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Abstract

In this article, we discuss some approximation methods for optimal
design problems governed by evolution equations of parabolic type.
The two investigated approaches are of fixed domain type. We also
formulate supplementary questions and problems, related to this sub-
ject.
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1 Introduction

Optimal design problems usually take into account stationary processes, but
there are studies related to evolutionary systems. For instance, the classical
monographs by Pironneau [14], Sokolowski and Zolesio [15] devote sections
to such subjects, in particular to hyperbolic systems and parabolic systems.
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Here, we explore the application of methods of fixed domain type in the
setting of parabolic shape optimization problems. See [10], [11], [12], [18]
for some recent developments in this respect. We consider the minimization
of a cost functional J defined on a family O of admissible domains in Rd;
more precisely, for each Ω ∈ O, a functional J is defined and the value J
depends on x ∈ Ω, t ∈ [0, T ], T > 0, and the solution yΩ of the following
initial boundary value problem:

y′Ω −∆yΩ = f(x, t) in Ω×]0, T [, (1.1)

yΩ = 0 on ∂Ω× [0, T ], (1.2)

yΩ(x, 0) = y0(x) in Ω, (1.3)

where y′ denotes the derivative with respect to t ∈ [0, T ]. We assume
f ∈ L2(Ω×]0, T [) and y0 ∈ L2(Ω). Moreover, in general, it is assumed
that Ω ⊂ D for any Ω ∈ O, where D is some given Lipschitzian bounded
domain. Regularity conditions on the admissible domains Ω ∈ O and more
hypotheses will be discussed later.

Examples of cost functionals J are:∫ T

0

∫
Ω
j(x, t, yΩ(x, t))dxdt, (1.4)

∫ T

0

∫
E
j(x, t, yΩ(x, t))dxdt, (1.5)∫

Ω
j(x, yΩ(x, T ))dx. (1.6)

In (1.5), E ⊂ D is another fixed domain satisfying E ⊂ Ω for any Ω ∈ O.
Here j is some Carathéodory functional. It is also possible to consider
boundary observation problems or the dependence of j on ∇yΩ(x, t), etc.

One physical interpretation of shape optimization problems involving the
minimization of some functionals (1.4) - (1.6) subject to the state system
(1.1) - (1.3), is to find the shape of an isolation wall in Ω protecting a certain
subregion from heat or cooling sources situated in another subregion. This
is similar to the hyperbolic case [14], [15], where the protection is considered
with respect to some noise sources, for example.
In this paper, we approach the problem (1.1) - (1.6) via two methods: the
Kawarada-Natori penalization idea (e.g., [6]) which we discuss in Section
2, and an approximation approach via controllability-type arguments in
Section 3. The first one uses a perturbation of the state system and a
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parametrization of the unknown geometry, while the second one does not
perturb the parabolic differential operator, but introduces a supplementary
control term on the right-hand side of the equation. In Section 2, the argu-
ments known in the stationary case are adapted to the parabolic case, while
Section 3 uses methods specific for the optimal control of parabolic problems.
We underline that the well known level set method, due to Osher and Sethian
[13] (see as well Allaire [2]), is essentially different from our approach. For
instance, although we also apply level functions, no Hamilton-Jacobi equa-
tion is needed, but ordinary Hamiltonian systems are used instead (see [18],
[8]). The final section includes a brief discussion of other problems and me-
thods. The methodology used in this work enters the general setting of fixed
domain approaches for shape optimization. We quote [8] and [9] for some
recent applications in the stationary case.

2 Penalization of the state equation

We approximate the state system (1.1) - (1.3) by a penalized equation de-
fined in D:

y′ε −∆yε +
1

ε
χD\Ωyε = f in D×]0, T [, (2.1)

yε = 0 on ∂D × [0, T ], (2.2)

yε(x, 0) = y0(x) in D, (2.3)

where ε > 0. Here and henceforth χD\Ω denotes the characteristic function
of the set D \ Ω.

If Ω and D are open bounded sets, f ∈ L2(D×]0, T [) and y0 ∈ L2(D),
then (2.1) - (2.3), respectively (1.1) - (1.3) possess unique weak solutions
in L2(0, T ;H1

0 (D)) ∩ H1(0, T ;H−1(D)), respectively in L2(0, T ;H1
0 (Ω)) ∩

H1(0, T ;H−1(Ω)). In both cases, the solutions are continuous on [0, T ] with
values in L2(D), respectively in L2(Ω). See Evans [3], Chapter 7.

Multiply (2.1) by yε and integrate by parts. Then, we have the estimate:

d

dt
|yε|2L2(D) +

∫
D
|∇yε|2dx+

1

ε

∫
D
χD\Ω|yε|2dx

≤ |f |L2(D)|yε|L2(D), a.a. t ∈ [0, T ]. (2.4)

After integration over [0, t] in (2.4) and the application of the Gronwall ine-
quality, we obtain that {yε} is bounded in C([0, T ];L2(D))∩L2(0, T ;H1

0 (D))
and, moreover

|yε|L2(0,T ;L2(D\Ω)) −→ 0 (2.5)
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as ε→ 0. On a subsequence, we may assume

yε −→ ỹ weakly in L2(0, T ;H1
0 (D)). (2.6)

As y′ε ∈ L2(0, T ;H−1(D)), we also have y′ε ∈ L2(0, T ;H−1(Ω)). Multiply
(2.1) by any v ∈ L2(0, T ;H1

0 (Ω)) ⊂ L2(0, T ;H1
0 (D)) by using the zero ex-

tension. Then the last term disappears and by (2.6), we obtain that {y′ε}
is bounded in L2(0, T ;H−1(Ω)). Its weak limit on a subsequence (again
denoted by yε) has to satisfy

y′ε −→ ỹ′ weakly in L2(0, T ;H−1(Ω)) (2.7)

by a distribution argument in ]0, T [.
We now impose a very weak regularity property on ∂Ω, the segment

property (Adams [1], Tiba [17]) which is concerned with some continuity
of the boundary ∂Ω. Henceforth we say that Ω is of class C if Ω has the
segment property.

Proposition 2.1. If Ω is of class C, then ỹ is the unique weak solution
of (1.1) - (1.3).
Proof. We have just to prove that ỹ satisfies (1.2) and (1.3) as (2.6) and
(2.7) already show that (1.1) is satisfied by ỹ as a weak solution. We notice
that by (2.5) and (2.6), we see that ỹ ∈ L2(0, T ;H1(D)) and ỹ(x, t) = 0 a.e.
in (D \Ω)× [0, T ]. Let µ(·) and µ̃(·) denote the Lebesgue measures in Rd+1

and Rd, respectively.
We set DΓ = {(x, t) ∈ (D \ Ω) × [0, T ]; ỹ(x, t) 6= 0} and Dt = {x ∈

D \ Ω; ỹ(x, t) 6= 0}. Then it is known that

0 = µ(DΓ) =

∫ T

0
µ̃(Dt)dt,

(see Vulikh [19], Chapter VIII.7). It yields that µ̃(Dt) = 0 for almost all
t ∈ [0, T ].

Then, by the Hedberg-Keldys stability property (Theorem 2.3.9 in [10]),
we see that ỹ ∈ L2(0, T ;H1

0 (Ω)), that is, (1.2) is satisfied by ỹ. More-
over, ỹ(x, 0) = y0(x) in Ω by ỹ ∈ C([0, T ];L2(Ω)), due to (2.7) and ỹ ∈
L2(0, T ;H1

0 (Ω)), and by applying the Mazur theorem (Yosida [20], Chapter
5.1).

Remark 2.2. Relation (2.5) can be sharpened to

|yε|L2(0,T ;L2(D\Ω)) ≤ Cε
1
2 ,

where the constant C is independent of ε > 0. This may be interpreted as
an error estimate for the approximation.
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Motivated by the above approximation property, we shall study the ap-
proximate optimization problem defined in D by

min
Ω

∫ T

0

∫
D
χΩj(x, t, yε(x, t))dxdt (2.8)

subject to (2.1) - (2.3). Notice that the cost (2.8) is identified with (1.4).
One may consider the cost (1.5) as well. The minimization parameter in
(2.8) is the domain Ω ∈ O, provided that Ω is included in the given domain
D.

We describe now the family O of admissible open subsets. We consider
a family F ⊂ C(D) and to any g ∈ F we associate the open set

Ωg = {x ∈ D; g(x) < 0}. (2.9)

Notice that the characteristic function of D \ Ωg may be written χD\Ωg =
H(g), where H is the Heaviside function: H(r) = 1 if r ≥ 0 and H(r) = 0
if r < 0. In the case where the cost (1.5) is considered and we impose a
geometric constraint E ⊂ Ωg for any g ∈ F , this may be expressed by the
simple inequality g < 0 in E for any g ∈ F .

Henceforth we assume that F is a closed cone.
With this definition of O, the approximate shape optimization problem

(2.8), (2.1) - (2.3) becomes a control by the coefficients problem with respect
to g ∈ F ⊂ C(D).

Let Hε ∈ C∞(R) be a regularization of the Heaviside function: for
example, we can require that

Hε(r) =

{
1, r > 0,
0, r < −ε.

See [11] for other choices.
Then, Hε(g) is a regularization of the characteristic function χD\Ωg , and

we introduce the regularized state system:

ŷ′ε −∆ŷε +
1

ε
Hε(g)ŷε = f in D×]0, T [, (2.10)

ŷε = 0 on ∂D × [0, T ], (2.11)

ŷε(x, 0) = y0(x) in D. (2.12)

It turns out that Proposition 2.1 remains valid for (2.10) - (2.12) with a
slight modification of the proof.
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Corollary 2.3. If Ω is of class C, then ŷε −→ ŷ weakly in L2(0, T ;H1
0 (D))

and (ŷε)
′ −→ (ŷ)′ weakly in L2(0, T ;H−1(Ω)) by taking subsequences. More-

over, ŷ restricted to Ω is the unique weak solution of (1.1) - (1.3).
See Theorem 9 in [11] for the details. The system (2.10) - (2.12) enjoys good
differentiability properties with respect to g.

Proposition 2.4. The mapping g −→ ŷε(g) from F to L2(0, T ;H1
0 (D))∩

H1(0, T ;H−1(D)) defined by (2.10) - (2.12) is Gâteaux differentiable. More-
over z = ∇ŷε(g)w ∈ L2(0, T ;H1

0 (D))∩H1(0, T ;H−1(D)) is a weak solution
of the variational equation:

z′ −∆z +
1

ε
(Hε)′(g)ŷεw +

1

ε
Hε(g)z = 0 in D×]0, T [

z = 0 on ∂D × [0, T ], z(x, 0) = 0 in D

for any w, g ∈ F .
Proof. We denote by yλ = ŷε(g + λw) with small |λ|, for fixed ε > 0.
Subtracting the corresponding equations and dividing by λ 6= 0, we obtain

∫
D

y′λ − ŷ′ε
λ

(yλ− ŷε)dx+
1

λ

∫
D
|∇(yλ− ŷε)|2dx+

1

λε

∫
D

[Hε(g+λw)−Hε(g)]·

·(yλ − ŷε)ŷεdx+
1

λε

∫
D

(Hε(g + λw))(yλ − ŷε)2dx = 0. (2.13)

Notice that Hε(·) is C1 and Lipschitzian with constant 1
ε (ε is fixed). Con-

sequently
Hε(g + λw)−Hε(g)

λ
−→ (Hε)′(g)w (2.14)

uniformly on D as λ→ 0.
Relations (2.13) and (2.14), using Gronwall’s inequality, show that {yλ−ŷελ }

is bounded in L2(0, T ;H1
0 (D)) ∩ L∞(0, T ;L2(D)). The weak formulation

gives:∫
D

y′λ − ŷ′ε
λ

vdx+

∫
D
∇
(
yλ − ŷε
λ

)
∇vdx+

1

ε

∫
D

∫
D

Hε(g + λw)−Hε(g)

λ
ŷεvdx

+
1

ε

∫
D

[Hε(g + λw)]
yλ − ŷε
λ

vdx = 0, (2.15)

for any v ∈ H1
0 (D) and almost all t ∈ [0, T ].

All the terms in (2.15), except for the first term, are known to be

bounded with respect to λ. It yields that
{
yλ−ŷε
λ

}
is also bounded in
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H1(0, T ;H−1(D)). We denote by z ∈ L2(0, T ;H1
0 (D)) ∩H1(0, T ;H−1(D))

the weak limit by choosing a subsequene of
{
yλ−ŷε
λ

}
as λ → 0. It is pos-

sible to pass to the limit in (2.15) and we finish the proof. As the weak
solution of the variational equation is unique and depends linearly on w,
the limit is valid without taking subsequences and we prove the Gâteaux
differentiability.

Remark 2.5. In the above proposition, it is implicitly assumed that
g + λw ∈ F for small |λ|. This depends on the specific definition of F , in
each application. See the examples in the end of this section.

We introduce now the adjoint system for the cost functionals (1.4) and
(1.5), as follows. The case (1.6) will be considered in section 3.

−p′ −∆p+
1

ε
Hε(g)p = χEj

′
y(x, t, ŷε(x, t)) in D, (2.16)

p(x, T ) = 0 in D, p = 0 on ∂D × [0, T ] (2.17)

for the functional (1.5). The system (2.16) - (2.17) has to be understood in
the weak sense and we also assume that j(x, t, ·) is differentiable.

For the cost functional (1.4), in the approximating the problem, one has
to consider its regularization:

∫ T

0

∫
D

(1−Hε(g))j(x, t, ŷε(x, t))dxdt (2.18)

and equation (2.16) is replaced by

−p′ −∆p+
1

ε
Hε(g)p = (1−Hε(g))j′y(x, t, ŷε(x, t)) in D, (2.19)

together with the conditions (2.17).

Proposition 2.6. The directional derivative of the cost (1.5) is given
by

−1

ε

∫ T

0

∫
D

(Hε)′(g)ŷεwpdxdt. (2.20)
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Proof. We compute the corresponding limit:

1

λ

∫ T

0

∫
E

[j(x, t, yλ(x, t))− j(x, t, ŷε(x, t))]dxdt

−→
∫ T

0

∫
E
j′y(x, t, ŷε(x, t))zdxdt =

∫ T

0

∫
D
χEj

′
y(x, t, ŷε(x, t))zdxdt

=

∫ T

0

∫
D

[−p′ −∆p+
1

ε
(Hε(g))p]zdxdt

=

∫ T

0

∫
D

[z′ −∆z +
1

ε
(Hε(g))z]pdxdt

by integration by parts, (2.16), and (2.17). Using Proposition 2.4, we can
complete the proof.

For the case of the cost functional (1.4), approximating by (2.18) and
using the adjoint equation (2.19) with (2.17), one can establish the following
result in a similar manner:

Corollary 2.7.The directional derivative of the cost (2.18) is given by

−
∫ T

0

∫
D

(Hε)′(g)[j(x, t, ŷε(x, t)) +
1

ε
ŷεp]wdxdt for any w ∈ F (2.21)

with p satisfying (2.19) and (2.17).
Remark 2.8. From Proposition 2.6 and Corollary 2.7, one can obtain

the corresponding cost gradients in the respective optimization problems,
that is, the quantities multiplying w in (2.20) and (2.21). The correspond-
ing descent directions are obtained from the gradients, just by changing the
sign. Notice as well that (Hε)′(g) is positive, pointwisely defined and, con-
sequently, other (simplified) descent directions can be achieved by removing
this factor.

By the properties of Hε(·) explained before (2.10), we see that
supp(Hε)′(g) ⊂ {x ∈ D; −ε < g(x) < 0}, which is in an interior neigh-
borhood of ∂Ωg. This remains true for the gradients obtained in (2.21)
and, consequently, the classical gradient methods are practically related to
boundary variations. However, the simplified descent directions, explained
above, remove this limitation and allow topological variations as well.

We recall a general descent algorithm with projection that may be used
in this setting. The parameter ε > 0 is fixed and we do not mention it
anymore.

Algorithm 2.9
Step 1. Start with n = 0, select some initial gn and some tolerance param-
eter δ > 0.
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Step 2. Compute yn, the corresponding solution of (2.10) - (2.12) with
g := gn.
Step 3. Compute the solution pn of the adjoint system (2.16), (2.17) or
(2.17), (2.19) with ŷε := yn.
Step 4. Compute the gradient ∇J(gn) of the cost functional (2.21) or
(2.20).
Step 5. Generate the descent direction wn starting from the gradient in
Step 4, as explained in Remark 2.8.
Step 6. g̃n = gn + λnwn, where λn is determined via a line search.
Step 7. gn+1 = ProjF (g̃n), where F is the admissible control set. Here
ProjF denotes the projection onto F
Step 8. n := n + 1. If |gn − gn+1| < δ or |∇J(gn)| < δ, then STOP. Here
| · | denotes some appropriate norm. If not, GO TO Step 1.

Recall that F ⊂ C(D) is assumed to be a closed cone. We may include
various restrictions on g in its definition, corresponding to geometric con-
straints on the admissible shapes, as explained in the example below (2.9).

If F ⊂ C1(D) and the set {x ∈ D; g(x) = 0} consists just of non-critical
points for g, then its measure is null (see [8]) and (2.9) can be equivalently
replaced by

Ωg = Int {x ∈ D; g(x) ≤ 0}, (2.22)

which may be considered as an alternative definition. Then, for the ge-
ometric constraint E ⊂ Ωg, we may choose F = {g ∈ C1(D); g(x) ≤
0 for x ∈ E} and F is a closed cone in C1(D), not necessarily convex due
to the above condition on the null level sets of g ∈ F . Moreover, for λ > 0,
the perturbation property from Remark 2.5 (and Proposition 2.4) is valid
in this setting (see [8]).

We end this section with another example of geometric constraint, that
may be easily included in shape optimization problems, by using level func-
tions. If Γ is some given manifold of arbitrary codimensions (it may reduce
even to one point), then the constraint Γ ⊂ ∂Ωg for any g ∈ F can be
expressed as g(x) = 0, x ∈ Γ for any g ∈ F under definition (2.22) and
if the set {x ∈ D; g(x) = 0} consists just of non-critical points for g. The
perturbation property from Remark 2.5 (and Proposition 2.4) is valid in this
case.

3 The controllability approach

In this section, we concentrate on the cost functional (1.6) and we indicate
some specific parabolic arguments based on approximation and controllabi-
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lity properties (e.g., [4], [5]). We underline that, in principle, the geometric
controllability properties used in the elliptic case [10] can be extended to the
present situation, but this requires more regularity and we shall not follow
this path.

For any admissible Ω ∈ O, we define

yΩ in H1(0, T ;H−1(Ω)) ∩ L2(0, T ;H1
0 (Ω))

by (1.1) - (1.3) and we compute the cost (1.6). We also consider the control
system

yt −∆y = χΩf + χD\Ωu in D×]0, T [, (3.1)

y = 0 on ∂D × [0, T ], y(x, 0) = χΩy0(x) in D, (3.2)

where D bounded, smooth, D ⊃ Ω for any Ω ∈ O, f ∈ L2(D×]0, T [),
y0 ∈ L2(D) and u ∈ L2(D×]0, T [).

It is known ([5], [4]) that for any T > 0, Ω ⊂ D and any ε > 0, there
exists uε ∈ L2(D×]0, T [) depending on T, Ω such that the corresponding
solution yε of (3.1) and (3.2) satisfies

|yε(x, T )− ỹΩ(x, T )|L2(D) < ε, (3.3)

where ỹΩ(·, T ) is the zero extension of yΩ(·, T ) to D.
Due to (3.3), as ε→ 0, we have yε(·, T ) −→ ỹ(·, T ) strongly in L2(D), but

the limit ỹ may not be attained for any u ∈ L2(D×]0, T [) and any Ω ∈ O.
We remark that the continuity with respect to the time ([3], Chapter 7) of
the weak solutions for the linear parabolic equations discussed here, gives a
clear sense to the initial conditions and the properties concerning the final
values of these solutions.

We introduce a constrained optimal control problem in D:

min
Ω,u

∫
D
χΩj(x, y(x, T ))dx (3.4)

subject to (3.1), (3.2) and the state constraint

y(x, T ) = 0 a. e. in D \ Ω. (3.5)

Notice that Ω ∈ O is a domain and, in this section, no regularity is assumed
on ∂Ω: in particular, the trace does not exist. The constraint (3.5) may
be just interpreted here as a weak form of the condition yΩ(x, T ) = 0 on
∂Ω according to (1.2). The cost functional (3.4) is equivalent to (1.6). A
control u ∈ L2(D×]0, T [) is called admissible if the solution y of (3.1) and
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(3.2) satisfies (3.5). The corresponding solution y or the pair [y, u] are also
called admissible if (3.5) is satisfied. These definitions depend on Ω as well.

Remark 3.1. For any Ω ∈ O, the set of admissible controls u ∈
L2(D×]0, T [) is nonvoid due to the null controllability property for linear
parabolic equations in D×]0, T [ ([5]).

If the constraint (3.5) is replaced by a weaker one:

−ε ≤ y(x, T ) ≤ ε a.e., in D \ Ω, (3.6)

then the approximate controllability property shows that the corresponding
set of admissible controls u ∈ L2(D) is large.

We now use the classical penalization technique in (3.1), (3.2), (3.4) and
we define the penalized problem:

min
u∈L2(D×]0,T [),Ω∈O

(∫
D
χΩj(x, y(x, T ))dx+

1

δ

∫
D
χD\Ω|y(x, T )|2dx

)
(3.7)

subject to (3.1) and (3.2), where δ > 0 is the penalization parameter.

Notice that in (3.1), (3.7), the unknown geometry Ω ∈ O is still present
via the characteristic functions, although the state system is defined in the
fixed domain D×]0, T [. This can be removed as in the previous section by
introducing the second family of controls g ∈ F and imposing the admissible
domains to be defined via (2.9), but we shall not pursue this way here. For
fixed Ω, we just discuss the approximating properties of (3.1), (3.2) and
(3.7) when δ → 0.
In fact, the infimum in (3.7) is not necessarily attained with respect to
u ∈ L2(D×]0, T [) since we have no coercivity property in u (Ω is fixed
now). By [yδ, uδ] we denote a δ-optimal pair for the penalized problem (i.e.,
satisfying (3.1) and (3.2) and with cost at δ distance from the infimum in
(3.7) with respect to u ∈ L2(D×]0, T [)).

For any admissible pair [y, u] for the control problem (3.1), (3.2), (3.4)
and (3.5), we have

J(yδ, uδ) ≤ infJ(y, u) + δ ≤
∫
D
χΩj(x, y(x, T ))dx+ δ, (3.8)

since the penalization integral is null on y. Here J(·, ·) denotes the penali-
zation cost (3.7):

J(y, u) =

∫
D
χΩj(x, y(x, T ))dx+

1

δ

∫
D
χD\Ω|y(x, T )|2dx.
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Proposition 3.2. If we assume that j(·, ·) is bounded from below by a
constant, then

|yδ(·, T )|L2(D\Ω) −→ 0 (3.9)

as δ → 0.

Relation (3.9) is a clear consequence of (3.7) and (3.8). This gives a
constructive approach to the controllability properties (3.3), (3.5) or (3.6),
but the obtained information is weaker. In order to approximately extend
the shape optimization problem (1.1)-(1.3) with (1.6), we have to use the
penalized cost

min
u∈L2(D×]0,T [),Ω∈O

(∫
D
χΩj(x, y(x, T ))dx+

1

δ

∫ T

0

∫
D
χD\Ω|y(x, t)|2dxdt

)
,

(3.10)
in (3.1) and (3.2), and apply similar arguments as in Proposition 3.2. The
controllability property from Remark 3.1 is to be replaced by the following
observation: one can assume that by a regularization of the extension by
0 of yΩ, the penalization term in (3.10) remains bounded. See Remark 3.5
as well. If we denote again by [yδ(x, t), uδ(x, t)] a δ-optimal pair for (3.10),
(3.1) and (3.2), then we obtain |yδ|L2((D\Ω)×[0,T ]) −→ 0 in addition to (3.9),
which is again a weak approximation property.

Alternatively, let us now simply associate with the control system (3.1)
and (3.2) the following cost

min
1

2

∫ T

0

∫
D\Ω

y(x, t)2dxdt, (3.11)

which is just the penalization term in (3.10). Clearly, the infimum in (3.11),
under conditions (3.1) and (3.2), is 0. See Remark 3.5. If some optimal pair
[y∗, u∗] ∈ L2(0, T ;H1

0 (D))×L2(D×]0, T [) exists (which is not guaranteed in
general), then y∗(x, t) = 0 a.e. in (D \Ω)× [0, T ]. Assuming Ω to be of class
C, the Hedberg-Keldysh stability property [10] shows (as in the previous
section) that y∗|Ω ∈ L2(0, T ;H1

0 (Ω)), that is, y∗|Ω is the solution to (1.1) -
(1.3) and u∗ ensures an exact geometric controllability property (the exact
extension of (1.1) - (1.3) to D).

Since this ideal situation is not valid in general, we introduce the Tikhonov
regularization of (3.11), (3.1) and (3.2):

min
1

2

(∫ T

0

(∫
D\Ω

(|y(x, t)|2 + δ|u(x, t)|2)dx

)
dt

)
(3.12)
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subject to (3.1) and (3.2). This approximating problem possesses a unique
optimal pair [ŷδ, ûδ] in [L2(0, T : H1

0 (D))∩H1(0, T ;H−1(D))]×L2(D×]0, T [).
Proposition 3.3. The optimality conditions for the regularized problem

(3.12) are given by (3.1), (3.2), the adjoint system

−pt −∆p = χD\Ωŷδ in D×]0, T [

p|∂D×]0,T [ = 0, p(x, T ) = 0 in D

and the maximum principle

p+ δûδ = 0 in (D \ Ω)×]0, T [.

Proof. The equation in variation is

zt −∆z = χD\Ωv in D×]0, T [, (3.13)

z|∂D×]0,T [ = 0, z(x, 0) = 0 in D. (3.14)

One can write the adjoint system for (3.14) and (3.13):

−pt −∆p = χD\Ωŷδ in D×]0, T [, (3.15)

p|∂D×]0,T [ = 0, p(x, T ) = 0 in D. (3.16)

Take variations [ŷδ, ûδ] + λ[z, v] with λ ∈ R and [z, v] satisfying (3.14) and
(3.13). By using (3.13) - (3.16), the optimality of [ŷδ, ûδ] and integration by
parts, simple calculations give

0 =

∫ T

0

∫
D\Ω

ŷδzdxdt+ δ

∫ T

0

∫
D\Ω

ûδvdxdt

=δ

∫ T

0

∫
D\Ω

ûδvdxdt−
∫ T

0

∫
D

(pt + ∆p)zdxdt

=δ

∫ T

0

∫
D\Ω

ûδvdxdt+

∫ T

0

∫
D

(zt −∆z)pdxdt

=

∫ T

0

∫
D\Ω

(p+ δûδ)vdxdt.

As v ∈ L2((D \ Ω)×]0, T [) is arbitrary, the proof is finished.
Remark 3.4. We can eliminate ûδ in the optimality system given by

Proposition 3.3 and obtain

yt −∆y = χΩf −
1

δ
χD\Ωp in D×]0, T [, (3.17)
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and
−pt −∆p = χD\Ωy in D×]0, T [ (3.18)

with initial and boundary conditions, which can be understood as an ap-
proximating extended system of (1.1)-(1.3) from Ω to D.

Take u = 0 in the regularized problem (3.1), (3.2) and (3.12) and by yf
denote the corresponding state. We have the inequality

1

2

∫ T

0

∫
D\Ω
|ŷδ|2dxdt+

δ

2

∫ T

0

∫
D\Ω
|ûδ|2dxdt ≤

1

2

∫ T

0

∫
D\Ω
|yf |2dxdt.

Hence we see that {ŷδ} and {δ
1
2 ûδ} are bounded in L2((D \Ω)×]0, T [). We

denote now the solution of (3.16) and (3.15) by {pδ} (it depends in fact on
δ). Consequently, {pδ} is bounded in L2(0, T ;H1

0 (D)) ∩H1(0, T ;H−1(D)).
Moreover the maximum principle yields

|pδ|L2((D\Ω)×]0,T [) ≤ Cδ
1
2 .

We know that {ŷδ} has some weak limit ŷ in L2((D \ Ω)×]0, T [) by taking
a subsequence. By (3.15), (3.16) and the above convergence of {pδ}, we
obtain ŷ = 0 a.e. in (D \ Ω)×]0, T [. Consequently, the system (3.17) -
(3.18) in D with the conditions (3.2) and (3.16), achieves an approximation
of (1.1)-(1.3) in the above weak sense.

Remark 3.5. By taking above convex combinations of {ŷδ} one may
obtain convergence in the strong topology. In the system (3.17) - (3.18)
with the conditions (3.2) and (3.16), it is not possible to introduce such
convex combinations since they correspond to different values of δ. However,
such a convex combination of δ−1pδ satisfies as a distributed control the
properties associated to the penalized cost functionals (3.10), respectively
(3.7), associated to the state system (3.1), (3.2).

4 Conclusion

The range of shape optimization problems associated to evolution systems
is very rich and the cases considered here or in [14], [15] give just an intro-
duction to the subject. We underline that other state systems (hyperbolic,
nonlinear, higher order) or cost functionals (for instance, defined on the
boundary of Ω ∈ O) may be taken into account instead of (1.1) - (1.6).
As questions of interest, beside the sensitivity analysis or the approximation
methods already discussed in the existing scientific literature, a study of fur-
ther discretization procedures is necessary, especially in the context of vari-
ous significant applications in engineering problems. Moreover, a sharpening
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of the approximation results based on controllability/control arguments is
needed in order to justify the relationship with shape optimization prob-
lems. It should be underlined that such applied problems in the evolution
case are at least three dimensional (time and space dimension two), which
is a clear hint of the high difficulties to be expected from the computational
point of view.

In realistic problems, more constraints appear on the state (for instance,
positivity or box constraints) or on the unknown geometry. In this re-
spect, using the functional variations approach [11] from Section 2 (see
(2.9), (2.22)), it is easy to express geometric conditions on the boundary
of the unknown domains in an analytic way. For state constraints, classical
penalization/regularization approaches are useful ([10]).

Another topic of fundamental interest is the existence of solutions for
shape optimization problems in the parabolic case. The formalism from
Section 2 is useful in this direction too. From [8] we recall the following
property: if for any g ∈ F ⊂ C1(D), on the set {x ∈ D; g(x) = 0} we have
∇g(x) 6= 0 and g(x) > 0, x ∈ ∂D, then the set {x ∈ D; g(x) = 0} is a
finite union of disjoint closed curves which are not self intersecting and not
intersecting ∂D, in space dimension two. In particular, for any g ∈ F , the
corresponding Ωg may have just a finite number of holes. The definitions
(2.9) and (2.22) are equivalent under the above conditions. The presence of
a hole in Ωg is characterized by a change of sign of g at the border of the hole,
since the normal derivative of g is not null in these points. These changes of
signs are sharp since {x ∈ D; g(x) = 0} is of measure zero. Moreover their
number is finite for any g ∈ F , as discussed above.

In this context, the famous Sverak compactness condition ([16], [10])
reads that there is some natural number m such that, for any g ∈ F , the
number of signs changes is bounded above by m. In the elliptic case, in
dimension two, it is known that this property is sufficient for the passage to
the limit (with respect to the domains) in the state system and the existence
of optimal solutions. We conjecture that this property can be extended to
parabolic shape optimization problems in spatial dimension two. Due to
the non convex character of shape optimization problems (the dependence
domain - solution is strongly nonlinear even for linear state systems), the
uniqueness is not valid for shape optimization problems, with rare exceptions
(e.g., [7], [10]).
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