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Abstract

Dynamic mode decomposition is a relatively recent development in
the field of modal decompositions, however, it is a commonly used tech-
nique for analyzing the dynamics of nonlinear systems. Its success is
due to the fact that it is an equation-free, data-driven method capable
of providing accurate assessments of the spatiotemporal coherent struc-
tures in a complex system, or short-time future estimates. The aim
of this work is to present a new approach for computing the dynamic
mode decomposition. We show that our algorithm is closely related to
the currently accepted algorithm. In fact, the two approaches produce
the same DMD eigenvalues, it is only the DMD modes that differ. We
demonstrate the new approach on two examples model systems.
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1 Introduction

Introduced for the first time by Schmid [1] in the fluid mechanics community,
dynamic mode decomposition (DMD) has emerged as a leading technique
to identify spatiotemporal coherent structures from high-dimensional data.
Shortly after its introduction, it was shown by Rowley et al. in [2] close
relation between the DMD and spectral analysis of the Koopman operator
is shown, see also [3]. DMD analysis can be considered to be a numerical ap-
proximation to Koopman spectral analysis, and in this sense it is applicable
to nonlinear dynamical systems.

Over the past decade, the popularity of DMD method has grown and it
has been applied for a variety of dynamical systems in many different fields
such as video processing [12], epidemiology [13], neuroscience [15], financial
trading [16, 17, 18], robotics [14], cavity flows [4, 6] and various jets [2, 5].

Theoretical work on connections of DMD method with other methods,
such as POD [4], Fourier analysis [10] and Koopman spectral analysis [2, 7,
11]. Theorems regarding the existence and uniqueness of DMD modes and
eigenvalues can be found in [10]. For a review of the DMD literature, we
refer the reader to [8, 9, 19].

The remainder of this work is organized as follows: in the rest of Section 1
we describe the DMD algorithm, in Section 2, we propose and discuss a
new approach for DMD computation and in Section 3 we present examples
demonstrating the new algorithm. The conclusion is in Section 4.

1.1 The Dynamic Mode Decomposition Algorithm

In this paragraph the DMD algorithm is briefly reviewed.

Standard definition

The standard definition of DMD consider a sequential set of data Z =
{z0,...,2m}, where each z; € R". The data could be from measurements,
experiments or simulations collected at time ¢; from a given nonlinear sys-
tem, assume that the data are equispaced in time, with a time step At
and the collection time starts from tg to t,,. The main assumption of the
method is that there exists a linear (unknown) matrix A relating z; to the
subsequent zp41:

21 = Azg. (1)

The DMD modes and eigenvalues are intended to approximate the eigen-
vectors and eigenvalues of A. The method uses arrangement of the data set
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into two large data matrices:
X =1]200---y2m-1] and Y =[z1,...,2m] (2)

Then the algorithm proceeds as follows:

Algorithm 1: Standard DMD

Input: Data matrices X and Y, and rank r.
Output: DMD eigenvalues A and modes ¢
1: Procedure DMD(X,Y r).

2: U, X, V] =SVD(X,r) (Truncated r-rank SVD of X )
3: A=Uyve! (Low rank approzimation of A)
4: [W,A] = EIG(A) (Bigen-decomposition of A)

5: o =UW (DMD modes of A)

6: End Procedure

Exact DMD algorithm

A more general definition of DMD method is presented by Tu et al. in
[8], where the data is collected as a set of n-dimensional vectors (xg,yk)
(for k = 1,...,m), in contrast to the sequential time series. Then the
corresponding to (2) two sets of data are:

X =[x1,...,2m] and Y =[y1,...,Ym] (3)

The algorithm introduced in [8] is nearly identical to Algorithm 1. The only
difference is that the DMD modes (at step 5) are computed by the formula

d=YVETIW (4)

The modes in (4) are often called exact DMD modes, because Tu et al. in
[8] prove that these are exact eigenvectors of the matrix A. The modes in
® = UW used in Algorithm 1 are referred to as projected DMD modes [4].

As a result of the presented algorithms, we can reconstruct the approxi-
mate dynamics of data set Z. For convenience the DMD eigenvalues \; can
be converted to Fourier modes as w; = In(\;)/At. Therefore the approxi-
mate solution at all times is given by

zpmp(t) = P exp(2)b, (5)

where the columns of ® are the DMD modes, and Q2 = diag{wj};f:l is a
diagonal matrix with entries the corresponding eigenvalues w;. The vector
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b determines the weighting of each of the r modes, so that zg = ®b. Then
the vector zpyrp(t) defines the state of the system at time t.

In the case of uniformly sampled z(t), the presentation (5) at the sam-
pling instants ¢t = kAt is

zpmp(k) = PAD, (6)

where A = diag{)\;}}_;, b = ®¥ 2, and ®* is the pseudo-inverse of ®.

2 A new approach

Originally the DMD algorithm [1, 2] was formulated in terms of a companion
matrix , which highlights its connections to the Arnoldi algorithm and to
Koopman operator theory. Recall, that the main idea of DMD method is to
assume the existence of a linear operator A with the properties described in
(1). From (1) and (2) it follows

Y = AX. (7)

If we assume that the data sequence {zp,...,zn} is sufficiently long, i.e.
m is sufficiently large, then the vector z,, can be expressed as a linear
combination of the independent sequence {zl}?fol Then Y is related with
X by

Y = XF +R, (8)

where F' is the Frobenius companion matrix and R is the residual matrix. It
is then known that the eigenvalues of F', also referred to as the Ritz values,
approximate some of the eigenvalues of the matrix A when ||R|2 — 0. The
objective is to minimize the residual:

F =argming||Y — XF||.
To achieve this, we identify the singular value decomposition of matrix X
X =UXV", (9)

where the unitary matrix U contains the proper orthogonal modes of X,
the unitary matrix V is the right singular matrix of X, and the diagonal
matrix ¥ contains the singular values of X (where (.)* denotes the conjugate
transpose). Then F' is calculated by multiplying Y by the X pseudoinserve

F=X'Y =vy Uy (10)
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Relations (7)-(10) and ||R]||2 — 0 yield
A=XFXT. (11)

Then for the right hand side of (11), we obtain

XFXT =USV*FVE~lU* = USFY'U*, (12)
where
F=V*FV. (13)
Let
F=WAW™! (14)

be the eigendecomposition of F. Then from (11), (12) and (14) we get the
decomposition of the form

A=USWAW '~ 1U~,

or the equivalently

AUEW =UXWA.

Thus we showed that
d=UXW

is the eigenvector matrix of A.
On the other hand, from (10) and (13) we get the following expression
of F
F=x"1U*YV. (15)

Now, we are ready to introduce the alternative algorithm for computing
the DMD modes and eigenvalues.

Algorithm 2: Alternative DMD

Input: Data matrices X and Y, and rank r.
Output: DMD eigenvalues A and modes ®
1: Procedure DMD(X,Y r).

2: U,%,V]=8SVD(X,r) (Truncated r-rank SVD of X )
3: F=%"U*YV (Low rank approzimation of F)
4: [W,A] = EIG(F) (Eigen-decomposition of F)

5: o =UXW (DMD modes of A)

6:

End Procedure




10 G.H. Nedzhibov

From (14) and (15) we get the projection of Y onto a basis formed by
the eigenmodes UXW

Y = (USW)AW V™), (16)
which is equivalent to
Y = (XVW)AW V™).

From expression (16), one obtains the contribution of each dynamic mode
toY:

e its amplitude is given by the norm of corresponding column vector of
UXW,

e its frequency and damping are provided by the eigenvalues in A.

Theorem 1. Let (\,w), with A = 0, be an eigenpair of F defined by (13)
and let assume that the relation A = X FX™ defined by (11) is fulfilled, then
the corresponding eigenpair of A is (\, ), where

p=YVuw.
Proof. By using the SVD decomposition (9) and the pseudoinverse of X
Xt =velu*
we get the expression
A=YXt=YVElU*.

Let now express Ay
Ap=YVE Uy vw

which implies, by using (15)
Ap =YVFw=YVw\ = .

In addition, ¢ # 0, since if YVw = 0, then X7 1U*YVw = Fw = 0, which
implies A = 0. Hence, ¢ is an eigenvector of A with eigenvalue A. The proof
is completed.
Now, we can formulate an alternative version of Algorithm 2:
Algorithm 3 is almost identical to Algorithm 2. In fact, the two algo-
rithms differs only in computation of the DMD modes.
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Algorithm 3: Alternative DMD-2

Input: Data matrices X and Y, and rank r.
Output: DMD eigenvalues A and modes ¢

1

2:

S G kW

: Procedure DMD(X,Y r).
[U,%,V]=SVD(X,r) (Truncated r-rank SVD of X )
F=x"1U*yVv (Low rank approximation of F)
[W,A] = EIG(F) (Eigen-decomposition of F)
O=YVW (DMD modes of A)

: End Procedure

3 Numerical examples

To illustrate the algorithms introduced in Section 2, we consider two simple
examples with mixed spatiotemporal signals. Also, our objective is to com-
pare the results with the results of standard DMD algorithms (presented in

1, 8]).

Example 1

Let us have two signals of interest
fi(x,t) = sech(z + 3) exp(i2.3t)

and
fa(x,t) = 2sech(x) tanh(x) exp(i2.8t),

and the mixed signal is
f(z,t) = sech(x 4 3) exp(i2.3t) + 2sech(x) tanh(z) exp(:2.8t). (17)

This example is demonstrated in [9] with the original DMD algorithm.

The individual spatiotemporal signals fi(x,t) and fo(x,t) are illustrated
in Figure 1 (i)-(ii). The two frequencies present are w; = 2.3 and wy = 2.8,
which have distinct spatial structures. The mixed signal x(t) = f1(z,t) +
fa(z,t) is illustrated in Figure 1 (iii). We perform a rank-2 decomposition
(5) by using the three mentioned algorithms: Algorithm 1, Algorithm 2 and
Algorithm 3. The corresponding three approximate reconstructions of x(t)
are shown in Figure 1 (iv)-(vi), respectively. The reconstruction is almost
perfect, with the DMD modes and spectra closely matching those of the
underlying signals f1(x,t) and f2(x,t). We can say that the alternative
algorithms (Algorithm 2 and Algorithm 3) produce the same result as the
exact DMD procedure (Algorithm 1).



12 G.H. Nedzhibov

Figure 1: Spatiotemporal dynamics of two signals (i) f; = (x,t) and (ii) fo =
(z,t) of Example 1 that are mixed in (iii) z(¢t) = f(x,t) = fi(z,t) + fo(x, ).
The exact xpyp(t) is shown in panel (iv), alternative-1 zpprp(t) is shown
in (v) and alternative-2 xpprp(t) is shown in (vi).

Example 2: Translational and rotational invariances

The DMD method, is based on an underlying SVD that extracts correlated
patterns in the data. It is well known that the main weakness of such SVD-
based approaches is the inability to efficiently handle invariances in the data.
Specifically, translational and/or rotational invariances of low-rank objects
embedded in the data are not well captured. To demonstrate the impact of
the translation, we consider again Example 1, where the one of the signals is
translating at a constant velocity across the spatial domain. The two signals
of interest are

fi(x,t) = sech(z + 6 — t) exp(i2.3t)

and
fa(z,t) = 2sech(x) tanh(x) exp(i2.8t),
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Figure 2: Spatiotemporal dynamics with translation Example 2. The two
signals (i) f1 = (x,t), (ii) fo = (z,t) and the mixed z(t) = f(z,t) =
fi(z, )+ fo(z,t) (iii). The exact xpprp(t) is shown in panel (iv), alternative-
1 xpyp(t) is shown in (v) and alternative-2 xpyrp(t) is shown in (vi).
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and the mixed signal is
f(z,t) = sech(x 4+ 6 — t) exp(i2.3t) + 2sech(x) tanh(z) exp(:2.8t).

As before, the two frequencies present are wy; = 2.3 and wy = 2.8, with
given corresponding spatial structures. The individual spatiotemporal sig-
nals fi(z,t) and fo(x,t), along with the mixed solution z(t) = f(z,t) =
fi(z,t) + fa(z,t), are illustrated in Figure 1 (i)-(iii), respectively.

We perform again decomposition (5) by using the three mentioned al-
gorithms: Algorithm 1, Algorithm 2 and Algorithm 3. The corresponding
three approximate reconstructions of z(t) are shown in Figure 2 (iv)-(vi),
respectively.

In this case, we use rank-2, rank-5, and rank-10 reconstructions. The
rank-2 and rank-5 reconstruction are no able to characterize the dynamics
due to the translation. Although the dynamics are constructed from a two-
mode interaction, the reconstruction now requires approximately 10 modes
to get the right dynamics. This artificial inflation of the dimension is a
result of the inability of SVD to capture translational invariances and cor-
relate across snapshots of time. Once again the results in last three panels
Figure 2 (iv)-(vi) are identical.

4 Conclusion

The purpose of this study was to present a new approach for computing
approximate DMD modes and eigenvalues. As a result, we have introduced
two algorithms, alternative procedures for executing the DMD decomposi-
tion. We demonstrate the performance of the presented algorithms with
numerical examples. From the obtained results we can conclude that the
introduced approach gives identical results with those of the exact DMD
method [8].
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