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Abstract

This paper investigates the stabilization problem for stochastic net-
worked control systems under periodic denial-of-service (DoS) jamming
attacks. First, the resilient hybrid-triggered communication scheme is
developed to reduce the network transmission data and improve the
utilization efficiency, where a Bernoulli distribution is used to charac-
terize the switching protocol between time-triggered scheme and event-
triggered scheme. Then, a resilient hybrid-driven control protocol is
designed, and a new switched stochastic system is constructed. Suffi-
cient conditions of the mean-square exponential stability are derived
for the underlying system under DoS attacks. Furthermore, a co-design
scheme of the feedback gain and the hybrid-triggering parameter is ob-
tained by solving linear matrix inequalities. Finally, a satellite control
system is employed to illustrate the virtue and applicability of the pro-
posed approach.
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1 Introduction

The long-distance transmission characteristics of the network contribute to
the networked control systems (NCSs) penetrate into every corner of social
life, such as smart home, automotive automation, unmanned aerial vehicles,
intelligent transportation system and so on [1, 2, 3, 4, 5, 6, 7, 8]. However,
the widely open network environment means the exposure of some system
nodes and data transmission channels, which leads to a widespread existence
of security problems [9]. In particular, cyber attacks, that can be roughly
divided into denial of service (DoS) attacks [10] and deception attacks [11],
have become major disrupters to threaten network reliability, which aim to
degrade the performance of the NCSs by breaking and/or modifying the
transmitted data over network. Owing to the real-time requirements of the
controlled system in network environment, security problems of NCS have
been extensively attracted by the scholars.

As stated in [12], DoS, as a more frequent and harmful network attack,
is one of the priority problems in NCS security. Its main purpose is to in-
terrupt the signal transmission path, resulting in measure channel (sensor-
to-controller) and/or control channel (controller-to-actuator) cannot send
the state/output information or control signal in real time with receivers.
Based on the attacked network, some theoretical results have been reported
to preserve the security of NCS, see [13, 14, 15, 16]. From the point of
attackers, using the techniques of switched systems, security control prob-
lem on the duration and frequency of DoS attacks was considered by using
linear matrix inequalities (LMIs) in [13]. The resilient filtering problem for
NCSs under intermittent DoS attacks was solved in [14]. The interactive
decision-making process of attackers and smart grid security strategies were
simulated by game theory in [15] and security issues in remote state estima-
tion of cyber-physical systems were considered in [16]. For the problem of
NCS security under periodic DoS attacks, the literature [12] considered the
defense of DoS attacks with known period upper bound from the perspec-
tive of security control, and obtained sufficient conditions for the controlled
system to be asymptotically stable.

Recently, taking the limited communication bandwidth into considera-
tion, event-triggered scheme (ETS) has been introduced in many interest-
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ing studies, leading to a growing number of important publications (see
[17, 2, 18] and the references therein). Many of the mentioned literature
above, only the pre-set trigger mechanism is used to study the performance
of the system, however, the trade-off between network resource and system
performance is not considered. Optimizing the method of data transmission
in NCS is one of the problems to be solved, especially when the network is at-
tacked. In particular, under the bad influence of DoS attack, how to reduce
the network communication burden and reasonably and intelligently select
the transmission signal to ensure the performance of the system has become
an urgent problem to be solved. To tackle this problem, the literature [11]
has proposed a hybrid-drive communication scheme, which contains time-
triggered scheme (TTS) and ETS. However, this scheme is only applicable to
the stabilization problem of NCS under stochastic deception attacks. Then,
how to design a new communication scheme to remove the impact of DoS
jamming attacks and then ensure the stability of stochastic NCS is an open
problem.

Motivated by the problem above, contributions of this paper are gener-
alized as follows:

• A resilient hybrid-triggered communication scheme (RHTCS) is pro-
posed to remove the impact of DoS attacks and make full use of net-
work resources. Affected by the sampling period and DoS attacks, the
stability of the considered system may not be guaranteed under ETS,
while the proposed RHTCS can effectively ensure the system security.

• The model of switching stochastic system is established under RHTCS
and periodic DoS jamming attacks. On the basis of this model, the
criteria of stability and controller design are obtained by solving LMIs.

Notation: (Ω,F ,P) denotes a probability space, in which Ω stands for
the sample space, F is the σ-algebra of subsets of the sample space and P
represents the probability measure on Ω. Let Rn×m be a set of real n ×m
matrices. For a real symmetric matrix R ∈ Rn×n, R > 0 (R ≥ 0) represents
that R is positive definite (semidefinite). The sign He(R) stands for R+RT .
The symbol ∗ indicates the symmetric term in a symmetric block matrix.
Define a norm ||ϕ||h = sup

−h≤s≤0
||ϕ(s)||, where || · || denotes the Euclidian

norm of Rn.
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Figure 1: The framework of an NCS under DoS attacks

2 Problem formulation and Preliminaries

2.1 System description

Consider a stochastic system on the probability space (Ω,F ,P):

dx(t) = [Ax(t) +Bu(t)]dt+ Ex(t)d$(t), t ≥ 0, (1)

where x(t) ∈ Rn, u(t) ∈ Rm and $(t) are the system state, the control
input and a one-dimensional Brownian motion on the probability space,
respectively and A ∈ Rn×n, B ∈ Rn×m and E ∈ Rn×n are known matrices.
The Brownian motion $(t) satisfies E{d$(t)} = 0 and E{d2$(t)} = dt.
Assume that the pair (A,B) is controllable.

As shown in Figure 1, when the signal is not attacked during network
transmission, the general form of controller is designed as follows:

u(t) = Kx(tjh), t ∈ [tjh, tj+1h), (2)

where tjh(j ∈ {0, 1, 2, ...}, t0 = 0), denotes the sampling instant of successful
arrival at the controller and h represents the sampling period. K is the
controller feedback gain to be designed.
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2.2 Periodic DoS attacks and control law

As seen in Figure 1, considering the type of DoS attacks, its mathematical
expression is shown as follows [12]:

SDoS(t) =

{
1, t ∈ [nT, nT + T̃ ),

0, t ∈ [nT + T̃ , (n+ 1)T ),
(3)

where n ∈ N, T > 0 and T̃ represent the period number, the period of the
jammer and the sleeping time of the jammer, respectively, with T̃ ∈ [T̃min, T )
(T̃min > 0 is a constant ). Therefore, the interval ∪n∈N[nT, nT+ T̃ ) indicates
that DoS attacks are sleeping, and the interval ∪n∈N[nT+T̃ , (n+1)T ) implies
that DoS attacks are active. As mentioned in [12], T̃ does not require time-
invariant. Therefore, when we assume that T̃ = T̃min, which implies that
the attacker maintains a worse-case jamming scenario.

In the interval ∪n∈N[nT + T̃ , (n + 1)T ), the released data cannot suc-
cessfully arrive at the controller, and the control input cannot successfully
reach the actuator too. Thus, under periodic DoS jamming attacks (3), the
control input u(t) can be indicated as

u(t) =

{
Kx(tj,n+1h), t ∈ [tj,n+1h, tj+1,n+1h) ∩ [nT, nT + T̃ ), (4a)

0, t ∈ [nT + T̃ , (n+ 1)T ). (4b)

where {tj,n+1h}, j ∈ Jn = {0, 1, ..., jn} (jn = max{j ∈ N|nT+T̃ ≥ tj,n+1h}),
stand for the successful control update instants (t0,n+1h , nT ), which are
determined by the novel RHTCS.

2.3 A resilient hybrid-triggered communication scheme de-
sign

As seen in Figure 1, a RHTCS, that is composed of two trigger mechanisms,
is presented to achieve tradeoff between performance and communication
under DoS attacks. The switching of the two schemes satisfies a Bernoulli
distribution.

When TTS is chosen during signal transmission, the sampling instants
are tj,n+1h = jh. Define τj,n(t) = t− tj,n+1h, for (4a), we have

u(t) = Kx(t− τj,n(t)), (5)

where τj,n(t) ∈ [0, h).
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When no attack occurs and ETS is selected during signal transmission,
whether the sampled data can reach the controller will depend on the fol-
lowing form of event triggering mechanism [19]:

eT (t)Ψ1e(t) ≤ σxT (tjh)Ψx(tjh), (6)

where e((tj + i)h) = x(tjh) − x((tj + i)h), Ψ > 0 is a weighting matrix to
be determined and σ ∈ [0, 1) is a constant to be designed. The next control
update instants tj+1h can be obtained by

tj+1h = tjh+ min
i≥1
{jh|eT ((tj + i)h)Ψe((tj + i)h) > σxT (tjh)Ψx(tjh)}. (7)

Since the network is blocked by periodic DoS attacks, the traditional
ETS (7) cannot achieve the stability of the considered system. Motivated
by [18], a resilient event-triggered mechanism is introduced to remove the
impact of DoS attacks. Its triggering instant is determined by the following
condition:

tj,n+1h ∈ {tjrh satisfing (6)|tjrh ∈ [nT, nT + T̃ )} ∪ {nT}, n, r, jr ∈ N. (8)

For convenience, for n ∈ N, let D1,n , [nT, nT + T̃ ), D2,n , [nT +

T̃ , (n+ 1)T ) and Gj,n , [tj,n+1h, tj+1,n+1h)(j ∈ Jn). Then the time interval
Gj,n ∩ D1,n can be rewritten as

Gij,n = [tk,n+1h+ (i− 1)h, tk,n+1h+ ih), i = 1, . . . , ςj,n,

Gςj,n+1
j,n = [tk,n+1h+ ςj,nh, tk+1,n+1h),

Gijn,n = [tjn,n+1h+ (i− 1)h, tjn,n+1h+ ih), i = 1, . . . , ςjn,n,

Gςjn,n+1
jn,n

= [tjn,n+1h+ ςjn,nh, nT + T̃ ),

(9)

where j ∈ Jn − {jn}, ςj,n , max{k ∈ N|tj,n+1h + kh < tj+1,n+1h} and
ςjn,n , max{k ∈ N|tjn,n+1h + kh < nT + T̃}. Similarly, we divide the time

interval D2,n into the following subintervals: D2,n = ∪ςjn+1,n+1
i=1 Gijn+1,n, where

G1
jn+1,n = [nT + T̃ , tjn,n+1h+ ςjn,nh+ h), Gijn+1,n = [tjn,n+1h+ ςjn,nh+ (i−

1)h, tjn,n+1h+ ςjn,nh+ ih) with i = 2, ..., ςjn+1,n + 1 and ςjn+1,n , max{i ∈
N|tjn,n+1h+ ςjn,nh+ ih < (n+ 1)T}.

Now, we define two piecewise functions: θj,n(t) = t − tj,n+1h − lj,nh,

t ∈ Glj,n+1
j,n with lj,n = 0, 1, .., ςj,n and j ∈ J ∪{jn+1}, ej,n(t) = x(tj,n+1h)−

x(tj,n+1h + l̄j,nh), t ∈ G l̄j,n+1
j,n with l̄j,n = 0, 1, .., ςj,n and j ∈ J . According

to the definitions of θj,n(t) and ej,n(t), we know θj,n(t) ∈ [0, h), t ∈ Gj,n ∩
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D1,n. Then, the next released system state that satisfies the event-triggered
condition can be expressed as:

x(tj,n+1h) = x(t− θj,n(t)) + ej,n(t), t ∈ Gj,n ∩ D1,n. (10)

Then, according to (6), it follows that

eTj,n(t)Ψej,n(t) ≤ σ(ej,n(t) + x(t− θj,n(t)))TΨ(ej,n(t) + x(t− θj,n(t))). (11)

and for (4a), we have

u(t) = K[x(t− θj,n(t)) + ej,n(t)]. (12)

Under RHTCS, the controller based on (5) and (12) is expressed as follows:

u(t) = β(t)Kx(t− τj,n(t)) + (1− β(t))K[x(t− θj,n(t)) + ej,n(t)], (13)

where β(t) ∈ {0, 1} depends on Bernoulli distribution. Its mathematical
expectation and mathematical variance are β̄ and ν2 = β̄(1−β̄), respectively.

Remark 1. In some existing results [11, 20], these only use a hybrid-drive
communication scheme to solve the stabilization problem of NCS under de-
ception attacks. Different from the aforementioned results, this paper pro-
poses a novel RHTCS to solve the security problem of NCS under periodic
DoS jamming attacks.

Based on (4) and (13), system (1) can be written as

dx(t) = [Ax(t) + β(t)BKx(t− τj,n(t)) + (1− β(t))BK
×(x(t− θj,n(t)) + ej,n(t))]dt+ Ex(t)d$(t), t ∈ Gkj,n ∩ D1,n,

dx(t) = Ax(t)dt+ Ex(t)d$(t), t ∈ D2,n.
(14)

In order to construct a unified form of the system model, we define

ρ(t) =

{
1, t ∈ Z[−h, 0] ∪ (∪n∈ND1,n)

2, t ∈ ∪n∈ND2,n,
and tl,n =

{
nT, l = 1,

nT + T̃ , l = 2,

which implies Dl,n = [tl,n, t3−l,n+l−1), ρ(tl,n) = l and ρ(t−l,n) = 3− l.
As the definition of ρ(t), the following switched stochastic system can be

described as

dx(t) = [Alx(t) + β(t)Blx(t− τj,n(t)) + (1− β(t))Bl(x(t− θj,n(t))
+ej,n(t))]dt+ Ex(t)d$(t), t ∈ [tl,n, t3−l,n+l−1), n ∈ N, l = 1, 2,

x(t) = ϕ(t), t ∈ [−h, 0],
(15)

where Al = A, B1 = BK and B2 = 0.
The objective of this paper is to design the controller under DoS attacks,

such that system (15) is mean-square exponentially stable.
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3 Stability analysis

System (15) implies the overall dynamics of NCS in Figure 1, and the crite-
rion of mean-square exponentially stable is given in Theorem 1.

Theorem 1. Assume the parameters T , T̃ in (3), and control gain matrix
K ∈ Rn×m be known. For given scalars σ ∈ (0, 1), β̄ ∈ [0, 1], αl > 0,
µl > 0, l = 1, 2, and h > 0, satisfying

λ := α1T̃ − α2(T − T̃ )− 2(α1 + α2)h− ln(µ1µ2) > 0, (16)

if there exist symmetric matrices Ψ > 0, Pl > 0, Qlj > 0, Rlj > 0 and Zlj >
0, j ∈ {1, 2} and appropriate dimension matrices Mld, Nld, d ∈ {1, 2, 3},
such that for l = 1, 2, the following LMIs hold:

P1 ≤ µ2P2, P2 ≤ µ1e
2(α1+α2)hP1, ζlj ≤ µ(3−l)jζ(3−l)j , ζ ∈ {Q,R,Z}, (17)

Ξ1 =


Ξ111 Ξ112 Ξ113(k) Ξ114 Ξ115

∗ Ξ122 0 0 0
∗ ∗ Ξ133 0 0
∗ ∗ ∗ Ξ144 0
∗ ∗ ∗ ∗ Ξ155

 < 0, (18)

Ξ2 =


Ξ211 Ξ212 Ξ213(k) Ξ214

∗ Ξ222 0 0
∗ ∗ Ξ233 0
∗ ∗ ∗ Ξ244

 < 0, (19)

where

Ξl11 = Ξl1 +Ξl2 +ΞT
l2, Ξl1 =

[
Υl11 Υl12

Υ Tl12 Υl22

]
,

Υ112 =
[
Υ11 β̄P1B1 (1− β̄)P1B1 0 (1− β̄)P1B1

]
,

Υ212 =
[
Υ21 0n×3n

]
, Υl11 = He(PlAl) + (−1)l−12αlPl + (Ql1 +Ql2),

Υ122 = diag{0, σΨ,−e−2α1h(Q11 +Q12), (σ − 1)Ψ}+ σHe(IT1 ΨI2)

I1 =
[

0 I 0n×2n

]
, I2 =

[
0n×3n I

]
, Υ222 = diag{0, 0,−Q21 −Q22},

Ξl2 = [Ξ1
l2 Ξ2

l2], Ξ1
l2 = Ml1 +Ml3 +Nl1 +Nl3,

Ξ2
12 = [−M12 −M13 −N11 +N12 −M11 +M12 −N12 −N13 0],

Ξ2
22 = [−M22 −M23 −N21 +N22 −M21 +M22 −N22 −N23],

Ξl12 =
[ √

hMl3

√
hNl3

]
, Ξl22 = diag{−e2(l−2)αlhRl2,−e2(l−2)αlhZl2},
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Ξl13(1) =
[ √

hMl1

√
hNl1

]
, Ξl13(2) =

[ √
hMl2

√
hNl1

]
,

Ξl13(3) =
[ √

hMl1

√
hNl2

]
, Ξl13(4) =

[ √
hMl2

√
hNl2

]
,

Ξl33 = diag{−e2(l−2)αlhRl1,−e2(l−2)αlhZl1},
ΞT
l14 = [Ξ1

l14 Ξ
2
l14], Ξ̄2

214 = 03n×2n,

Ξ1
l14 =


√
hPlAl

√
hβ̄PlBl√

hPlAl
√
hβ̄PlBl

PlE 0

 ,
Ξ2

114 =

 (1− β̄)
√
hP1B1 0 (1− β̄)

√
hP1B1

(1− β̄)
√
hP1B1 0 (1− β̄)

√
hP1B1

0 0 0

 ,
ΞT

115 =

[
0 ν

√
hP1B1 −ν

√
hP1B1 0 −ν

√
hP1B1

0 ν
√
hβ̄P1B1 −ν

√
hP1B1 0 −ν

√
hP1B1

]
,

Ξl44 = diag{−(Rl1 +Rl2)−1,−(Zl1 + Zl2)−1,−Pl}, Ξ155 = Ξ144,

then system (15) is mean-square exponentially stable.

Proof. The following Lyapunov-Krasovskii functional is constructed:

Vρ(t)(t) = xT (t)Pρ(t)x(t) +

∫ t

t−h
f(t, s)xT (s)Qρ(t)1x(s)ds

+

∫ t

t−h
f(t, s)xT (s)Qρ(t)2x(s)ds+

∫ 0

−h

∫ t

t+v
f(t, s)gT (s)Rρ(t)1g(s)dsdv

+

∫ 0

−h

∫ t

t+v
f(t, s)gT (s)Rρ(t)2g(s)dsdv +

∫ 0

−h

∫ t

t+v
f(t, s)gT (s)Zρ(t)1g(s)dsdv

+

∫ 0

−h

∫ t

t+v
f(t, s)gT (s)Zρ(t)2g(s)dsdv (20)

where f(t, s) := e(−1)ρ(t)2αρ(t)(t−s), and g(s) = Ax(s)+β(s)Bρ(t)x(s−τj,n(s))+
(1−β(s))Bρ(t)(x(s−θj,n(s))+ej,n(s)). Let Al = Alx(t)+ β̄Blx(t− τj,n(t))+

(1−β̄)Bl[x(t−θj,n(t))+ej,n(t)], B̃l = Blx(t−τj,n(t))−Bl[x(t−θj,n(t))+ej,n(t)]
and Zl = h(Rl1 +Rl2) + h(Zl1 + Zl2).

For ρ(t) = 1, the weak infinitesimal operator L, using the Leibniz-
Newton formula, Young’s inequality, Jenson inequality and (11), we have
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E{LV1(t)} ≤ ξT1 (t)
[
− 2α1V1(t) +Ξ111 + e2α1h(τj,n(t)M11R

−1
11 M

T
11

+ (h− τj,n(t))M12R
−1
11 M

T
12 + hM13R

−1
12 M

T
13 + θj,n(t)N11Z

−1
11 N

T
11

+ (h− θj,n(t))N12Z
−1
11 N

T
12 + hN13Z

−1
12 N

T
13)
]
ξ1(t) + xT (t)ETPEx(t)

+AT1Z1A1 + ν2B̃TZ1B̃,

in which ξ1(t) = [xT (t) xT (t − τj,n(t)) xT (t − θj,n(t)) xT (t − h) eTj,n(t)]T .
Using Lemma 1 in [21] and Schur complement formula to Ξ1 < 0 in (18),
we can obtain that

E{LV1(t) + 2α1V1(t)} ≤ 0,

which implies that

E{V1(t)} ≤ e−2α1(t−t1,n)E{V1(t1,n)}, t ∈ [t1,n, t2,n). (21)

Similarly, for ρ(t) = 2, we can get that

E{LV2(t)} ≤ ξT2 (t)[2α2V2(t) +Ξ211 + τj,n(t)M21R
−1
21 M

T
21

+ (h− τj,n(t))M21R
−1
21 M

T
21 + hM23R

−1
22 M

T
23 + θj,n(t)N21Z

−1
21 N

T
21

+ (h− θj,n(t))N22Z
−1
21 N

T
22 + hN23Z

−1
22 N

T
23]ξT2 (t)

+ xT (t)ETPEx(t) +AT2Z2A2,

in which ξ2(t) = [xT (t) xT (t− τj,n(t)) xT (t− θj,n(t)) xT (t−h)]T . According
to Lemma 1 in [21] and Ξ2 < 0, we can deduce that

E{LV2(t)− 2α2V2(t)} ≤ 0,

which means that

E{V2(t)} ≤ e2α2(t−t2,n)E{V2(t2,n)}, t ∈ [t2,n, t1,n+1).

Based on the analysis above, let

V (t) =

{
V1(t), t ∈ [t1,n, t2,n),

V2(t), t ∈ [t2,n, t1,n+1),

we have

E{V (t)} ≤

{
e−2α1(t−t1,n)E{V1(t1,n)}, t ∈ [t1,n, t2,n),

e2α2(t−t2,n)E{V2(t2,n)}, t ∈ [t2,n, t1,n+1).
(22)
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Case 1: if t ∈ [t1,n, t2,n), integrating (17) and (22) yields

E{V (t)} ≤ e−2α1(t−t1,n)E{V1(t1,n)}
≤ µ2e

−2α1(t−t1,n)E{V1(t−1,n)}

≤ µ2e
−2α1(t−t1,n)eα2(t1,n−1−t2,n−1)E{V2(t2,n−1)}

≤ e(α1+α2)µ1µ2e
−α1(t−t1,n)eα2(t−1

1,n−t2,n−1)E{V1(t−2,n−1)}
...

≤ eλnV1(t1,0). (23)

Notice that t ≤ t2,n = nT + T̃ , then n ≥ t−T̃
T . Substituting this inequality

into (23) yields

E{V (t)} ≤ eλ
1−T̃
T e−

λ
T
tV1(0). (24)

Case 2: if t ∈ [t1,n, t2,n), similarly, integrating (17) and (22) yields

E{V (t)} ≤ 1

µ2
eλe−

λ
T
tV1(0). (25)

Finally, we have E{||x(t)||2} ≤ κεd3
d1
e−

λ
T
t||ϕ||2h, where κ = max{eλ

T̃
T , 1

µ2
eλ}

and d3 = d2 + λmax(hQ11 + hQ12) + λmax(h
2

2 (R11 +R12) + h2

2 (Z11 + Z12)))
with d2 = max

j∈{1,2}
{λmax(Pj)}. Therefore, system (15) is mean-square expo-

nentially stable. This proof is completed.

According to Theorem 1, the state feedback gain matrix K and the
weighted matrix Ψ are obtained by the following theorem.

Theorem 2. Assume the parameters T , T̃ . For given scalars σ ∈ (0, 1),
β̄ ∈ [0, 1], ε1l > 0, ε2l > 0, χlk > 0, k = 1, 2, αl > 0 and µl > 1, l = 1, 2,
and h > 0, satisfying (16), if there exist symmetric matrices Ψ̄ > 0, Yl >
0, Q̄lj > 0, R̄lj > 0 and Z̄lj > 0, j ∈ {1, 2}, and appropriate dimension
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matrices X, M̄ld, N̄ld, d ∈ {1, 2, 3}, such that the following LMIs hold:[
−µ2Y2 Y2

∗ −Y1

]
≤ 0, (26)[

−µ1e
2(α1+α2)hY1 Y1

∗ −Y2

]
≤ 0, (27)[

−µ3−lζ̄(3−l)k Y3−l
∗ χ2

lkζ̄lk − 2χlkYl

]
≤ 0,

ζ̄ ∈ {Q̄, R̄, Z̄}, k ∈ {1, 2}, (28)

Ξ̄1 =


Ξ̄111 Ξ̄112 Ξ̄113(k) Ξ̄114 Ξ̄115

∗ Ξ̄122 0 0 0
∗ ∗ Ξ̄133 0 0
∗ ∗ ∗ Ξ̄144 0
∗ ∗ ∗ ∗ Ξ̄155

 < 0, (29)

Ξ̄2 =


Ξ̄211 Ξ̄212 Ξ̄213(k) Ξ̄214

∗ Ξ̄222 0 0
∗ ∗ Ξ̄233 0
∗ ∗ ∗ Ξ̄244

 < 0, (30)

where Ξ̄1 and Ξ̄2 are, respectively, obtained from Ξ1 and Ξ2 by replacing Ψ ,
PlAl, PlBl, Qlj, Rlj, Zlj Mld, Nld, PlE, −(Rl1 +Rl2)−1, −(Zl1 +Zl2)−1, and
Pl with Ψ̄ , AlYl, BlX, Q̄lj, R̄lj, Z̄lj, M̄ld, N̄ld, EYl, −2ε1lYl+ε2

1l(Rl1 +Rl2),
−2ε2lYl + ε2

2l(Zl1 + Zl2) and Yl, then the switched system is mean-square
exponentially stable. Furthermore, the control gain K and resilient hybrid-
driven weight matrix Ψ are given by K = XY −1

1 and Ψ = Y −1
1 Ψ̄Y −1

1 .

Proof. First, let Yl = P−1
l , S1 = diag{S3, Y1, Y1, Y1, Y1, I, I}, S3 = diag{Y1,

Y1, Y1, Y1, Y1, Y1}, S2 = diag{S4, Y2, Y2, Y2, Y2, I, I, I}, S4 = diag{Y2, Y2, Y2,
Y2, Y2}, then pre- and post-multiply Ξ1 in (18) with S1, pre- and post-
multiply Ξ̄2 in (18) with S2, and let F̄lk = YlFlkYl, F ∈ {Q,R,Z}, Ūlj =
Sl+2UljYl, U ∈ {M,N}, l ∈ {1, 2}, k ∈ {1, 2}, j ∈ {1, 2, 3}, X = KY1 and
Ψ̄ = Y1ΨY1. Then (Rl1+Rl2)−1 = Yl(R̄l1+R̄l2)−1Yl ≥ 2ε1lYl−ε2

1l(R̄l1+R̄l2),
(Zl1 + Zl2)−1 = Yl(Z̄l1 + Z̄l2)−1Yl ≥ 2ε2lYl − ε2

2l(Z̄l1 + Z̄l2). Similarly, (30)
guarantees that (19) holds. Furthermore, applying the Schur complement
formula, (27) and (28) can ensure that (17) holds. This proof is completed.

Remark 2. In contrast to the existing result [18], we use the necessary
and sufficient condition for transforming nonlinear matrix inequalities into
LMIs and introduce more slack matrices, so Theorem 2 is less conservative



134 N. Zhao, H. Zhang and P. Shi

than Theorem 3 in [18], which means that our method makes the stability of
system (15) easier to be guaranteed.

Figure 2: Structure of the satellite systems

4 An illustrative example

In this section, a satellite control system (see Figure 2) is used to illustrate
the effectiveness of the proposed control strategy. The plant’s state-space
representation is shown by (also see [22]):

ẋ(t) =


0 0 1 0
0 0 0 1

− k
J1

k
J1

− d
J1

d
J1

k
J2

− k
J1

d
J2

− d
J2

x(t) +


0
1
J1
0
0

u(t), (31)

where k = 0.09 and d = 0.04 are torque constant of a spring and viscous
damping in two rigid bodies (the main body and the instrumentation mod-
ule), respectively, J1 = 1 and J2 = 1 are the moments of inertia of the two
bodies. The state x(t) = [x1(t) x2(t) x3(t) x4(t)] = [θ1(t) θ̇1(t) θ2(t) θ̇2(t)],
where θ1(t) and θ2(t) are the yaw angles for the two bodies. Furthermore,
the matrix E is chosen as 0.1I. Let T = 2s, T̃ = 1.8s, α1 = 0.16, α2 = 0.5,
µ1 = µ2 = 1.05, h = 0.1s, by a simple calculation, we have λ = 0.1464,
which means that (16) holds.

In the following, two schemes (ETS and RHTCS) are considered to
demonstrate the effectiveness and advantage of the obtained results .
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Figure 3: Release instants and intervals in Case 1

Figure 4: State responses x(t) in Case 1

Scheme 1: ETS is selected, that is, β(t) = 0 for all t ≥ 0. According to
Theorem 2, the controller feedback gain of system (15) and event-triggering



136 N. Zhao, H. Zhang and P. Shi

Figure 5: Control input u(t) in Case 1
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Figure 6: Release instants and intervals in Case 2

matrix under DoS jamming attacks are obtained:

K =
[
−0.8645 0.4669 −1.6018 −0.7631

]
,

Ψ = 105 ×


0.7740 −0.4238 1.4431 0.7027
−0.4238 0.2332 −0.7912 −0.3855

1.4431 −0.7912 2.7007 1.3130
0.7027 −0.3855 1.3130 0.6497

 .
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The response of x(t), event-triggered instants and released intervals, and
control input u(t) are depicted in Figures 3–5, respectively. However, as
shown in Table 1, the conditions of Theorem 2 in [18] cannot find a set of
feasible solutions, which verifies the statement of Remark 2.

Figure 7: State responses x(t) in Case 2

Figure 8: Control input u(t) in Case 2

Scheme 2: When the trigger mechanism is selected as RHTCS, that is,
β̄ ∈ (0, 1). Let β̄ = 0.3, applying Theorem 2, the controller feedback gain
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Table 1: Whether conditions are feasible for different parameters h.
Sample period h 0.09 0.1 0.12

Theorem 2 in [18] feasible - -
Theorem 2 with β̄ = 0 feasible feasible -
Theorem 2 with β̄ = 0.3 feasible feasible feasible

and weight matrix under DoS jamming attacks are presented:

K =
[
−1.0000 0.5983 −1.9303 −0.7077

]
,

Ψ = 109 ×


0.2654 −0.1601 0.5152 0.1940
−0.1601 0.0967 −0.3108 −0.1170

0.5152 −0.3108 1.0010 0.3765
0.1940 −0.1170 0.3765 0.1426

 .
Figure 6 represents the graph of event-triggered instants and released inter-
vals. The state response is depicted in Figure 7. Figure 8 gives the curves
of control input u(t).

Consider h = 0.12, and other parameters remain unchanged. As shown
in Table 1, when the trigger condition is selected as ETS, we cannot find a
set of feasible solutions by using Theorem 2. However, using RHTCS, we
can find a set of feasible solutions to ensure that the system is stable by em-
ploying LMIs (27)-(30) in Theorem 2. This illustrates that compared with
ETS, the proposed RHTCS can ensure the stability of the system more effec-
tively. In addition, when h = 0.1, the number of data transmission by TTS,
ETS and RHTCS are 300, 59, 112, respectively. This clearly shows that
compared with TTS, the proposed RHTCS reduces the burden of network
bandwidth even more. Therefore, the RHTCS achieves a trade-off between
network resource and system performance.

5 Conslusion

In this paper, the controller synthesis problem for the resilient hybrid-
triggering NCSs under periodic DoS jamming attacks has been solved. A
resilient hybrid-triggered control strategy has been designed to achieve a
trade-off between network resources and system performance. Based on the
scheme, sufficient conditions have been obtained to ensure the mean-square
exponential stability of the switched stochastic system. In addition, the
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co-design strategy of controller gain and the parameter matrix of the strat-
egy have been given. Finally, the efficiency and advantages of the proposed
scheme have been verified by a practical example.
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