 3.2 in Gonska [6].

For p = 2 we recapture the left-hand side in Theorem 3.3 and Remark
3.4 in Gal [3], but with different estimates on the right-hand side.

The above Theorem 3.1 and Remark 3.2 are applicable, for example, to
the classical Bernstein polynomials considered at the beginning of Introduc-
tion.

Remark 3.3. Applying Theorem 3.1 to Bernstein polynomials, we get
the following semi-discrete quantitative Voronovskaya-type formula

Bn(f ZBn 61_3j k 11(61_yk))( ) [xvylamayj;.ﬂ
j=2
(p+1) (4
- Bal(er =M1 — ) (o) - L
By (ler — x| - ITE_|e1 — y;])(2)
- (p+1)!
By((er —)? - II_ 1\61 il)(x)

(p+1).
f ) Bn(’el —JI’ H 1‘61 I‘) +Z‘y] )
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since By((e1 — 2))(z) = 0. Also, since the moments of Bernstein polyno-
mials By ((e1 — z)?)(z), j = 0,1,2,3, ..., can be explicitly calculated (see,
e.g., Lorentz [9], page 4 where B, (1)(x) = 1, B,(e; — x)(z) = 0, By((e1 —
2))(z) = =2 B (e — 2)3)(z) = & W“ (1=22)2(1=%) "4 one), and since, for

example we get

)(e1 = )*)(2) = Bu((e1 — z)
)((e1 —z)* + 2(16 —y)ler -z
— )’ (

el —x)
z(l—z)

e1 —x)®)(z) +2(x —y) - -

:x(ln ) <1_2m +2($—y)>,

n

so one, it follows that for various values of p we can obtain explicit formulas
in Theorem 3.1 for Bernstein polyomials.
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