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Abstract

In this note, we study the optimal control of a nonisothermal phase
field system of Cahn–Hilliard type that constitutes an extension of the
classical Caginalp model for nonisothermal phase transitions with a
conserved order parameter. It couples a Cahn–Hilliard type equation
with source term for the order parameter with the universal balance
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law of internal energy. In place of the standard Fourier form, the con-
stitutive law of the heat flux is assumed in the form given by the theory
developed by Green and Naghdi, which accounts for a possible thermal
memory of the evolution. This has the consequence that the balance
law of internal energy becomes a second-order in time equation for
the thermal displacement or freezing index, that is, a primitive with
respect to time of the temperature. Another particular feature of our
system is the presence of the source term in the equation for the order
parameter, which entails further mathematical difficulties because the
mass conservation of the order parameter is no longer satisfied. In this
paper, we study the case that the double-well potential driving the
evolution of the phase transition is given by the nondifferentiable dou-
ble obstacle potential, thereby complementing recent results obtained
for the differentiable cases of regular and logarithmic potentials. Be-
sides existence results, we derive first-order necessary optimality condi-
tions for the control problem. The analysis is carried out by employing
the so-called deep quench approximation in which the nondifferentiable
double obstacle potential is approximated by a family of potentials of
logarithmic structure for which meaningful first-order necessary opti-
mality conditions in terms of suitable adjoint systems and variational
inequalities are available. Since the results for the logarithmic poten-
tials crucially depend on the validity of the so-called strict separation
property which is only available in the spatially two-dimensional situ-
ation, our whole analysis is restricted to the two-dimensional case.

MSC: 35K20, 35K55, 49J50, 49J52, 49K20.

keywords: Optimal control, nonisothermal Cahn–Hilliard equation,
thermal memory, Cahn–Hilliard equation with source term, Cahn–Hilliard–
Oono equation.

1 Introduction

Let Ω ⊂ R2 be some open, bounded, and connected set having a smooth
boundary Γ := ∂Ω and the outward unit normal field n. Denoting by ∂n
the directional derivative in the direction of n, and putting, with a fixed
final time T > 0,

Qt := Ω× (0, t) and Σt := Γ× (0, t) for t ∈ (0, T ], Q := QT , Σ := ΣT ,
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we study in this paper as state system the following initial-boundary value
problem:

∂tϕ−∆µ+ γϕ = f in Q, (1)

µ = −∆ϕ+ ξ + F ′(ϕ) + a− b∂tw, ξ ∈ ∂I[−1,1](ϕ), in Q, (2)

∂ttw −∆(κ1∂tw + κ2w) + λ∂tϕ = u in Q, (3)

∂nϕ = ∂nµ = ∂n(κ1∂tw + κ2w) = 0 on Σ, (4)

ϕ(0) = ϕ0, w(0) = w0, ∂tw(0) = w1, in Ω. (5)

The cost functional under consideration is given by

J ((ϕ,w), u) :=
β1

2

∫
Q
|ϕ− ϕQ|2 +

β2

2

∫
Ω
|ϕ(T )− ϕΩ|2

+
β3

2

∫
Q
|w − wQ|2 +

β4

2

∫
Ω
|w(T )− wΩ|2

+
β5

2

∫
Q
|∂tw − w′Q|2 +

β6

2

∫
Ω
|∂tw(T )− w′Ω|2 +

ν

2

∫
Q
|u|2, (6)

with nonnegative constants βi, 1 ≤ i ≤ 6, and ν, which are not all zero, and
where ϕΩ, wΩ, w

′
Ω ∈ L2(Ω) and ϕQ, wQ, w

′
Q ∈ L2(Q) denote given target

functions.
For the distributed control variable u, we choose as control space

U := L∞(Q), (7)

and the related set of admissible controls is given by

Uad :=
{
u ∈ U : umin ≤ u ≤ umax a.e. in Q

}
, (8)

where we generally assume throughout the paper that

umin, umax ∈ L∞(Q) and umin ≤ umax a.e. in Q. (9)

In particular, Uad is bounded in L∞(Q).
In summary, the control problem under investigation can be reformulated

as follows:

(P) minu∈Uad J ((ϕ,w), u) subject to the constraint that (ϕ, µ, ξ, w) solves
the state system (1)–(5).

Let us now spend some comments on the state system (1)–(5), which is
a formal extension of the nonisothermal Cahn–Hilliard system introduced
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by Caginalp in [3] to model the phenomenon of nonisothermal phase segre-
gation in binary mixtures (see also [2, 4] and the derivation in [1, Ex. 4.4.2,
(4.44), (4.46)]); it corresponds to the Allen–Cahn counterpart analyzed in
[18]. The unknowns in the state system have the following physical meaning:
ϕ is a normalized difference between the volume fractions of pure phases in
the binary mixture (the dimensionless order parameter of the phase trans-
formation, which should attain its values in the physical interval [−1, 1],
where the extremes represent the pure phases of the mixture), µ is the as-
sociated chemical potential, and w is the so-called thermal displacement (or
freezing index), which is directly connected to the temperature ϑ (which in
the case of the Caginalp model is actually a temperature difference) through
the relation

w(·, t) = w0 +

∫ t

0
ϑ(·, s) ds, t ∈ [0, T ]. (10)

Moreover, κ1 and κ2 in (3) stand for prescribed positive coefficients related
to the heat flux, which is here assumed in the Green–Naghdi form (see [21,
22, 23, 24])

q = −κ1∇(∂tw)− κ2∇w, (11)

which accounts for a possible previous thermal history of the phenomenon.
Moreover, γ is a positive physical constant related to the intensity of the
mass absorption/production of the source, where the source term in (1) is
S := f−γϕ. This term reflects the fact that the system may not be isolated
and a loss or production of mass is possible, which happens, e.g., in numerous
liquid-liquid phase segregation problems that arise in cell biology [19] and
in tumor growth models [20]. Notice that the presence of the source term
entails that the property of mass conservation of the order parameter is no
longer valid; in fact, from (1) it directly follows that the mass balance has
the form

d

dt

( 1

|Ω|

∫
Ω
ϕ(t)

)
=

1

|Ω|

∫
Ω
S(t), for a.e. t ∈ (0, T ), (12)

where |Ω| denotes the Lebesgue measure of Ω.
In addition to the quantities already introduced, λ stands for the la-

tent heat of the phase transformation, a, b are physical constants, and the
control variable u is a distributed heat source/sink. Besides, ϕ0, w0, and
w1 indicate some given initial values. Moreover, the function F , whose
derivative appears in (2), is assumed to be concave, typically of the form
F (r) = c1 − c2r

2 with c1 ∈ R, c2 > 0, while ∂I[−1,1] denotes the subdiffer-
ential of the indicator function I[−1,1] of the real interval [−1, 1], which is
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given by

I[−1,1](r) = 0 if |r| ≤ 1 and I[−1,1](r) = +∞ if |r| > 1 . (13)

The potential
F2obs(r) = I[−1,1](r) + F (r), (14)

with F given as above, is then the typical double obstacle potential.
The state system (1)–(5) was recently analyzed in [9] concerning well-

posedness and regularity (see the results cited below in Section 2); in [10]
the corresponding optimal control problem (P) has been analyzed for the
simpler differentiable case when the indicator function I[−1,1] occurring in
(2) is replaced by either a regular function or by a logarithmic expression of
the form

hα(r) := αh(r), (15)

with α > 0, where

h(r) =


(1 + r) ln(1 + r) + (1− r) ln(1− r) if |r| < 1
2 ln(2) if r ∈ {−1, 1}
+∞ if |r| > 1

. (16)

Clearly, in this case the subdifferential inclusion (2) has to be replaced by
the equation

µ = −∆ϕ+ h′α(ϕ) + F ′(ϕ) + a− b∂tw . (17)

For such logarithmic nonlinearities, in [10] results concerning existence of
optimal controls, Fréchet differentiability of the control-to-state operator,
and meaningful first-order necessary optimality conditions (in terms of the
associated adjoint state problem and variational inequality) have been de-
rived, at least in the spatially two-dimensional situation. In this paper, we
complement the results of [10] by investigating the optimal control prob-
lem for the nondifferentiable double obstacle case. While the existence of
optimal controls is not too difficult to show, the derivation of first-order
necessary optimality conditions is a much more challenging task, since the
existence of appropriate Lagrange multipliers cannot be derived from the
standard theory. We therefore employ the so-called deep quench approxi-
mation, which has been successfully applied in a number of Allen–Cahn or
Cahn–Hilliard systems (see, e.g., [6, 8, 12, 14, 15, 16, 17, 25]). The general
strategy of this approach is the following. At first, we observe the following
facts: it is readily seen that

lim
α↘0

hα(r) = I[−1,1](r) ∀ r ∈ R. (18)
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Moreover, h′(r) = ln(1+r
1−r ) and h′′(r) = 2

1−r2 , and thus

lim
α↘0

h′α(r) = 0 for all r ∈ (−1, 1),

lim
α↘0

(
lim
r↘−1

h′α(r)
)

= −∞, lim
α↘0

(
lim
r↗1

h′α(r)
)

= +∞. (19)

Hence, we may regard the graphs of the single-valued α-dependent functions
h′α over the interval (−1, 1) as approximations to the graph of the subdif-
ferential ∂I[−1,1] from the interior of (−1, 1) (in contrast to the exterior
approximation obtained via the Moreau–Yosida approach).

In view of the convergence properties (18) and (19), it is to be expected
that the solutions to the approximating system (1), (17), (3)–(5) converge
in a suitable topology to the solution of the state system (1)–(5) as α↘ 0,
and a similar behavior ought to be true for the corresponding minimizers of
the associated optimal control problems. It is then hoped that it is possible
to pass to the limit as α ↘ 0 in the first-order necessary optimality condi-
tions for the approximating control problems in order to establish first-order
conditions also for the double obstacle case. It turns out that this general
strategy works with suitable modifications. Let us stress at this point that
our approach makes use of the results obtained for the logarithmic case in-
vestigated in [10]; since in that case the derivation of differentiability prop-
erties of the associated control-to-state operator was only possible under the
premise that the order parameter ϕ satisfies the so-called strict separation
property (meaning that ϕ attains its values in a compact subset of (−1, 1)),
and since this property could only be shown in the spatially two-dimensional
case, our analysis does not apply to three-dimensional domains Ω.

The plan of the paper is as follows. The next section is devoted to collect
previous results concerning the well-posedness of the state system. Then,
in Section 3 and Section 4, we investigate the convergence properties of the
deep quench approximations and of the associated optimal controls. The
final section brings the derivation of first-order necessary conditions of op-
timality for the problem (P) by employing the strategy explained above.

Prior to this, let us fix some notation. For any Banach space X, we
denote by ‖ · ‖X , X∗, and 〈 · , · 〉X , the corresponding norm, its dual space,
and the related duality pairing between X∗ and X. For two Banach spaces
X and Y that are both continuously embedded in some topological vector
space Z, we introduce the linear space X ∩ Y , which becomes a Banach
space when equipped with its natural norm ‖v‖X∩Y := ‖v‖X + ‖v‖Y , for
v ∈ X∩Y . A special notation is used for the standard Lebesgue and Sobolev
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spaces defined on Ω. For every 1 ≤ p ≤ ∞ and k ≥ 0, they are denoted
by Lp(Ω) and W k,p(Ω), with the associated norms ‖ · ‖Lp(Ω) = ‖ · ‖p and
‖ · ‖Wk,p(Ω), respectively. If p = 2, they become Hilbert spaces, and we

employ the standard convention Hk(Ω) := W k,2(Ω). For convenience, we
also set

H := L2(Ω), V := H1(Ω), W := {v ∈ H2(Ω) : ∂nv = 0 on Γ}.

For simplicity, we use the symbol ‖ · ‖ for the norm in H and in any power
thereof, and we denote by ( · , · ) and 〈 · , ·〉 the inner product in H and the
dual pairing between V ∗ and V . Observe that the embeddings W ⊂ V ⊂
H ⊂ V ∗ are dense and compact. As usual, H is identified with a subspace
of V ∗ to have the Hilbert triplet (V,H, V ∗) along with the identity

〈u, v〉 = (u, v) for every u ∈ H and v ∈ V .

Next, for a generic element v ∈ V ∗, we define its generalized mean value
v by

v :=
1

|Ω|
〈v,1〉, (20)

where 1 stands for the constant function that takes the value 1 in Ω. It is
clear that v reduces to the usual mean value if v ∈ H. The same notation v
is employed also if v is a time-dependent function.

To conclude, for normed spaces X and v ∈ L1(0, T ;X), we define the
convolution products

(1 ∗ v)(t) :=

∫ t

0
v(s) ds, (1~ v)(t) :=

∫ T

t
v(s) ds, t ∈ [0, T ]. (21)

2 General assumptions and the state system

For the remainder of this paper, we make the following general assumptions
besides (8) and (9).

(A1) The structural constants γ, a, b, κ1, κ2, and λ are positive.

(A2) It holds F ∈ C3(R), and F ′ is Lipschitz continuous on R.

(A3) f ∈ H1(0, T ;H) ∩ L∞(Q), w0 ∈ V , w1 ∈W .
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(A4) ϕ0 ∈ H4(Ω) ∩W satisfies ∆ϕ0 ∈ W , and, with ρ := 1
γ ‖f‖L∞(Q), we

assume that all of the quantities

inf
x∈Ω

ϕ0(x), sup
x∈Ω

ϕ0(x), −ρ− (ϕ0)− , ρ+ (ϕ0)+

belong to the interior of (−1, 1), where (·)+ and (·)− denote the positive
and negative part functions, respectively.

The analysis of the systems (1)–(5) and (1), (17), (3)–(5) has been the
subject of investigation in [9]. As a special case of [9, Thm. 2.2], we have
the following result for the initial-boundary value problem (1)–(5).

Theorem 1 Suppose that (8), (9) and (A1)–(A4) are fulfilled. Then the
state system (1)–(5) has for every u ∈ Uad a weak solution (ϕ, µ, ξ, w) in the
following sense: it holds

ϕ ∈ H1(0, T ;V ) ∩ L∞(0, T ;W ) ∩ L∞(0, T ;W 2,σ(Ω)), (22)

µ ∈ L∞(0, T ;V ), (23)

ξ ∈ L∞(0, T ;H) ∩ L∞(0, T ;Lσ(Ω)), (24)

w ∈ H2(0, T ;H) ∩W 1,∞(0, T ;V ), (25)

where σ is arbitrary in (2,∞), and we have the variational identities∫
Ω
∂tϕv +

∫
Ω
∇µ · ∇v + γ

∫
Ω
ϕv =

∫
Ω
fv

for every v ∈ V and a.e. t ∈ (0, T ) , (26)∫
Ω
µv =

∫
Ω
∇ϕ · ∇v +

∫
Ω
ξv +

∫
Ω

(F ′(ϕ) + a− b∂tw)v for every v ∈ V

and a.e. t ∈ (0, T ) , with ξ ∈ ∂I[−1,1](ϕ) a.e. in Q , (27)∫
Ω
∂ttw v +

∫
Ω
∇(κ1∂tw + κ2w) · ∇v + λ

∫
Ω
∂tϕv =

∫
Ω
uv

for every v ∈ V and a.e. t ∈ (0, T ) , (28)

ϕ(0) = ϕ0, w(0) = w0, ∂tw(0) = w1 . (29)

Moreover, the solution components ϕ and w are uniquely determined, that
is, whenever (ϕi, µi, ξi, wi), i = 1, 2, are two such solutions, then ϕ1 = ϕ2

and w1 = w2.

Remark 1 By continuous embedding, we have ϕ,w, ∂tw ∈ C0([0, T ];H) so
that the evaluations ϕ(0), w(0), ∂tw(0) and ϕ(T ), w(T ), ∂tw(T ) are meaning-
ful. Moreover, since the solution components ϕ and w are uniquely deter-
mined, the cost functional (6) is well defined on Uad. Besides, let us remark



Optimal control of Cahn–Hilliard systems with double obstacle 183

that the exponent σ appearing above is more general than σ = 6 which was
stated in [9, Thm. 2.2]. This is due to the fact that here we only focus on the
two-dimensional case, where the continuous embedding V ⊂ Lσ(Ω) is true
for any σ ∈ (2,∞) (the case σ ∈ [1, 2] is already ensured by the regularities
ϕ ∈ L∞(0, T ;W ) and ξ ∈ L∞(0, T ;H)) instead of the three-dimensional
embedding V ⊂ L6(Ω).

For the deep quench approximations, we have the following stronger
result.

Theorem 2 Suppose that (8), (9) and (A1)–(A4) are satisfied. Then the
system (1), (17), (3)–(5) has for every u ∈ Uad and every α > 0 a unique
solution (ϕα, µα, wα) such that

ϕα ∈W 1,∞(0, T ;H) ∩H1(0, T ;W ) ∩ L∞(0, T ;W 2,σ(Ω)), (30)

µα ∈ L∞(0, T ;V ) ∩ L∞(Q), (31)

h′α(ϕα) ∈ L∞(Q), (32)

wα ∈ H2(0, T ;H) ∩ C1([0, T ];V ), (33)

for arbitrary σ ∈ (1,∞). Moreover, there exists a constant K1(σ) > 0, which
depends only on the structure of the system, Ω, T , the norms of the data,
and the choice of σ ∈ [2,∞), such that

‖ϕα‖H1(0,T ;V )∩L∞(0,T ;W 2,σ(Ω)) + ‖µα‖L∞(0,T ;V )

+ ‖h′α(ϕα)‖L∞(0,T ;Lσ(Ω)) + ‖wα‖H2(0,T ;H)∩C1([0,T ];V ) ≤ K1(σ) , (34)

whenever α ∈ (0, 1] and u ∈ Uad. In addition, for every α > 0 there holds the
strict separation property, i.e., there exist constants −1 < r∗(α) < r∗(α) <
1, which depend only on the structure of the system, Ω, T , and the norms
of the data, such that for every u ∈ Uad it holds

r∗(α) ≤ ϕα(x, t) ≤ r∗(α) ∀ (x, t) ∈ Q. (35)

Proof. Existence, uniqueness and the regularity properties (30)–(33) of
the solution follow directly from [10, Thms. 2.1 and 2.4]. Moreover, [10,
Thm. 2.4] also yields the existence of constants −1 < r∗(α) ≤ r∗(α) < 1 such
that the inequality in (35) holds true at least for almost every (x, t) ∈ Q. But
since H1(0, T ;W ) is continuously embedded in C0(Q), we have ϕα ∈ C0(Q),
so that the pointwise condition (35) is in fact valid.

It remains to show the existence of a constant K1(σ) satisfying (34). To
this end, we recall the proof of [9, Thm. 2.5] (cf. also [10, Thm. 2.1 and
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Rem. 2.3]). The strategy employed there was to approximate the system
(1), (17), (3)–(5) by replacing the nonlinearities hα by their Moreau–Yosida
approximations hα,ε at the level ε > 0. For sufficiently small ε > 0, existence,
uniqueness, and uniform estimates could be shown for the approximating
system at the level ε > 0. Now observe that we have, for every α ∈ (0, 1]
and every ε > 0,

0 ≤ hα,ε(r) ≤ hα(r) ≤ h(r) ∀ r ∈ R,
|h′α,ε(r)| ≤ |h′α(r)| ≤ |h′(r)| ∀ r ∈ (−1, 1).

A closer inspection of the estimates performed in the cited proofs now reveals
that the above uniform estimates, combined with the boundedness of Uad

and the fact that α ∈ (0, 1], have the consequence that all of the bounds
derived in the cited proofs for the approximations at the level ε > 0 can in
fact be made uniformly with respect to the choice of α ∈ (0, 1]. Since all
these estimates are also uniform with respect to sufficiently small ε > 0, they
persist under the passage to the limit as ε↘ 0, thanks to the semicontinuity
of norms. This concludes the proof. �

Remark 2 The above well-posedness result in fact refers to the natural
variational form (26) of the homogeneous Neumann problem for equation
(1), due to the low regularity of µα specified in (31). However, thanks to (30),
(A3), and the elliptic regularity theory, it is clear that µα ∈ L∞(0, T ;W )
as well, so that we actually can write (1) in its strong form.

Let us conclude this section by collecting some useful tools that will be
employed later on. We make frequent use of the Young, Poincaré–Wirtinger
and compactness inequalities:

ab ≤ δa2 +
1

4δ
b2 for every a, b ∈ R and δ > 0, (36)

‖v‖V ≤ CΩ

(
‖∇v‖+ |v|

)
for every v ∈ V , (37)

‖v‖ ≤ δ ‖∇v‖+ CΩ,δ ‖v‖∗ for every v ∈ V and δ > 0, (38)

where CΩ depends only on Ω, CΩ,δ depends on δ, in addition, and ‖ · ‖∗ is
the norm in V ∗ to be introduced below (see (41)).

Next, we recall an important tool which is commonly used when working
with problems connected to the Cahn–Hilliard equation. Consider the weak
formulation of the Poisson equation −∆z = ψ with homogeneous Neumann
boundary conditions. Namely, for a given ψ ∈ V ∗ (and not necessarily in H),
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we consider the problem:

Find z ∈ V such that

∫
Ω
∇z · ∇v = 〈ψ, v〉 for every v ∈ V . (39)

Since Ω is connected and regular, it is well known that the above problem
admits a family of solutions z if and only if ψ has zero mean value; among the
solutions z there is only one with zero mean value. Hence, we can introduce
the associated solution operator N , which turns out to be an isomorphism
between the following spaces, by

N : dom(N ) := {ψ ∈ V ∗ : ψ = 0} → {z ∈ V : z = 0}, N : ψ 7→ z, (40)

where z is the unique solution to (39) satisfying z = 0. Moreover, it follows
that the formula

‖ψ‖2∗ := ‖∇N (ψ − ψ)‖2 + |ψ|2 for every ψ ∈ V ∗ (41)

defines a Hilbert norm in V ∗ that is equivalent to the standard dual norm
of V ∗. From the above properties, one can obtain the following identities:∫

Ω
∇Nψ · ∇v = 〈ψ, v〉 for every ψ ∈ dom(N ), v ∈ V , (42)

〈ψ,N ζ〉 = 〈ζ,Nψ〉 for every ψ, ζ ∈ dom(N ), (43)

〈ψ,Nψ〉 =

∫
Ω
|∇Nψ|2 = ‖ψ‖2∗ for every ψ ∈ dom(N ), (44)

as well as ∫ t2

t1

〈∂tv(s),N v(s)〉ds =

∫ t2

t1

〈v(s),N (∂tv(s))〉ds

=
1

2
‖v(t2)‖2∗ −

1

2
‖v(t1)‖2∗ , (45)

which holds for all t1, t2 ∈ [0, T ] with t1 ≤ t2 and every v ∈ H1(0, T ;V ∗)
having zero mean value.

Finally, without further reference later on, we are going to employ the
following convention: the capital-case symbol C is used to denote every
constant that depends only on the structural data of the problem such as
Ω, T , a, b, κ1, κ2, γ, λ, the shape of the nonlinearities, and the norms of the
involved functions. Therefore, its meaning may vary from line to line and
even within the same line. In addition, when a positive constant δ enters the
computation, then the related symbol Cδ, in place of a general C, denotes
constants that depend on δ, in addition.
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3 Deep quench approximation of states and opti-
mal controls

We begin our analysis by proving a result that provides a qualitative com-
parison between the deep quench approximations associated with different
values of α > 0.

Theorem 3 Suppose that (8), (9) and (A1)–(A4) are fulfilled, and let, for
given u ∈ Uad and 0 < α1 < α2 ≤ 1, the solutions to the deep quench system
(1), (17), (3)–(5) given by Theorem 2 be denoted by (ϕαi , µαi , wαi), i = 1, 2.
Then there is a constant K2 > 0, which depends only on the data of the
system, such that

‖ϕα1 − ϕα2‖C0([0,T ];V ∗)∩L2(0,T ;V ) + ‖wα1 − wα2‖H1(0,T ;H)∩C0([0,T ];V )

≤ K2 (α2 − α1)1/2 . (46)

Proof. We set, for convenience,

ϕ := ϕα1 − ϕα2 , µ := µα1 − µα2 , w := wα1 − wα2 ,

ρi := F ′(ϕαi) for i = 1, 2, ρ := ρ1 − ρ2 .

Then (ϕ, µ,w) is a solution to the system which in its strong formulation
reads as follows:

∂tϕ−∆µ+ γϕ = 0 in Q, (47)

µ = −∆ϕ+ h′α1
(ϕα1)− h′α2

(ϕα2) + ρ− b∂tw in Q, (48)

∂ttw −∆(κ1∂tw + κ2w) + λ∂tϕ = 0 in Q, (49)

∂nϕ(0) = ∂nµ = ∂n(κ1∂tw + κ2w) = 0 on Σ, (50)

ϕ(0) = w(0) = ∂tw(0) = 0 in Ω. (51)

We first observe that the mean values of ϕ and ∂tϕ vanish on [0, T ].
Indeed, testing (47) by the constant function 1/|Ω| yields that

d

dt
ϕ(t) + γϕ(t) = 0 ∀ t ∈ (0, T ], ϕ(0) = 0 , (52)

whence the claim readily follows. Therefore, the expression Nϕ is mean-
ingful as an element of V . We now test (47) by Nϕ, (48) by ϕ, and we
integrate (49) with respect time over [0, t] and test the resulting identity
by b

λ ∂tw. Then we add the three resulting equations to each other. Using
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the properties (42)–(45), we find that four terms cancel, and it follows the
identity

1

2
‖ϕ(t)‖2∗ + γ

∫ t

0
‖ϕ(s)‖2∗ds+

∫
Qt

|∇ϕ|2 +
b

λ

∫
Qt

|∂tw|2

+
bκ1

2λ

∫
Ω
|∇w(t)|2 +

∫
Qt

(
h′α1

(ϕα1)− h′α1
(ϕα2)

)
ϕ

= −
∫
Qt

(
h′α1

(ϕα2)− h′α2
(ϕα2)

)
ϕ −

∫
Qt

ρϕ − bκ2

λ

∫
Qt

(1 ∗ ∇w) · ∇∂tw

=: I1 + I2 + I3 , (53)

with obvious meaning. Owing to the monotonicity of h′α1
, the last term on

the left-hand side is nonnegative. Moreover, thanks to the fact that ϕα1 and
ϕα2 attain their values in (−1, 1), it follows from the convexity of h that

−
(
h′α1

(ϕα2)− h′α2
(ϕα2)

)
ϕ = (α2 − α1)h′(ϕα2)ϕ

≤ (α2 − α1)(h(ϕα1)− h(ϕα2)) ≤ (α2 − α1) 2 ln(2) ,

so that

I1 ≤ (α2 − α1) 2 ln(2) |Ω|T . (54)

Moreover, invoking the Lipschitz continuity of F ′, as well as the compactness
inequality (38), we conclude that

|I2| ≤
∫
Qt

∣∣F ′(ϕα1)− F ′(ϕα2)
∣∣ |ϕ| ≤ C

∫
Qt

|ϕ|2

≤ 1

2

∫
Qt

|∇ϕ|2 + C

∫ t

0
‖ϕ(s)‖2∗ds . (55)

It remains to estimate I3. To this end, using the identity∫
Qt

(1 ∗ ∇w) · ∇(∂tw) =

∫
Ω

(1 ∗ ∇w(t)) · ∇w(t)−
∫
Qt

|∇w|2,

the fact that ‖1 ∗ ∇w(t)‖2 ≤
( ∫ t

0 ‖∇w(s)‖ds
)2
≤ T

∫
Qt
|∇w|2, as well as

Young’s inequality, we infer that

I3 ≤
bκ1

4λ
‖∇w(t)‖2 + C

∫
Qt

|∇w|2. (56)
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Combining (53)–(56), and invoking Gronwall’s lemma, we have thus shown
that

‖ϕ‖2L∞(0,T ;V ∗) + ‖∇ϕ‖2L2(0,T ;H) + ‖w‖2H1(0,T ;H)∩L∞(0,T ;V ) ≤ C (α2 − α1) .

The assertion now follows from the fact that the L2(Q) norm of ϕ can be
estimated via the compactness inequality (38). �

Theorem 4 Suppose that (8), (9) and (A1)–(A4) are fulfilled, and let
sequences {αn} ⊂ (0, 1] and {uαn} ⊂ Uad be given such that αn ↘ 0
and uαn → u weakly star in L∞(Q) for some u ∈ Uad. Moreover, let
(ϕαn , µαn , wαn) be the solution in the sense of Theorem 2 to the problem
(1), (17), (3)–(5) with the control uαn and the convex function hαn, for
n ∈ N. Then there exist a subsequence {αnk} and a solution (ϕ0, µ0, ξ0, w0)
to the state system (1)–(5) such that, as k →∞,

ϕαnk → ϕ0 weakly star in H1(0, T ;V ) ∩ L∞(0, T ;W 2,σ(Ω))

and strongly in C0(Q), (57)

µαnk → µ0 weakly star in L∞(0, T ;V ), (58)

h′αnk
(ϕαnk )→ ξ0 weakly star in L∞(0, T ;Lσ(Ω)), (59)

wαnk → w0 weakly star in H2(0, T ;H) ∩W 1,∞(0, T ;V )

and strongly in C1([0, T ];H), (60)

with σ arbitrary in [2,∞).

Proof. By virtue of the global estimate (34), it follows the existence of
the subsequence and of limits (ϕ0, µ0, ξ0, w0) such that (57)–(60) hold true.
In this connection, the strong convergence result in (57) follows from stan-
dard compactness results (see, e.g., [26, Sect. 8, Cor. 4]). Observe that the
strong convergence in (57) and the Lipschitz continuity of F ′ imply that
F ′(ϕαnk )→ F ′(ϕ0) strongly in C0(Q) as k →∞.

We then need to show that (ϕ0, µ0, ξ0, w0) is a solution to (1)–(5). Owing
to the convergence properties (57)–(60), it is easily verified by passage to the
limit as k →∞ that (ϕ0, µ0, ξ0, w0) satisfies the (equivalent) time-integrated
version of the variational equalities in (26)–(28) with test functions v ∈
L2(0, T ;V ) for the control u. Also, the initial conditions in (29) follow
easily from the weak convergences in (57) and (60). It remains to show that
ξ0 ∈ ∂I[−1,1](ϕ

0) almost everywhere in Q. For this purpose, we define on
L2(Q) the convex functional

Φ(v) =

∫
Q
I[−1,1](v), if I[−1,1](v) ∈ L1(Q), and Φ(v) = +∞, otherwise.
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It then suffices to show that ξ0 belongs to the subdifferential of Φ at ϕ0, i.e.,
that

Φ(v)− Φ(ϕ0) ≥
∫
Q
ξ0(v − ϕ0) ∀ v ∈ L2(Q). (61)

At this point, recall that ϕαnk (x, t) ∈ [−1, 1], and thus also ϕ0(x, t) ∈
[−1, 1] in Q. Consequently, Φ(ϕ0) = 0. Now observe that in the case
that I[−1,1](v) 6∈ L1(Q) the inequality (61) holds true since its left-hand side
is infinite. If, however, I[−1,1](v) ∈ L1(Q), then obviously v ∈ [−1, 1] al-
most everywhere in Q, and it follows from (18) and Lebesgue’s theorem of
dominated convergence that

lim
k→∞

∫
Q
hαnk (v) = Φ(v) = 0.

Now, by the convexity of hαnk , and since hαnk (ϕαnk ) is nonnegative, we have

for all v ∈ L2(Q) that

h′αnk
(ϕαnk )(v − ϕαnk ) ≤ hαnk (v)− hαnk (ϕαnk ) ≤ hαnk (v) a.e. in Q.

Using (57) and (59), we thus obtain the following chain of (in)equalities:∫
Q
ξ0(v − ϕ0) = lim

k→∞

∫
Q
h′αnk

(ϕαnk )(v − ϕαnk )

≤ lim sup
k→∞

∫
Q

(
hαnk (v)− hαnk (ϕαnk )

)
≤ lim

k→∞

∫
Q
hαnk (v) = Φ(v) = Φ(v)− Φ(ϕ0),

which shows the validity of (61). This concludes the proof. �

Remark 3 Since, according to Theorem 1, the solution variables ϕ0 and w0

are uniquely determined, the convergence properties (57) and (60) actually
hold for the entire sequences and not just for a subsequence.

Corollary 1 Suppose that (8), (9) and (A1)–(A4) are fulfilled, let (ϕ0, µ0,
ξ0, w0) be a solution to (1)–(5) and (ϕα, µα, wα) be the solution to (1), (17),
(3)–(5) associated with some α ∈ (0, 1]. Then, with the constant K2 > 0
introduced in Theorem 3, we have

‖ϕα − ϕ0‖C0([0,T ];V ∗)∩L2(0,T ;V ) + ‖wα − w0‖H1(0,T ;H)∩C0([0,T ];V )

≤ K2 α
1/2 . (62)

Proof. This is an immediate consequence of the uniqueness of w0 and ϕ0, if
we put in (46) α2 = α and pass to the limit as α1 ↘ 0. �
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4 Existence and approximation of optimal con-
trols

Beginning with this section, we study the optimal control problem (P) of
minimizing the cost functional (6) subject to the state system (1)–(5) and
the control constraint u ∈ Uad, where (8) and (9) are generally assumed
to be valid. In addition to (A1)–(A4), we impose the following general
assumptions:

(A5) The coeffients β1, . . . , β6, ν are nonnegative and not all equal to zero.

(A6) ϕΩ, wΩ, w
′
Ω ∈ L2(Ω) and ϕQ, wQ, w

′
Q ∈ L2(Q).

We compare the problem (P) with the following family of optimal control
problems for α > 0:

(Pα) Minimize the cost functional (6) subject to the state system (1), (17),
(3)–(5) and the control constraint u ∈ Uad.

We expect that the minimizers of the control problems (P) and (Pα) are
closely related. Before giving an affirmative answer to this conjecture, we
introduce for convenience the following control-to-state operators:

S :Uad 3 u 7→ (ϕ,w), where ϕ,w are the first and fourth components

of any solution to (1)–(5), (63)

Sα :Uad 3 u 7→ (ϕα, wα), where ϕα, wα are the first and third components

of the solution to (1), (17), (3)–(5). (64)

We then have the following result.

Proposition 1 Suppose that (8), (9) and (A1)–(A6) are fulfilled, and let
sequences {αn} ⊂ (0, 1] and {un} ⊂ Uad be given such that αn ↘ 0 and
un → u weakly star in L∞(Q) for some u ∈ Uad as n→∞. Then we have

J (S(u), u) ≤ lim inf
n→∞

J (Sαn(un), un), (65)

J (S(v), v) = lim
n→∞

J (Sαn(v), v) ∀ v ∈ Uad. (66)

Proof. According to Theorem 4 and Remark 3, we have Sαn(uαn) → S(u)
in the sense of (57) and (60), respectively. Then (65) follows from the
semicontinuity properties of the cost functional. Now let v ∈ Uad be arbi-
trarily chosen. Applying Theorem 4 and Remark 3 to the constant sequence
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vn = v, n ∈ N, we infer that Sαn(v)→ S(v) in the sense of (57) and (60). In
particular, this implies strong convergence of the sequences {ϕαn}, {wαn}
and {∂twαn} in C0([0, T ];H), by compact embedding. Since the first six
summands of the cost functional are continuous with respect to the strong
topology of C0([0, T ];H), the validity of (66) follows. �

We are now in a position to show the existence of minimizers for the
control problem (P). We have the following result.

Corollary 2 Suppose that (8), (9), and (A1)–(A6) are fulfilled. Then the
problem (P) admits at least one solution in Uad.

Proof. We pick an arbitrary sequence {αn} ⊂ (0, 1] such that αn ↘ 0
as n → ∞. By virtue of [9, Thm. 4.1], the problem (Pαn) has a solution
uαn ∈ Uad with associated state (ϕαn , µαn , wαn) and ξαn := h′αn(ϕαn) for
n ∈ N. Since Uad is bounded in L∞(Q), we may without loss of generality
assume that uαn → u weakly star in L∞(Q) for some u ∈ Uad. Then, in view
of Theorem 4, there are a subsequence {αnk} and a solution (ϕ0, µ0, ξ0, w0)
to the system (1)–(5) such that the convergence properties (57)–(60) hold
true. Now observe that (ϕ0, w0) = S(u) and (ϕαn , wαn) = Sαn(un) for
n ∈ N. We then obtain from the optimality of ((ϕαn , wαn), uαn) for (Pαn),
using Proposition 1, the following chain of (in)equalities:

J (S(u), u) ≤ lim inf
k→∞

J (Sαnk (uαnk ), uαnk ) ≤ lim inf
k→∞

J (Sαnk (v), v)

= J (S(v), v) .

This shows that (S(u), u) is an optimal pair of the control problem (P),
which concludes the proof of the assertion. �

The proof of Corollary 2 suggests that optimal controls of (Pα) are
“close” to optimal controls of (P) as α approaches zero. However, they do
not yield any information on whether every optimal control of (P) can be
approximated in this way. In fact, such a global result cannot be expected
to hold true. Nevertheless, a local answer can be given by employing a well-
known trick. To this end, let u∗ ∈ Uad be an optimal control for (P) and
(ϕ∗, µ∗, ξ∗, w∗) be a solution to the associated state system (1)–(5) so that
(ϕ∗, w∗) = S(u∗). We associate with this optimal control the adapted cost
functional

J̃ ((ϕ,w), u) := J ((ϕ,w), u) +
1

2
‖u− u∗‖2L2(Q) (67)

and a corresponding adapted optimal control problem for α > 0, namely:
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(P̃α) Minimize J̃ ((ϕ,w), u) for u ∈ Uad subject to (ϕ,w) = Sα(u).

With essentially the same proof as that of [10, Thm. 4.1] (which needs no
repetition here), we can show that the adapted optimal control problem
(P̃α) has for every α > 0 at least one solution. The following result gives
a partial answer to the question raised above concerning the approximation
of optimal controls for (P) by the approximating problem (P̃α).

Theorem 5 Suppose that (8), (9) and (A1)–(A6) are fulfilled, assume
that u∗ ∈ Uad is an arbitrary optimal control of (P) with associated state
(ϕ∗, µ∗, ξ∗, w∗), and let {αk}k∈N ⊂ (0, 1] be any sequence such that αk ↘ 0
as k →∞. Then, for any k ∈ N, there exists an optimal control uαk ∈ Uad

of the adapted problem (P̃αk) with associated state (ϕαk , µαk , wαk) such
that, as k →∞,

uαk → u∗ strongly in L2(Q), (68)

and such that (57)–(60) hold true with some (ϕ0, µ0, ξ0, w0) satisfying ϕ0 =
ϕ∗ and w0 = w∗. Moreover, we have

lim
k→∞

J̃ (Sαk(uαk), uαk) = J (S(u∗), u∗). (69)

Proof. For any k ∈ N, we pick an optimal control uαk ∈ Uad for the adapted

problem (P̃αk) and denote by (ϕαk , µαk , wαk) the associated strong solution
to the approximating state system (1), (17), (3)–(5). By the boundedness
of Uad in L∞(Q), there is some subsequence {αn} of {αk} such that

uαn → u weakly star in L∞(Q) as n→∞, (70)

for some u ∈ Uad. Thanks to Theorem 4, the convergence properties (57)–
(60) hold true correspondingly for some solution (ϕ0, µ0, ξ0, w0) to the state
system (1)–(5), and the pair (S(u), u) = ((ϕ0, w0), u) is admissible for (P).

We now aim at showing that u = u∗. Once this is shown, it follows from
the uniqueness of the first and fourth components of the solutions to the
state system (1)–(5) that also (ϕ0, w0) = (ϕ∗, w∗). Now observe that, owing
to the weak sequential lower semicontinuity properties of J̃ , and in view of
the optimality property of (S(u∗), u∗) for problem (P),

lim inf
n→∞

J̃ (Sαn(uαn), uαn) ≥ J (S(u), u) +
1

2
‖u− u∗‖2L2(Q)

≥ J (S(u∗), u∗) +
1

2
‖u− u∗‖2L2(Q) . (71)
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On the other hand, the optimality property of (Sαn(uαn), uαn) for problem
(P̃αn) yields that for any n ∈ N we have

J̃ (Sαn(uαn), uαn) ≤ J̃ (Sαn(u∗), u∗) = J (Sαn(u∗), u∗) , (72)

whence, taking the limit superior as n→∞ on both sides and invoking (66)
in Proposition 1,

lim sup
n→∞

J̃ (Sαn(uαn), uαn) ≤ lim sup
n→∞

J̃ (Sαn(u∗), u∗)

= lim sup
n→∞

J (Sαn(u∗), u∗) = J (S(u∗), u∗) . (73)

Combining (71) with (73), we have thus shown that 1
2 ‖u − u

∗‖2L2(Q) = 0 ,

so that u = u∗ and thus also (ϕ∗, w∗) = (ϕ0, w0). Moreover, (71) and (73)
also imply that

J (S(u∗), u∗) = J̃ (S(u∗), u∗) = lim inf
n→∞

J̃ (Sαn(uαn), uαn)

= lim sup
n→∞

J̃ (Sαn(uαn), uαn) = lim
n→∞

J̃ (Sαn(uαn), uαn) ,

which proves the validity of (69). Moreover, the convergence properties
(57)–(60) are satisfied with ϕ0 = ϕ∗ and w0 = w∗. On the other hand, we
have that

J (S(u∗), u∗) ≤ lim inf
n→∞

J (Sαn(uαn), uαn) ≤ lim sup
n→∞

J (Sαn(uαn), uαn)

≤ lim sup
n→∞

J̃ (Sαn(uαn), uαn) = J (S(u∗), u∗),

so that also J (Sαn(uαn), uαn) converges to J (S(u∗), u∗) as n→∞, and the
relation in (67) enables us to infer the strong convergence in (68) for the
subsequence {uαn}.

We now claim that (68) and (69) hold true even for the entire sequence,
due to the complete identification of the limit u as u∗. We only prove this
claim for (68); for (69) a similar reasoning may be used. Assume that (68)
were not true. Then there exist some ε > 0 and a subsequence {αj} of {αk}
such that

‖uαj − u∗‖L2(Q) ≥ ε ∀ j ∈ N. (74)

However, by the boundedness of Uad, there is some subsequence {αjn} of
{αj} such that, with some ũ ∈ Uad,

uαjn → ũ weakly star in L∞(Q) as n→∞ .
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Arguing as above, it then turns out that ũ = u∗ and that (68) holds for the
subsequence {uαjn} as well, which contradicts the fact that (74) obviously
implies that {uαj} cannot have a subsequence that converges strongly to u∗

in L2(Q). �

5 First-order necessary optimality conditions

We now derive first-order necessary optimality conditions for the control
problem (P), using the corresponding conditions for (P̃α) as approxima-
tions. To this end, we generally assume that the conditions (8), (9), and
(A1)–(A6) are fulfilled. Moreover, we need an additional assumption:

(A7) It holds that β2 ϕΩ ∈ V and β6w
′
Ω ∈ V .

Notice that this assumption essentially requires a better regularity for the
target data ϕΩ and w′Ω that in the cost functional give the endpoint tracking
for the variables ϕ and ∂tw. On the other hand, the assumption (A7) is
trivially satisfied if β2 = β6 = 0.

Now let u∗ ∈ Uad be any fixed optimal control for (P) with associated
state (ϕ∗, µ∗, ξ∗, w∗) (where only ϕ∗ and w∗ are uniquely determined), and
assume that α ∈ (0, 1] is fixed. Moreover, suppose that u∗α ∈ Uad is an
optimal control for (P̃α) with corresponding state (ϕ∗α, µ

∗
α, w

∗
α). The corre-

sponding adjoint problem is given, in its strong form for simplicity, by

− ∂tpα −∆qα + γpα + h′′α(ϕ∗α)qα + F ′′(ϕ∗α)qα − λ∂trα
= β1(ϕ∗α − ϕQ) in Q, (75)

qα = −∆pα in Q, (76)

− ∂trα −∆(κ1rα − κ2(1~ rα))− bqα
= β3(1~ (w∗α − wQ)) + β4(w∗α(T )− wΩ) + β5(∂tw

∗
α − w′Q) in Q,

(77)

∂npα = ∂nqα = ∂n(κ1rα − κ2(1~ rα)) = 0 on Σ, (78)

pα(T ) = β2(ϕ∗α(T )− ϕΩ)− λβ6(∂tw
∗
α(T )− w′Ω)

and rα(T ) = β6(∂tw
∗
α(T )− w′Ω) in Ω, (79)

with the convolution product ~ defined in (21). Concerning this product,
please note that ∂t(1 ~ r) = −r. Let us, for convenience, introduce the
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abbreviations

fα := β3(1~ (w∗α − wQ)) + β5(∂tw
∗
α − w′Q) + β4(w∗α(T )− wΩ), (80)

gα := β1(ϕ∗α − ϕQ), (81)

ρα := β6(∂tw
∗
α(T )− w′Ω), (82)

πα := β2(ϕ∗α(T )− ϕΩ)− λρα. (83)

Observe that the last summand of fα is independent of time. By virtue of
(34), (A6), and (A7), we have, for every α ∈ (0, 1],

‖fα‖L2(0,T ;H) + ‖gα‖L2(0,T ;H) + ‖ρα‖V + ‖πα‖V
≤ C

(
‖ϕ∗α‖C0([0,T ];V ) + ‖w∗α‖C1([0,T ];V ) + 1

)
≤ C, (84)

where in the following we denote by C positive constants that may depend
on the data of the system but not on α ∈ (0, 1].

According to [10, Thm. 4.5], the adjoint system has under the assump-
tions (8), (9) and (A1)–(A7) a unique weak solution with the regularity

pα ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), (85)

qα ∈ L2(0, T ;V ), (86)

rα ∈ H1(0, T ;H) ∩ L∞(0, T ;V ). (87)

Moreover, by virtue of [10, Thm. 4.7], we know that the first-order optimal-
ity condition for the optimal control u∗α is characterized by the variational
inequality ∫

Q
(rα + νu∗α + (u∗α − u∗)) (v − u∗α) ≥ 0 ∀ v ∈ Uad . (88)

The next step consists in passing to the limit as α↘ 0 in both the adjoint
system (75)–(79) and the variational inequality (88). To this end, uniform
(with respect to α ∈ (0, 1]) estimates for the adjoint variables (pα, qα, rα)
must be shown. A closer look at the system (75)–(79) reveals that there is
an inherent difficulty. To this end, observe that (76) and (78) imply that
qα(t) = 0 for almost every t ∈ (0, T ). Therefore, testing of (75) with the
constant function v = 1/|Ω|, integration with respect to time over [t, T ],
and application of the well-known integration-by-parts rule for functions in
H1(0, T ;V ∗) ∩ L2(0, T ;V ), using the endpoint conditions (79) along with
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the abbreviations (81)–(83), yield the identity

pα(t) = πα + λρα − λ rα(t) +
1

|Ω|

∫
Qt
gα

− 1

|Ω|

∫
Qt

[
γpα + h′′α(ϕ∗α)qα + F ′′(ϕ∗α)qα

]
. (89)

Here, and for the remainder of this paper, we put

Qt := Ω× (t, T ) whenever t ∈ [0, T ).

Apparently, the term h′′α(ϕ∗α)qα cannot be controlled. Indeed, although ϕ∗α
satisfies the strict separation condition (35) for any fixed α > 0, a uniform
bound cannot be expected, since it may well happen that the constants in
(35) satisfy r∗(α)↘ −1 or r∗(α)↗ 1 as α ↘ 0, in which case h′′α(ϕ∗α) may
become unbounded. Consequently, we cannot hope to pass to the limit as
α ↘ 0 in the system (75)–(79) as it stands, not even in its weak form with
test functions v ∈ V . In order to overcome this difficulty, we employ an idea
that goes back to [11]. To this end, recall that the mean value of qα vanishes
almost everywhere in (0, T ). Therefore, we deduce from (76) and (78) the
identity

pα(t)− pα(t) = N qα(t), (90)

with the operator N introduced in (40). Notice that pα ∈ H1(0, T ;V ∗) and
pα ∈ H1(0, T ), whence we conclude that also N qα ∈ H1(0, T ;V ∗).

The identity (90) enables us to eliminate pα from the problem. For this
purpose, we introduce the spaces

H0 := {v ∈ H : v = 0} and V0 := {v ∈ V : v = 0} = V ∩H0 . (91)

Now observe that the subspace span{1} of spatially constant functions is
the orthogonal complement of H0 with respect to the inner product of H;
moreover, H0 is a closed subspace of H and therefore a Hilbert space itself
when equipped with the standard inner product in H. In addition, owing
to the Poincaré–Wirtinger inequality (37), the expression

(v, w)0 :=

∫
Ω
∇v · ∇w for v, w ∈ V0 (92)

defines an inner product on V0 whose associated norm is equivalent to the
standard norm of V . Obviously, V0 becomes a Hilbert space when endowed
with the inner product ( · , · )0, and since, according to [11, Cor. 5.3], V0 is
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densely embedded in H0, we can construct the Hilbert triple (V0, H0, V
∗

0 )
with the dense and compact embeddings V0 ⊂ H0 ⊂ V ∗0 and the usual
identification that

〈v, w〉V0 = (v, w) for all v ∈ H0 and w ∈ V0. (93)

The idea now is to change the standard variational version of the system
(75)–(79) by not admitting every v ∈ V as test function in (75), but only
those having zero mean value. In this way, we eliminate pα from the prob-
lem; indeed, we easily find that the pair (qα, rα) solves the reduced system

〈−∂tN qα, v〉V0 +

∫
Ω
∇qα · ∇v + γ

∫
Ω
N qα v − λ

∫
Ω
∂trα v

= −
∫

Ω

(
h′′α(ϕ∗α)qα + F ′′(ϕ∗α)qα

)
v +

∫
Ω
gα v

for all v ∈ V0 and a.e. in (0, T ), (94)

−
∫

Ω
∂trα v +

∫
Ω
∇(κ1rα − κ2(1~ rα)) · ∇v − b

∫
Ω
qα v =

∫
Ω
fαv

for all v ∈ V and a.e. in (0, T ), (95)

N qα(T ) = πα − πα , rα(T ) = ρα. (96)

At this point, it is worth observing that, because of the zero mean value
condition, the space V0 does not contain the space C∞0 (Ω), and therefore
the variational equality with test functions v ∈ V0 cannot be interpreted as
an equation in the sense of distributions.

In the following, we deduce some a priori estimates for the reduced sys-
tem (94)–(96). Here we argue formally, where we note that all of the follow-
ing calculations can be performed rigorously on the level of an approximating
Faedo–Galerkin system using as basis functions the eigenfunctions ej , nor-
malized by ‖ej‖ = 1, for j ∈ N, of the Laplace operator with homogeneous
Neumann conditions. That is, we have

−∆ej = λjej in Ω, ∂nej = 0 on Γ, for all j ∈ N,
0 = λ1 < λ2 ≤ . . . , lim

j→∞
λj = +∞, (ei, ej) = δij for all i, j ∈ N.

In this connection, observe that {ej}j∈N forms a complete orthonormal sys-
tem in H, while {ej}j≥2 is obviously a complete orthonormal system in the
space H0 of functions having zero mean value, and the eigenspace associated
with the eigenvalue λ1 = 0 is just the space of constant functions.
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First estimate. We now insert v = qα(t) (which belongs to V0) in (94),
and v = −λ

b ∂trα(t) in (95) (this is only formal), and add the resulting
equations, whence a cancellation of two terms occurs. Then we integrate
with respect to time over (t, T ) for arbitrary t ∈ [0, T ), taking (96) into
account. Using the properties (42)–(45) of the operator N , and rearranging
terms, we obtain the identity

1

2
‖qα(t)‖2∗ +

∫
Qt
|∇qα|2 + γ

∫ T

t
‖qα(s)‖2∗ ds +

∫
Qt
h′′α(ϕ∗α) |qα|2

+
λ

b

∫
Qt
|∂trα|2 +

λκ1

2b
‖∇rα(t)‖2 − 1

2
‖∇πα‖2 −

λκ1

2b
‖∇ρα‖2

= −
∫
Qt
F ′′(ϕ∗α) |qα|2 +

∫
Qt
gα qα −

λ

b

∫
Qt
fα ∂trα

+
λκ2

b

∫
Qt
∇(1~ rα) · ∂t∇rα =: I1 + I2 + I3 + I4 , (97)

with natural meaning. Observe that the fourth summand on the left-hand
side is nonnegative. The last two terms on the left-hand side are uniformly
bounded due to (84). Moreover, by virtue of (35) and (A2), we have that
‖F ′′(ϕ∗α)‖L∞(Q) ≤ C, and therefore it follows from Young’s inequality, using
(84) and the compactness inequality (38), that

I1 + I2 ≤ C + C

∫
Qt
|qα|2 ≤

1

2

∫
Qt
|∇qα|2 + C

∫ T

t
‖qα(s)‖2∗ ds + C .

(98)

Moreover, by Young’s inequality and (84),

I3 ≤
λ

2b

∫
Qt
|∂trα|2 + C . (99)

Finally, integration by parts with respect to time and Young’s inequality
yield the estimate

I4 = − λκ2

b

∫
Ω
∇(1~ rα)(t) · ∇rα(t) +

λκ2

b

∫
Qt
|∇rα|2

≤ λκ1

2b
‖∇rα(t)‖2 + C ‖∇(1~ rα)(t)‖2 +

λκ2

b

∫
Qt
|∇rα|2

≤ λκ1

2b
‖∇rα(t)‖2 + C

∫ T

t
‖∇rα(s)‖2 ds . (100)



Optimal control of Cahn–Hilliard systems with double obstacle 199

Combining (97)–(100), and applying Gronwall’s lemma backwards in time,
we have thus shown the estimate

‖qα‖L∞(0,T ;V ∗)∩L2(0,T ;V ) + ‖rα‖H1(0,T ;H)∩L∞(0,T ;V )

+

∫
Q
h′′α(ϕ∗α) |qα|2 ≤ C ∀α ∈ (0, 1], (101)

whence it obviously follows that

‖1~ rα‖H2(0,T ;H)∩W 1,∞(0,T ;V ) ≤ C ∀α ∈ (0, 1]. (102)

In addition, since it is known that the mapping N is a topological isomor-
phism between V ∗0 and V0 and, for any s ≥ 0, between Hs(Ω) ∩ H0 and
Hs+2(Ω) ∩H0, we also have N qα ∈ L∞(0, T ;V0) ∩ L2(0, T ;H3(Ω)) and

‖N qα‖L∞(0,T ;V )∩L2(0,T ;H3(Ω)) ≤ C ∀α ∈ (0, 1]. (103)

Second estimate. As a preparation for the next estimate, we introduce
the space

Z := {v ∈ H1(0, T ;V ∗0 ) ∩ L2(0, T ;V0) : v(0) = 0}, (104)

which, as a closed subspace, becomes a Hilbert space itself when endowed
with the standard inner product and norm of H1(0, T ;V ∗0 ) ∩ L2(0, T ;V0).
Notice that Z ⊂ C0([0, T ];H0) which makes the initial condition v(0) = 0
meaningful; we also have the dense and compact embeddings

Z ⊂ L2(0, T ;H0) ⊂ Z∗.

Moreover, Z is dense in L2(0, T ;V0) since it contains the dense subspace
H1

0 (0, T ;V0). Therefore, the dual space L2(0, T ;V ∗0 )∼=(L2(0, T ;V0))∗ can be
identified with a subspace of the dual space Z∗ in the usual way, i.e., such
that

〈v, w〉Z =

∫ T

0
〈v(t), w(t)〉V0 dt for all v ∈ L2(0, T ;V ∗0 ) and w ∈ Z . (105)

Now, we take an arbitrary v ∈ Z as test function in (94) and integrate over
(0, T ). We obtain∫ T

0
〈−∂tN qα(t), v(t)〉V0dt +

∫
Q
∇qα · ∇v +

∫
Q
h′′α(ϕ∗α)qα v

=

∫
Q

(
−γN qα + λ∂trα − F ′′(ϕ∗α)qα + gα

)
v . (106)
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Next, we observe that N qα ∈ H1(0, T ;V ∗0 ) ∩ L2(0, T ;V0) and integrate by
parts in the first term of (106). With the help of (84), (96), and (103), we
infer that∫ T

0
〈−∂tN qα(t), v(t)〉V0 dt = −(πα, v(T )) +

∫ T

0
〈∂tv(t),N qα(t)〉V0 dt, (107)

and, consequently, for every v ∈ Z it holds

∣∣∣ ∫ T

0
〈−∂tN qα(t), v(t)〉V0 dt

∣∣∣
≤ ‖πα‖ ‖v‖C0([0,T ];H0) +

∫ T

0
‖N qα(t)‖V0 ‖∂tv(t)‖V ∗0 dt

≤ C ‖v‖Z + C ‖N qα‖L2(0,T ;V ) ‖∂tv‖L2(0,T ;V ∗0 ) ≤ C ‖v‖Z . (108)

Hence, in view of the estimates (101) and (108), we easily find from a com-
parison of terms in (106) that the linear functional

Λα : Z → R, 〈Λα, v〉Z :=

∫
Q
h′′α(ϕ∗α) qα v for v ∈ Z,

satisfies

‖Λα‖Z∗ ≤ C ∀α ∈ (0, 1]. (109)

By the estimates shown above, there exist a sequence {αn}n∈N ⊂ (0, 1]
and limit points q∗, r∗,Λ∗ such that αn ↘ 0 and

qαn → q∗ weakly star in L∞(0, T ;V ∗) ∩ L2(0, T ;V ), (110)

rαn → r∗ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ), (111)

1~ rαn → 1~ r∗ weakly star in H2(0, T ;H) ∩W 1,∞(0, T ;V ), (112)

N qαn → N q∗ weakly star in L∞(0, T ;V0) ∩ L2(0, T ;H3(Ω)), (113)

Λαn → Λ∗ weakly in Z∗. (114)

Moreover, in view of Theorem 4 and Theorem 5, we may without loss of
generality assume that u∗αn → u∗ strongly in L2(Q) and that the convergence
properties (57) and (60) for the state components ϕ∗αn and w∗αn are satisfied
correspondingly with (ϕ0, w0) = (ϕ∗, w∗). Consequently, we have for n→∞
that

F ′′(ϕ∗αn)qαn → F ′′(ϕ∗)q∗ weakly in L2(Q)
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and that

fαn → f∗ := β3(1~ (w∗ − wQ)) + β4(w∗(T )− wΩ) + β5(∂tw
∗ − w′Q),

gαn → g∗ := β1(ϕ∗ − ϕQ),

ραn → ρ∗ := β6(∂tw
∗(T )− w′Ω),

παn → π∗ := β2(ϕ∗(T )− ϕΩ)− λρ∗,

for suitable convergence properties as from (57) and (60).
Now we consider the system (94)–(96) for α = αn, where we replace

(94) (and the first final condition in (96)) with the time-integrated version
(106)–(107), with test functions v ∈ Z. Passage to the limit as n → ∞,
using the above convergence properties, then yields that

〈Λ∗, v〉Z = (π∗, v(T ))−
∫ T

0
〈∂tv(t),N q∗(t)〉V0 dt−

∫
Q
∇q∗ · ∇v

+

∫
Q

[
− γN q∗ + λ∂tr

∗ − F ′′(ϕ∗)q∗ + g∗
]
v for all v ∈ Z, (115)

−
∫

Ω
∂tr
∗ v +

∫
Ω
∇(κ1r

∗ − κ2(1~ r∗)) · ∇v − b

∫
Ω
q∗ v =

∫
Ω
f∗v

for all v ∈ V and a.e. in (0, T ), (116)

r∗(T ) = ρ∗ . (117)

Finally, we consider the variational inequality (88) for α = αn, n ∈ N.
By passing to the limit as n→∞, we find that∫

Q
(r∗ + ν u∗)(v − u∗) ≥ 0 ∀ v ∈ Uad. (118)

Summarizing the above considerations, we have proved the following
first-order necessary optimality conditions for the optimal control prob-
lem (P).

Theorem 6 Suppose that the conditions (A1)–(A7), (8) and (9) are ful-
filled, and let u∗ ∈ Uad be a minimizer of the optimal control problem (P)
with the associated uniquely determined state components ϕ∗, w∗. Then
there exist q∗, r∗, and Λ∗ such that the following holds true:

(i) q∗ ∈ L∞(0, T ;V ∗0 ) ∩ L2(0, T ;V ), N q∗ ∈ L∞(0, T ;V0) ∩ L2(0, T ;H3(Ω)),
r∗ ∈ H1(0, T ;H)∩L∞(0, T ;V ), 1~r∗ ∈ H2(0, T ;H)∩W 1,∞(0, T ;V ),
Λ∗ ∈ Z∗.
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(ii) The adjoint system (115)–(117) and the variational inequality (118) are
satisfied.

Remark 4 (i) Observe that the adjoint state variables (q∗, r∗) and the La-
grange multiplier Λ∗ are not uniquely determined. However, all possible
choices satisfy (118), i.e., u∗ is for ν > 0 the L2(Q)-orthogonal projection of
−ν−1r∗ onto the closed and convex set Uad, and for a.e. (x, t) ∈ Q it holds

u∗(x, t) = max
{
umin(x, t),min{umax(x, t),−ν−1r∗(x, t)}

}
.

(ii) We have, for every n ∈ N, the complementarity slackness condition

〈Λαn , qαn〉Z =

∫
Q
h′′αn(ϕ∗αn) |qαn |2 =

∫
Q

2αn
1− (ϕ∗αn)2

|qαn |2 ≥ 0.

Unfortunately, our convergence properties for {ϕ∗αn} and {qαn} do not per-
mit a passage to the limit in this inequality to derive a corresponding result
for (P).
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