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Abstract

In this note, we consider the number of k’s in all the partitions of n
in order to provide a new proof of a classical identity involving Euler’s
partition function p(n) and the sum of the positive divisors function
σ(n). New relations connecting classical functions of multiplicative
number theory with the partition function p(n) from additive number
theory are introduced in this context. The fascinating feature of these
relations is their common nature. A new identity for the number of 1’s
in all the partitions of n is derived in this context.
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1 Introduction

Let A be a given set of positive integers, and let f(n) be a given arithmetical
function. By Apostol [3, Theorem 14.8], we know that the numbers pA,f (n)
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defined by the equation∏
n∈A

(1− qn)−f(n)/n = 1 +
∞∑
n=1

pA,f (n) qn (1)

satisfy the recurrence relation

n pA,f (n) =
n∑

k=1

fA(k) pA,f (n− k), (2)

where pA,f (0) = 1 and

fA(n) =
∑
d|n
d∈A

f(d).

The formula (2) was derived by logarithmic differentiation of generating
functions

FA(q) =
∏
n∈A

(1− qn)−f(n)/n

and

GA(q) =
∑
n∈A

f(n)

n
qn.

If A is the set of all positive integers, then for f(n) = n we have

pA,f (n) = p(n),

the unrestricted partition function, and

fA(n) = σ(n),

the sum of the positive divisors of n.
Recall that a partition of a positive integer n is a weakly decreasing

sequence of positive integers whose sum is n [1]. For example, the following
are the partitions of 6:

(6), (5, 1), (4, 2), (4, 1, 1), (3, 3), (3, 2, 1), (3, 1, 1, 1),

(2, 2, 2), (2, 2, 1, 1), (2, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1). (3)

In this context, the equation (2) provides a remarkable relation connect-
ing a function of multiplicative number theory with one of additive number
theory, namely

n p(n) =
n∑

k=1

σ(k) p(n− k). (4)
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In this paper, we provide a new proof for the relation (4) considering
the number of k’s in all partitions of n. We denoted this number by Sn,k.
By (3), we see that S6,1 = 19, S6,2 = 8, S6,3 = 4, S6,4 = 2, S6,5 = 1 and
S6,6 = 1.

Theorem 1. Let n be a positive integer. If g(n) =
∑

d|n f(d), then

n∑
k=1

f(k)Sn,k =
n∑

k=1

g(k) p(n− k). (5)

The general nature of the function f(n) allows for applications of Theo-
rem 1 to classical functions from multiplicative number theory: the divisor
function σx(n), the Möbius function µ(n), Euler’s totient ϕ(n), Jordan’s
totient Jk(n), Liouville’s function λ(n), and others. The fascinating feature
of these identities is their common nature.

2 Proof of Theorem 1

We first sketch the proof of the generating function for Sn,k. Note that the
generating function for partitions where z keeps track of parts equal to k is
given by

(1 + z qk + z2 qk+k + z3 qk+k+k + · · · )
∞∏
n=1
n 6=k

(1 + qn + qn+n + qn+n+n + · · · )

=
1− qk

1− z qk
∞∏
n=1

1

1− qn
=

1− qk

(1− z qk)(q; q)∞
,

where

(a; q)∞ =

∞∏
k=0

(1− aqk).

Because the infinite product (a; q)∞ diverges when a 6= 0 and |q| > 1,
whenever (a; q)∞ appears in a formula, we shall assume that |q| < 1. In
this note, all identities involving infinite products of the form (a; q)∞ may
be understood in the sense of formal power series in q.

Taking the derivative with respect to z, and setting z equal to 1, we
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obtain the expression of the generating function for Sk,n:

∞∑
n=k

Sn,k q
n =

d

dz

1− qk

(1− z qk)(q; q)∞

∣∣∣∣∣
z=1

=
qk

1− qk
· 1

(q; q)∞
. (6)

Multiplying both sides of (6) by f(k), we derive the relation

∞∑
k=1

( ∞∑
n=1

Sn,k q
n

)
f(k) =

1

(q; q)∞

∞∑
k=1

f(k)
qk

1− qk
,

that can be rewritten as

∞∑
n=1

(
n∑

k=1

f(k)Sn,k

)
qn =

( ∞∑
n=0

p(n) qn

)( ∞∑
k=1

g(k) qk

)
(7)

where we have invoked the well-known generating function of p(n)

∞∑
n=0

p(n) qn =
1

(q; q)∞
,

and the well-known Lambert series

∞∑
k=1

f(k) qk

1− qk
=

∞∑
k=1

∑
d|k

f(k)

 qk.

Equating the coefficient of qn in (7) concludes the proof.

3 Some applications

Theorem 1 can be used to provide new connections between the partitions
and many classical special arithmetic functions often studied in multiplica-
tive number theory: the divisor function σx(n), the Möbius function µ(n),
Euler’s totient ϕ(n), Jordan’s totient Jk(n), and Liouville’s function λ(n).

3.1 Divisor functions

Firstly, we remark that
n∑

k=1

k Sn,k = n p(n).
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So it is clear that the relation (4) is the case f(n) = n of our theorem.

By transposing the Ferrers graph of each partition of n it follows that
the total number of parts in all the partitions of n equals the sum of largest
parts of all the partitions of n. Considering f(n) = 1 in Theorem 1, we
derive the following result.

Corollary 1. For n > 0, the sum of largest parts of all partitions of n can
be expressed as

n∑
k=1

τ(k) p(n− k),

where τ(n) counts the positive divisors of n.

Example 1. According to (3) and Corollary 1, the sum of largest parts of
all the partitions of 6 can be expressed as

6 + 5 + 4 + 4 + 3 + 3 + 3 + 2 + 2 + 2 + 1

= p(5) + 2 p(4) + 2 p(3) + 3 p(2) + 2 p(1) + 4 p(0)

= 7 + 10 + 6 + 6 + 2 + 4 = 35.

The cases f(n) = (−1)n and f(n) = (−1)n · n of Theorem 1 read as
follows.

Corollary 2. For n > 0, the difference between the number of odd parts
and the number of even parts in all the partitions of n can be expressed as

n∑
k=1

τo,e(k) p(n− k),

where τo,e(n) is the difference between the number of odd divisors and the
number of even divisors of n.

Example 2. According to (3) and Corollary 2, the difference between the
number of odd parts and the number of even parts in all the partitions of 6
can be expressed as

(0 + 2 + 0 + 2 + 2 + 2 + 4 + 0 + 2 + 4 + 6)

− (1 + 0 + 2 + 1 + 0 + 1 + 0 + 3 + 2 + 1 + 0)

= p(5) + 2 p(3)− p(2) + 2 p(1) = 7 + 6− 2 + 2 = 13.
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Corollary 3. For n > 0, the difference between the sum of odd parts and
the sum of even parts in all the partitions of n can be expressed as

n∑
k=1

σo,e(k) p(n− k),

where σo,e(n) is the difference between the sum of odd divisors and the sum
of even divisors of n.

Example 3. According to (3) and Corollary 3, the difference between the
sum of odd parts and the sum of even parts in all the partitions of 6 can be
expressed as:

(0 + 6 + 0 + 2 + 6 + 4 + 6 + 0 + 2 + 4 + 6)

− (6 + 0 + 6 + 4 + 0 + 2 + 0 + 6 + 4 + 2 + 0)

= p(5)− p(4) + 4 p(3)− 5 p(2) + 6 p(1)− 4 p(0)

= 7− 5 + 12− 10 + 6− 4 = 6.

3.2 Möbius function

The classical Möbius function µ(n) is defined for all positive integers n and
has its values in {−1, 0, 1} depending on the factorization of n into prime
factors:

µ(n) =

{
0, if n has a squared prime factor,

(−1)k, if n is a product of k distinct primes.

The sum over all positive divisors of n of the Möbius function is zero except
when n = 1. By Theorem 1, with f(n) = µ(n) we obtain the following
decomposition for Euler’s partition function.

Corollary 4. For n > 0,

p(n) =

n+1∑
k=1

µ(k)Sn+1,k.

Example 4. The case n = 5 of Corollary 4 reads as follows

p(5) = S6,1 − S6,2 − S6,3 − S6,5 + S6,6 = 19− 8− 4− 1 + 1 = 7.
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Recall that a natural number d is a unitary divisor of a number n if d
is a divisor of n and if d and n/d are coprime. The sum over all positive
divisors of n of the absolute value of the Möbius function is equal to the
number of unitary divisors of n [5, Theorem 264],∑

d|n

|µ(d)| = 2ω(n),

where ω(n) is an additive function defined as the number of distinct primes
dividing n. On the other hand, 2ω(n) counts the squarefree divisors of n.
We remark that the set of unitary divisors of n is not the set of squarefree
divisors, e.g., the set of unitary divisors of number 20 is {1, 4, 5, 20}, the set
of squarefree divisors of number 20 is {1, 2, 5, 10}. By Theorem 1, we get
the following result.

Corollary 5. For n > 0, the total number of squarefree parts in all parti-
tions of n can be expressed in terms of the number of squarefree divisors of
n as follows

n∑
k=1

2ω(k) p(n− k).

Example 5. According to (3) and Corollary 5, the total number of square-
free parts in all partitions of 6 can be expressed as

1 + 2 + 1 + 2 + 2 + 3 + 4 + 3 + 4 + 5 + 6

= p(5) + 2p(4) + 2p(3) + 2p(2) + 2p(1) + 4p(0)

= 7 + 10 + 6 + 4 + 2 + 4 = 33.

In addition, considering the relation [6, Exercise 1.52]∑
d|n

2ω(d) = τ(n2),

the case f(n) = 2ω(n) of Theorem 1 can be written as follows.

Corollary 6. For n > 0,

n∑
k=1

2ω(k) Sn,k =
n∑

k=1

τ(k2) p(n− k).
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Example 6. By Corollary 6, for n = 6 we have

S6,1 + 2S6,2 + 2S6,3 + 2S6,4 + 2S6,5 + 2S6,4 + 2S6,5 + 4S6,6

= 19 + 16 + 8 + 4 + 2 + 4 = 53

and

p(5) + 3 p(4) + 3 p(3) + 5 p(2) + 3 p(1) + 9 p(0)

= 7 + 15 + 9 + 10 + 3 + 9 = 53.

3.3 Euler’s totient function

Euler’s totient or phi function, ϕ(n), is a multiplicative function that counts
the totatives of n, that is the positive integers less than or equal to n that
are relatively prime to n. According to Euler’s classical formula [5, Theorem
63], ∑

d|n

ϕ(d) = n

by Theorem 1, we obtain the following identity.

Corollary 7. For n > 0,

n∑
k=1

ϕ(k)Sn,k =
n∑

k=1

k p(n− k).

Example 7. By Corollary 7, for n = 6 we have

S6,1 + S6,2 + 2S6,3 + 2S6,4 + 4S6,5 + 2S6,6 = 19 + 8 + 8 + 4 + 4 + 2 = 45

and

p(5) + 2 p(4) + 3 p(3) + 4 p(2) + 5 p(1) + 6 p(0) = 7 + 10 + 9 + 8 + 5 + 6 = 45.

In a similar way, considering the relations∑
d|n

µ(d)

d
=
ϕ(n)

n
and

∑
d|n

µ2(d)

ϕ(d)
=

n

ϕ(n)
,

we obtain new identities which combine Euler’s totient with Euler’s partition
function.

Corollary 8. For n > 0,
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(i)
n∑

k=1

µ(k)

k
Sn,k =

n∑
k=1

ϕ(k)

k
p(n− k);

(ii)
n∑

k=1

µ2(k)

ϕ(k)
Sn,k =

n∑
k=1

k

ϕ(k)
p(n− k).

Example 8. By Corollary 8.(i), for n = 6 we have

S6,1 −
S6,2

2
− S6,3

3
− S6,5

5
+
S6,6

6
= 19− 4− 4

3
− 1

5
+

1

6
=

409

30

and

p(5) +
p(4)

2
+

2 p(3)

3
+
p(2)

2
+

4 p(1)

5
+
p(0)

3
= 7 +

5

2
+ 2 + 1 +

4

5
+

1

3
=

409

30
.

On the other hand, by Corollary 8.(ii), with n replaced by 6, we obtain

S6,1 + S6,2 +
S6,3

2
+
S6,5

4
+
S6,6

2
= 19 + 8 + 2 +

1

4
+

1

2
=

119

4

and

p(5)+2 p(4)+
3 p(3)

2
+2 p(2)+

5 p(1)

4
+3 p(0) = 7+10+

9

2
+4+

5

4
+3 =

119

4
.

In number theory, Jordan’s totient function of a positive integer n, Jt(n),
is the number of t-tuples of positive integers all less than or equal to n that
form a coprime (t + 1)-tuple together with n. This is a generalisation of
Euler’s totient function, which is J1. Considering the identity [8, eq. 27.6.8,
p. 641] ∑

d|n

Jt(d) = nt,

by Theorem 1, we obtain the following generalization of Corollary 7.

Corollary 9. For n > 0, t > 0,

n∑
k=1

Jt(k)Sn,k =

n∑
k=1

kt p(n− k).

Example 9. By Corollary 9, for n = 6 and t = 2 we have

S6,1+3S6,2+8S6,3+12S6,4+24S6,5+24S6,6 = 19+24+32+24+24+24 = 147

and

p(5)+4 p(4)+9 p(3)+16 p(2)+25 p(1)+36 p(0) = 7+20+27+32+25+36 = 147.
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3.4 Liouville’s function

For a positive integer n, the Liouville function λ(n) is a completely multi-
plicative function defined as:

λ(n) = (−1)Ω(n)

where Ω(n) is the number of not necessarily distinct prime factors of n,
with Ω(1) = 0. We remark that Ω(n) is a completely additive function.
Considering Theorem 1 and the relation [8, eq. 27.7.6, p. 641]

∑
d|n

λ(d) =

{
1, if n is a square,

0, otherwise,

we derive the following identity.

Corollary 10. For n > 0,

n∑
k=1

λ(k)Sn,k =

n∑
k=1

p(n− k2).

Example 10. By Corollary 10, for n = 6 we have

S6,1 − S6,2 − S6,3 + S6,4 − S6,5 + S6,6 = 19− 8− 4 + 2− 1 + 1 = 9

and
p(5) + p(2) = 7 + 2 = 9.

4 Concluding remarks

The number of k’s in all the partitions of n has been considered in order to
provide a new proof of the classical identity

n p(n) =

n∑
k=1

σ(k) p(n− k).

Taking into accunt the generating function of Sn,k, we can write

∞∑
n=0

(Sn+1,1 − Sn,1) qn =

∞∑
n=0

Sn+1,1 q
n −

∞∑
n=0

Sn,1 q
n

=
1

q

∞∑
n=0

Sn,1 q
n −

∞∑
n=0

Sn,1 q
n =

1− q
q

∞∑
n=0

Sn,1 q
n =

1

(q; q)∞
=
∞∑
n=0

p(n) qn.
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Thus we deduce that

p(n) = Sn+1,1 − Sn,1.

In this context, Theorem 1 can be rewritten without Euler’s partition func-
tion p(n).

Theorem 2. Let n be a positive integer. If g(n) =
∑

d|n f(d), then

n∑
k=1

f(k)Sn,k =

n∑
k=1

g(k) (Sn+1−k,1 − Sn−k,1). (8)

The following result in partition theory has been widely attributed to
Richard Stanley, although it is a particular case of a more general result
that had been established by Nathan Fine 15 years earlier [4].

Theorem 3. The number of 1’s in the partitions of n is equal to the number
of parts that appear at least once in a given partition of n, summed over all
the partitions of n.

Other results related to the number of 1’s in all the partitions of n can
be seen in [2, 7].

Replacing p(n) by Sn+1,1−Sn,1 in Corollary 4, we obtain a new identity
for the number of 1’s in all the partitions of n. This new identity involves
the parts greater than 1 in all the partitions of n+ 1.

Corollary 11. The number of 1’s in the partitions of n is equal to

−
n+1∑
k=2

µ(k)Sn+1,k.

Example 11. We have S5,1 = 12, because the partitions of 5 that contain
1 as a part are:

(4, 1), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1).

According to (3) and Corollary 11, we also have

S5,1 = S6,2 + S6,3 + S6,5 − S6,6 = 8 + 4 + 1− 1 = 12.

Finally combinatorial proofs of our corollaries would be very interesting.
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