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Abstract. In this survey we represent novel feasibilities provided by correlation optics as 

one of the versions of “optics of observable quantities” (E. Wolf) in measuring coherence 

and polarization of optical fields. It is shown by two examples that the introduced 

approaches are relevant to solving diverse problems connected with the presence of 

optical singularities (both scalar and vector) in heterogeneous in polarization and 

incompletely spatially coherent light beams. Namely, we present specific vector 

singularities arising in partially coherent combined beams and demonstrate 

interconnections between coherence and polarization in controlling new optical 

phenomenon referred to as optical currents. 

Keywords: partial coherence, partial polarization, optics of observable quantities, correlation 

optics.  

1. Introduction 

In this survey we consider applying the Correlation Optics paradigm for 

measuring intrinsically interconnected characteristics of light fields, such as 

intensity, polarization and coherence. Conceptually, all these quantities are 

derived from the Wolf‟s coherency matrix [1]. New insight on interconnection of 

them is accentuated by the novel singular-optical approach [2, 3] predicting 

existence of important regularities in electromagnetic fields which were early 

considered as quite random ones. So, phase singularities, viz. „optical vortices‟ of 

scalar (homogeneously polarized), polarization singularities of vector 

(inhomogeneously polarized) fields, as well as singularities of correlation 

functions of partially coherent, partially polarized fields constitute specific 

skeletons, sui generis “bearing structures”. Really, knowing the loci and 

characteristics of singular elements, one can judge on behaviour of a field at its 

other areas, at least in qualitative manner, but quite reliably [4]. Potentially, this 

circumstance opens new feasibilities for metrology of optical fields and leads to 

prospective practical applications of relevant measuring techniques.               

Developing earlier approaches [5], here we show the framework for generalization 
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of polarization metrology for a wide class of combined optical beams assembled 

from mutually incoherent (or partially mutually coherent) components, which can 

be even orthogonal in polarization. Such generalization provides taking into 

account partial polarization and associated specific vector singularities, which can 

be used in future for non-destructive optical diagnostics as well as in optical 

telecommunications with polarization data coding. Important part of this survey is 

devoted to description of the feasibilities for experimental measuring coherence 

by measuring of spatial polarization distributions of inhomogeneously polarized 

fields. We represent the newest metrological tool connected with the concept of 

optical currents (optical flows) [6]. Namely, we show that some intimate 

characteristics of complex optical fields with arbitrary degree of spatial coherence 

and arbitrary degree of polarization may be “deciphered” indirectly, by 

observation of the influence of such fields on embedded micro- and nanoparticles. 

On the other hand, this metrological approach seems to be prospective for 

development of so-called optical traps and tweezers for manipulation of isolated 

particles of micro- and nanoscales that is of vital importance for control of thin 

films and growing crystals, in pharmacology, precision chemistry, nanophotonics 

and other applications where one must operate with super-small quantities of 

matter. Note, the concept, approaches and previous results of Correlation Optics 

have been popularized in recent issue of Optics and Photonics News [7] in more 

general framework than it is presented here by consideration in more details of 

selected instructive examples. 

2. Background 

The notion of coherence is the most fundamental concept of modern optics. As it 

has been shown by E. Wolf [1, 8], this notion is intrinsically connected with other 

characteristics of light, such as intensity and polarization. Really, one can 

distinguish between these characteristics in didactic purposes, but in every 

practically important case we meet tight, inseparable interconnection of them. So, 

one cannot define coherence, in part aspiring to associate it with visibility of 

interference pattern, ignoring for that the states of polarization of superposed 

beams. At the same time, the most fundamental definition of polarized light is 

given just through the measure of mutual coherence of the orthogonally polarized 

components of a beam [9]. At last, all three mentioned characteristics of a light 

beam are comprehensively expressed through known combinations of the Wolf‟s 

coherency matrix elements [1]. 

Incidentally, urge towards to associate coherence just with obvious interference 

(intensity modulation) effect does not always lead to true understanding the 

coherence phenomena. It is not enough that interference fringes are absent in 

superposition of completely mutually coherent but orthogonally polarized beams (it 
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is well-known from the Fresnel-Arago laws and experiments). There are quite new 

concepts showing the absence of interference effect for superposing two waves of 

equal frequencies with strictly (deterministically) connected complex disturbances 

even with the same state of polarization. Refined example of this kind was given by 

L. Mandel in his concept of “anticoherence” [10], see details in [11]. 

The next, and more closer to our consideration, example  pseudodepolarization 

[12] (in modern terminology, “global” depolarization [13]) resulting from 

stationary scattering of laser radiation in multiply scattering media, such as turbid 

media, multi-mode waveguides, the most of natural objects, including biological 

ones. Here the role of detector (and its spatial resolution) becomes fundamental. 

Really, the universal approach to determine all polarization characteristics of a 

field (both the state of polarization and the degree of polarization [14]) consists in 

Stokes-polarimetry of the analyzed field. For that, Stokes-polarimetric analysis 

gives quite different results for local and “global” (space-averaged) 

measurements. So, the point-wise measuring Stokes parameters shows complete 

(unity) degree of polarization, but the state of polarization changes from point to 

point. Space averaging over ten and more speckles shows seeming depolarization. 

This case is the central subject of interest of vector singular optics [15]. 

One more example concerns optical currents (flows) [6]. Though it is prematurely 

now to solve comprehensively this problem, especially in experimental aspect, it 

is clear that micro- or nanoparticles serving for diagnostics of inhomogeneously 

polarized and partially coherent optical field [16-18] affect this field as absorbing 

and retransmitting particles with their own characteristics, so that the state of a 

field, in general, changes under influence of such secondary radiators. 

Pronouncing call of the times in the topic under consideration consists in 

involving the ideas, approaches and techniques of Singular Optics [2]. It is seen, 

in part, from recent important review [3] devoted to the structure of partially 

coherent optical fields. As it has been argued in papers [18, 19], “Usual beam 

parameters either characterize a beam „in a whole‟ (power, momentum, beam size 

and divergence angle) or describe its „shape‟ via certain spatial distributions 

(amplitude, phase, polarization state, etc.)… Usual beam parameters provide only 

rough and, sometimes, distorted picture of internal processes that constitute a 

real „inner life‟ of a light beam. These processes are related to the fundamental 

dynamical and geometrical aspects of light fields, and are associated with the 

permanent energy redistribution inside the beam „body‟, which underlies the 

beam evolution and transformations. The internal energy flows provide a natural 

and efficient way for „peering‟ into the light fields and studying their most 

intimate and deep features.” It is of interest to correlate this statement with the 

Wolf‟s methodology of observable quantities that is the most influential concept 

of physical optics since 1954: “optics of observable quantities, such as correlation 
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functions and averaged in time intensities” [14] that has found many henchmen 

[20-25]. Paradoxiсal contradiction between two undoubtedly true statements is 

apparent. Really, this contradiction is just eliminated as one takes into account 

that internal energy flows may be revealed only by carrying out the experiments 

with observable quantities.  

3. Polarization singularities in partially coherent light beams 

In this section we describe specific polarization singularities arising in incoherent 

superposition of coaxial orthogonally polarized laser beams. It is shown that in 

transversal cross-section of paraxial combined optical beams of this class, instead 

of common singularities, such as amplitude zeroes (optical vortices) inherent in 

scalar fields [2], and polarization singularities such as C points and L lines 

inherent in completely coherent vector fields [15], phase singularities of the 

complex degree of polarization (CDP) arise, whose description and investigation 

have been initiated by papers [26-29] basing on earlier studies [30-32] concerned 

to the Young‟s concept of the edge diffraction wave in connection with 

diagnostics of phase singularities of spatial correlation functions of optical fields. 

There are U contours along which the degree of polarization equals zero and the 

state of polarization is undetermined (singular), and isolated P points where the 

degree of polarization equals unity and the state of polarization is determined by 

the non-vanishing component of the combined beam.  

Let us briefly argue the relevance of the introduced approach. In scalar fields, 

when polarization can be neglected, so-called screw wave front dislocations (also 

referred to as amplitude zeroes or optical vortices) take place. Phase of the 

complex amplitude is undetermined at such elements and is step-like changed at 

crossing of them. In vector fields optical vortices are absent, though they remain 

in any polarization (“scalar”) component. Instead of vortices, polarization 

singularities arise at cross-section of a field, viz. field elements where azimuth of 

polarization (C points) or handedness (L lines) is undetermined [15]. Vector 

skeletons of coherent inhomogeneously polarized fields were elaborated in details 

in papers [33-35]. By crossing L lines, handedness is step-like changed into 

opposite one; by crossing C point, azimuth of polarization is changed into 

orthogonal one. Mentioned singularities disappear in the case of partially coherent 

wave fields (though they remain in each completely coherent component, mode in 

a set of which partially coherent radiation is decomposed. Instead of them, new 

singularities appear inherent just in partially coherent fields. Singularities of 

partially coherent fields have formed the novel topic in the field of singular optics 

just at the beginning of the Third Millenium [3].   
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For that, two situations arise again: (i) scalar case when polarization can be 

ignored while the state of polarization is the same at all point of a field, and (ii) 

vector case when the state of polarization of partially coherent field changes from 

point to point that requires explicit taking into account of vector nature of light. 

The first (scalar) case became the subject of intense investigations in last years 

[31, 36, 37]. As a result of these investigations, new phase singularities of spatial 

and temporal correlation functions of quasi-monochromatic light fields have been 

revealed, as well as singularities of spectral components of polychromatic 

(“white-light”) radiation [32, 38-41].  

 

3.1. U and P singularities in partially spatially coherent combined beams  

 
Let us consider vector singularities in partially coherent optical beams by giving the 

following simple instructive example. Mutually incoherent and orthogonally polarized 

Laguerre-Gaussian mode LG01 and a plane wave are coaxially mixed. Such components 

can be obtained from one laser (using a computer-generated hologram for forming 

doughnut LG01 mode) in interferometric arrangement with optical delay, l , 

considerably exceeding a coherence length of the used laser, l , or using two different 

lasers. Intensity of a plane wave is set deliberately to be less than the peak intensity of the 

mode, see Fig. 1.  

Figure 1. Radial intensity distribution of mixing vortex-supporting LG01 mode  

and plane wave with intensity less than peak intensity of a mode  

in function of dimensionless radial variable zw .  
 

Thus, we consider two-component mixture of co-directional orthogonally 

polarized beams, one of which contains a „scalar‟ phase singularity, viz. optical 

vortex. Interference between such beams with forming common interference 

fringes is excluded by two reasons: (i) specified mutual incoherence of the 

components: (ii) polarization orthogonality of them. Note, even only the second 

condition per si determines that, independently on the degree of mutual coherence 
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of two beams over whole interval from zero (for optical path difference exceeding 

the coherence length) to unity (for zero optical path difference) visually observed 

and photometrically measured pattern remains unchangeable. However, more 

delicate polarization analysis of the combined beam enables to differentiate two 

limiting cases, viz. completely coherent and completely incoherent mixing of 

orthogonally polarized components. 
 

Let us firstly consider the limiting case when two components are completely 

mutually coherent. For the sake of distinctness (and for substantiveness of further 

consideration), we consider coherent mixing of orthogonally circularly polarized 

LG01 mode and a plane wave. Beside of all, choice of circular polarization basis 

possesses the advantage of invariance in respect to rotation of the coordinates, in 

contrast to linear or elliptical bases [42]. 
      

In general, combined beam, everywhere with the unit polarization degree 

( 12

3

2

2

2

1  sss , where 321  , , sss  are the normalized second, third and fourth 

Stokes parameters, respectively [9, 42], is elliptically polarized. But at the center of 

vortex of LG01 mode the field is circularly polarized with the state of polarization of 

a plane wave. A common phase singularity (vortex) of orthogonally polarized 

component of the combined beam lies at the bottom of this circular polarization. At 

the same time, the resulting field is polarized linearly at two contours where 

amplitudes of two components become equal to each other, see Fig. 2 a.  

 

 
 

Figure 2. The lines of equal intensities of orthogonally polarized beams at Stokes space: 

 a. Equator of the Poincare b. 45°-meridian including  c. Diameter of the  

 sphere for circular the poles for linear  Poincare sphere  

 polarization basis, polarization basis  connecting the poles for 

 coherent mixing.  coherent mixing.  circular polarization  

               basis, incoherent mixing 
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For that, owing to helicoidal structure of a wave front of LG01 mode, azimuth of 

linear polarization changes with changing phase difference of a mode and a plane 

wave. Such topological structure can be considered as elementary experimental 

model of the assemblage of C point and surrounding it L contour of conventional 

singular optics of vector fields. Really, crossing L line where handedness is 

undetermined is accompanied by step-like changing handedness into opposite one, 

corresponding to predominant in intensity component with unchangeable azimuth 

of polarization. For comparison, Fig. 2 b illustrates the line of equal intensities of 

coherently mixed components in linear polarization basis. It is of interest that the 

elementary structure shown in Fig. 2 a is directly related with description of 

completely polarized light at the circular complex polarization plane that is a 

stereographic projection of the Poincare sphere [43]. So, C point and L contours 

correspond to the pole of the Poincare sphere and its equator, see Fig. 3 a.  

Let us support this intuitive consideration by formal description. Let us proceed 

from Jones vectors of two components, right-circularly polarized LG01 mode and 

left-circularly polarized plane wave, 
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where c  is the amplitude factor corresponding to inhomogeneous amplitude 

distribution of a mode as a function of dimensionless radial coordinate, and 

 iexp  is associated with helicoidal change of a phase of a mode under 

circumference of the central vortex (its explicit form for Laguerre-Gaussian mode is 

well known but is not relevant here). There is Jones vector of the combined beam: 
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General coherency matrix of the beam is found as 
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or in explicit form: 
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Combining the elements of coherency matrix, one can find full Stokes parameters: 
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32
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 (5) 

 

Here we are especially interested in the case when 1c . One just obtains for this 

case the normalized Stokes parameters: 
 

.0     ;sin     ;cos     ;1 3210  ssss  (6) 

Figure 3. 

a. Poincare representation:  b. Experimental:  

The complex circular polarization   C and L singularities in combined  

plane. The center of coordinates     beam assembled from completely  

corresponds to left-circular polarization   mutual coherent orthogonally  

(C point); the circle of unite radius    (circularly)polarized LG01 mode  

separating grey and whit areas     and plane wave. At L lines,  

corresponds to linear polarizations    where intensities of two mixed  

with changeable azimuth of      component are equal, the azimuth  

polarization (L contours),       of polarization changes  

this contour separates the area     in agreement of prediction  

of the beam with left handedness     illustrated in Fig. 3 a. Areas of  

and right handedness; right-circular    different colors correspond  

polarization point lies at infinity.     to opposite handedness. 
 

 

Vanishing of the fourth Stokes parameter means that polarization at all points of 

the contour where intensities of the mixed components are equal to each other are 

equally distanced from the states of polarization of the components, i.e. neither 

right-circular nor left-circular predominate in intensity. It is in direct 

lr , - 

plane 

)Im( ,lr  

)Re( ,lr  

2α 
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correspondence with Fig. 2 a. At all points of such L contour polarization is linear 

with the polarization azimuth   2tan5.0 12

1   ss , while the angle of 

ellipticity 0arcsin5.0 3  s . For that, the degree of polarization 

12

2

2

1  ssP . In correspondence with helicoidal structure of a wave front of 

LG01 mode, a phase difference of the components changes along the contour of 

equal intensities that results in changing azimuth of polarization. Thus, we obtain 

direct analog of L contour. Further, at the center of vortex of LG01 mode we have 

0c . Again, proceeding from Eq. (5) we find the normalized Stokes parameters 

1 0, ,0 ,1  , i.e. left-circular polarization of a plane wave. In the vicinity of such C 

point polarization is elliptical, with the azimuth of polarization changing with 

azimuthal coordinate and ellipticity decreasing from the vortex to L contour, Eq. 

(6), where handedness is undetermined an step-like changing by crossing this 

contour. It is all in quite correspondence with Fig. 3 a. 
 

Thus, for circular polarization basis, walking along contour of the combined beam 

“LG01 mode + plane wave” where intensities of the components become equal 

corresponds to moving along equator of the Poincare sphere that is determined 

only by the ratio of the second and third Stokes parameters. (For comparison, 

using linear polarization basis, to say 0° and 90°, one obtains by the same way the 

normalized Stokes parameters for the combined beam   ,cos ,0 ,1 900    

  900sin    that corresponds to points of 45°-merdian of the Poincare sphere, 

see Fig. 2 b.) 
 

Before consideration of the most general case of partial mutual coherence of the 

mixed orthogonally polarized components in the following section, let us consider 

other limiting case, viz. completely incoherent mixing of such components. There 

is no necessity to proceed now from Jones vectors and to form a coherency matrix 

of the combined beam. One can at once determine the Stokes parameters of 

mutually incoherent components and sum them directly, without accounting phase 

relations that are irrelevant for incoherent summation. The normalized Stokes 

parameters of orthogonally polarized beams differ only in sign of the second, third 

and fourth parameters:  321  , , ,1 sss  and  321  , , ,1 sss  . It is clear that when 

two components become equal in intensities, the normalized Stokes parameters of 

the combined beam becomes 0 ,0 ,0 ,1 . The field at such elements of a field is 

completely unpolarized. There are just U singularities [26-28]. This case is shown 

in Fig. 2 c for the case of incoherent mixing of orthogonally circularly polarizer 

components. (Note, this case can not be directly reflected at the complex 

polarization plane, Fig. 3 a, but can be imaged in a whole Stokes space bounded 

by the Poincare sphere!) Trajectory of the imaging point for the combined beam 

in this case is the diameter of the Poincare sphere connecting two poles. U 
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singularity is imaged by the center of this sphere, and all other points of this 

diameter (beside the center and poles) image partially circularly polarized states. 

For that, the length of a vector drawn from the center of the Poincare sphere to the 

imaging point inside it equals the degree of polarization. The point where the 

degree of polarization equals unity is referred to as P (completely polarized) point 

[26, 27]. Its location is determined by the vortex of orthogonally polarized (scalar 

singular) component. The set of P points and U contours corresponding to 

extrema of the degree of polarization of a field are the singularities of the degree 

of polarization forming the vector skeleton of two-component mixture of 

orthogonally polarized beams. Note, in papers [26-28] consideration is carried out 

using the notion of the complex degree of polarization  CDP, associated with 

orientation of the vector of polarization in the Stokes space and undergoing the 

phase singularity at the center of this space. So, U singularities can be considered 

just as vector singularities, viz. singularities of the vector of polarization, when its 

magnitude equals zero and a phase (orientation of the vector) is undetermined. 
 

Let us emphasize that the condition of occurring U singularity (equalizing 

intensities of orthogonal circular components) is equal to the condition of 

occurring L contour in completely coherent limit. It means that loci of C and L 

singularities in completely coherent fields and P and U singularities in partially 

coherent fields arising from completely incoherent orthogonally polarized 

components, correspondingly, coincide. 
 

Moving from U singularity results in predomination of one of two orthogonal 

components in intensity. The state of (partial) polarization is just determined by 

the predominant component. That is why, the degree of polarization can be 

determined in similar form as visibility: 
  

21

21

II

II
P




 . (7) 

 

In other words, at each point of the combined beam equal in intensities parts of 

orthogonal components form unpolarized background, at which completely 

polarized part corresponding to predominant in intensity component manifests 

itself. This is in a complete agreement with classical decomposition of partially 

polarized beam into completely coherent and completely incoherent parts, which 

are added on intensities, without accounting phase relations [9, 14]. Note, there 

are no any device providing such decomposition in practice. However, share of 

completely polarized part can be determined experimentally through the Stokes 

polarimetric experiment, 2

3

2

2

2

1 sssP   or, equivalently, following Eq. (7). Thus, 

only two orthogonal states of polarization take place in combined beams of 
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considered kind, which are separated by U singularities where the state of 

polarization is undetermined. 
 

So, the considered limiting cases show the same location of C and P singularities and 

L and U singularities for the same set of components. However, vicinities of such 

singularities are essentially different. Only two orthogonal states of polarization are 

present in spatially partially coherent combined beams, and only the degree of 

polarization changes from point to point within the areas separated by U singularities. 

3.2.Vector singularities for partially mutually coherent mixed components 

Let us consider now the most general case, when two mixed components shown in 

Fig. 1 are orthogonally (circularly) polarized and are partially mutually coherent, 

so that the degree of mutual coherence of the components can be gradually 

changed from unity to zero. It can be implemented in the arrangement of the 

Mach-Zehnder interferometer with controllable optical pass difference between 

the legs of an interferometer, see detail description of practical arrangement in [9, 

28]. Namely, one controls path delay l  from zero to magnitude exceeding a 

coherence length (length of wave train) l of the used laser. Change of the 

ratio ll  corresponds to change degree of mutual coherence of orthogonally 

polarized components. Thus, for 10  ll  the combined beam is 

simultaneously partially spatially coherent (due to changing intensity ratio at 

cross-section of the resulting field) and partially temporally coherent (due to non-

zero optical path difference between the components), one expects for increasing 

optical path difference the following. 
 

As it has been mentioned above, the condition of arising of L contours and U 

contours in the limiting cases of mixing of orthogonally circularly polarized beams is 

the same: intensities of the components must be equal to each other. If the optical 

path difference increases from zero, field at the L contour remains linearly polarized, 

but the degree of polarization decreases. It follows from that the degree of 

polarization of a beam is determined by the degree of mutual coherence of its 

arbitrary orthogonal components, here right-hand and left-hand circular components. 

It means that U contour nucleates just at the bottom of L contour. 
 

The degree of polarization can be represented equivalently in terms of measured 

Stokes parameters (that will be used in the next section) or theoretically, viz. 

through the invariants of the coherency matrix, which at the same time determine 

coherence properties of a field [1]: 
 

 
 J

J
2Sp

det4
1P . (8) 
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For that, in general, the degree of polarization is always non less than modulo of the 

degree of mutual coherence of the components, for circularly polarized components  
 

llrr

rl
rl

JJ

J
  (9) 

 

In general case 
rlP  , as the degree of coherence depends on the decomposition 

basis while the degree of polarization is invariant [1]. However, it has been shown 

[1] that the degree of polarization is equal to the maximal degree of coherence, 

maxrlP  , in the case when the components are of equal intensities. This is just the 

case of L singularities and U singularities. It is of the most importance, that change 

of the optical path difference changes weights 
rl  of completely coherent (and 

completely polarized) part of the combined beam and 
rl1  of its completely 

incoherent part. Increasing ll  difference corresponds to increasing weight of U 

singularity against L singularity, so that one can follow gradual transformation of L 

contour into U contour. 

3.3. Experimental reconstruction of “pure” and “mixed” polarization 

singularities  

Mixing of orthogonally circularly polarized LG01 mode and plane wave was 

performed [26, 27] for intensity of a plane wave less than the peak intensity of a 

mode approximately by the order of magnitude. The following results have been 

obtained under such conditions. 

Fig. 4 a shows the combined beam whose view, as was mentioned above, within 

experimental accuracy remains the same at arbitrary optical path delay set in the 

interferometer.  

                                       
Figure 4. 

a. The partially coherent b. Vector skeleton of the partially coherent 

combined beam. combined beam formed by P and U 

singularities for completely incoherent 

mixing of circularly polarized components. 

Compare with Fig. 3 b. 
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This photo has been obtained for incoherent mixing of two components for 

3 ll  (under condition realized in paper [31]). We measured spatial 

distribution of the Stokes parameters and looked for the elements where 

0321  sss  ( 0P , U contours), and 13 s  (P point), see discussion 

following Eq. (6). In such a manner, we were in a position to reconstruct a vector 

skeleton of partially spatially coherent combined beam formed by completely 

mutually incoherent components. Experimental error in determining the 

normalized Stokes parameters was at the level 7%; this determines reliability with 

which we reconstructed P point and U contours. P and U singularities for this case 

are shown in fragment of Fig. 4 b. Two U contours separate the areas with right-

circular and left-circular polarization shown by different levels of grey. Within 

these areas 02

2

2

1  ss , while .13 s  
 

Separate maps of the Stokes parameters are less representative being only row 

material for finding out the degree of polarization, ellipsometric parameters of a 

field, and vector singularities. That is why, we demonstrate separately from 2D 

pattern shown in Fig. 5. 1D cross-section of the degree of polarization of this 

combined beam, see Fig. 1 b. Dashed curve shows two-lateral radial dependence of 

P  computed following Eq. (7). Solid curve shows experimentally obtained 

distribution found as the combination of measured Stokes parameters, here 3sP  . 

Quantitative discrepancy of two curves (both in positions of zeroes and in heights of 

side-lobes) is explained by anisotropy of the vortex. Nevertheless, the experimental 

dependence is in satisfactory qualitative agreement with the simulation results. 

Namely, one observes two zeroes of the CPD at the each side of the central optical 

vortex that are the „fingerprints‟ of two U contours. Moreover, experiment has 

proved typical conical vicinity of U contours [26], which are reliable sign of true 

singularity of any kind, in contrast to local minimum.  
 

Another limiting case (completely mutually coherent components) for 1 ll  

(approximately 0.05) is illustrated in Fig. 3 b. Again, spatial maps of the Stokes 

parameters were obtained and the elements 03 s  and 12

2

2

1  ss  where selected. 

There are the lines of linear polarization. Than, in several selected points of such 

L lines we determined the azimuth of polarization, again, by two ways: firstly as 

 12

1tan ss  and, secondary, as direct measurement of the azimuth of polarization 

by rotating a linear analyzed up to complete extinction of a field at the specified 

point that corresponds to crossed azimuth of polarization of the combined beam 

and the axis of maximal transmittance of analyzer. Description between two 

results for determining the azimuth of polarization do not exceeded 0.1 rad. 
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Figure 5. 1D distribution of the degree of polarization of the combined beam formed by two 

mutually incoherent orthogonally polarized components defined in Fig.1 and shown in Fig. 4. 
 

 

Perfect extinction of a beam at the specified points just shows that the degree of 

polarization 1P  (in contrast to the case of completely mutually incoherent 

components, where intensity at the analyzer output is independent on its 

orientation). Also, for certain orientations of a quarter-wave plate and analyzer, 

the field at each other point can be extinguished that shows that everywhere the 

degree of (elliptical) polarization equals unity. It is worth to compare Fig. 3 b with 

a view of the circular complex polarization plane (Fig. 3 a) to see that, really, such 

polarization distribution over of a combined beam is close experimental analogue 

of the circular polarization plane. 
 

At last, we have elaborated experimentally intermediate case, when 10  ll , 

lying between ones considered above. For step-by-step increasing optical path 

difference between the same orthogonally (circularly) polarized components, we 

obtained spatial distributions for the Stokes components
lr IIIIII  , , , , , 4545900 
 and 

found from them the Stokes parameters. Further, the degree of polarization and 

ellipsometric parameters of the combined beam were determined as the 

combinations of these parameters. 
 

Before formulating the conclusions from our observations, let us represent one of 

row (intermediate) results undergoing following processing. Fig. 6 illustrates 

combined beams “LG01 mode + plane wave” (with large intensity ratio, so that 

one does not visualizes a plane wave) for relative optical path differences close to 

unity (coherent limit) and slightly exceeding a half of the coherence length of 

used laser, left fragments of Fig. 6. Other fragments of this figure are the intensity 

distributions 
45I  (central column) and 

45I  (right column) used for forming the 

third Stokes parameters.  
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Figure 6.  
 a, d. The combined beams b, e. The corresponding c, f. The corresponding

 “LG01 mode + plane wave” intensity distributions behind intensity distributions  

 with relative optical path a linear analyzer for behind a linear analyzer

 differences 05.0 ll  and determining the third for determining the third 

 56.0 ll , respectively  Stokes parameters: +45°        Stokes parameters: –45°

 Decreasing visibility of interference fringes in fragments e and f corresponds to decreasing  

in parallel the degree of mutual coherence of the mixed components  

and the degree of polarization of the combined beam. 
 

Though two orthogonally polarized components do not interfere, their equal 

polarization projections selected by properly oriented polarizer can interfere 

depending on their mutual coherence. If the degree of mutual coherence of the 

components is not zero, their equally polarized projections interfere with forming 

typical patterns indicating phase singularity. Comparison of the central and left 

columns of Fig. 6 shows that spatial intensity distributions for orthogonal 

polarization projection of the combined beam are complementary in a sense that 

dark forklet is replaced by bright one. 
 

The main conclusion follows from comparison of fragments b and e (c and f). 

Decreasing the mutual coherence of the mixed components and decreasing the 

degree of polarization of the combined beam are accompanied by decreasing ability 

of equal polarization projections of the mixed components to interfere that manifests 
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itself in decreasing visibility of interference pattern. So, in fragments b and c of Fig. 

6 ( 05.0 ll ) the measured visibility is 0.97, while in the fragments Fig. 6 e and f 

( 56.0 ll ) visibility is 0.24 (with experimental error non exceeding 5%). It 

shows the feasibility allows determine the degree of mutual coherence of two 

orthogonally polarized beams by measuring the degree of polarization of the 

combined beam formed by such components found from Stokes parameters. 

Namely, in our experiment rl  for 56.0 ll  also equals 0.24. Such 

measurements are preferably be performed at the elements of the combined beam 

where intensities of two beams are equal to each other (where L and U singularities 

co-exist in case of partial mutual coherence of the components), while at such 

singular elements of the combined beam rlP  . 
 

Thus, vector singularities occurring in light fields, which are simultaneously 

partially spatially and partially temporally coherent have been considered in this 

section. It has been shown that in the case of partially coherent mixing of two 

orthogonally circularly polarized components conventional vector singularities, 

viz. C points and L lines submerged in a field of elliptical polarizations coexist 

with singularities arising just in partially coherent fields, such as U and P 

singularities as the extrema of the degree of polarization. Gradual transformation 

of C and L singularities into P and U singularities, respectively, accompanying 

decreasing degree of mutual coherence of the components has been 

experimentally shown. So, conventional polarization singularities of completely 

coherent fields (C points and L lines) are vanish in incoherent part of the 

combined beam, so that the only polarization of the component predominant in 

intensity remains in the vicinities of P points and U lines.  

4. Optical currents in completely coherent and partially coherent vector 

fields 

In this section we present the results on the spatial distribution of the Poynting 

vector governing motion of nanoparticles in spatially inhomogeneously polarized 

fields. 
 

The Poynting vector S , is defined, in its simplest (Abraham‟s) form, as the vector 

product of the vectors of electric and magnetic fields, viz. HES  . By 

definition, the Pointing vector of a plane wave is perpendicular to vectors E  and 

H , being representing the energy flux (in W/m
2
) of an electromagnetic field. As it 

will be seen from the following consideration, in light fields with complex wave 

fronts and with variable in space state of polarization the Poynting vector can 

exhibit much more sophisticated behavior, being changing from point to point at 

the beam cross-section and leading to new applications of light.   
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The use of small particles for diagnostics of microstructure of light is widely used 

approach [16-18], but mainly in approximation of complete coherence of an optical 

field. Here we analyze the influence of phase relations and the degree of mutual 

coherence of superposing waves in two-wave and four-wave configurations on the 

characteristics of the nanoparticle‟s motion. The possibility of diagnostics of optical 

currents in liquids caused by polarization characteristics of an optical field alone is 

demonstrated using nanoscale metallic particles. We also discuss the prospects of 

studying temporal coherence using the proposed approach. 
 

Experimental investigation and computer simulation of the behavior of small 

spherical particles embedded in optical fields provide a deeper understanding of 

the role of the Poynting vector for description of optical currents in various media 

[6, 19]. So, interference between waves polarized in the plane of incidence has 

been shown to be effective in creation of polarization micro-manipulators; on the 

other hand, this is a vital step in optimal metrological investigation of optical 

currents in vector fields [43-46]. Besides, the study of spatial and temporal 

peculiarities of the motion of particles embedded in optical fields with various 

spatial configurations and with various scale distributions of the Poynting vector 

leads to new techniques for estimating the temporal coherence of optical fields. 
 

Computation of the spatial distribution of the time-averaged Poynting vector 

determining the forces affecting nanoparticles and their movement is performed 

following the algorithm proposed by M. Berry [6] who has shown that the vector 

force affecting a small particle in an optical field is proportional to the time-

averaged Poynting vector. We will show here that the study of the motion of 

nanoparticles in inhomogeneously polarized fields provides reconstruction of the 

spatial distribution of the time-averaged Poynting vectors, viz. the optical currents. 

4.1.Two-wave superposition for changeable degree of mutual coherence of 

the components  

Superposition of two plane waves of equal amplitudes polarized in the plane of 

incidence (Fig. 7a) results in the distribution of the Poynting vector shown in Fig. 

7b.  Such distribution arises when the interference angle is equal to 90°, and the 

only periodical polarization modulation of the field (in the absence of intensity 

modulation) takes place in the plane of observation [45]. 
 

Analysis of the spatial distribution of the time-averaged Poynting vectors shown in 

Fig. 7b reveals the periodicity of this distribution, where the lengths of lines shown 

in the figure are proportional to the absolute magnitudes of the vectors. The lines 

corresponding to the singularities of the Poynting vector are shown by the indicated 

set of points. Spatial distribution of the time-averaged Poynting vectors shows the 

trajectories of energy transfer. The points at the map of the time-averaged Poynting 
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vectors correspond to the areas through which energy transfer is absent, showing: 

(i) the loci of singularities of the Poynting vector; (ii) the directions along which 

light energy is non-vanishing (but is conserved); (iii) the points where the vector H  

vanishes due to interference, while in 90º-arrangement vectors H  of equal 

amplitudes associated with two plane waves are parallel. 
 

Figure 7.  
a. Superposition of plane waves     b. Spatial distribution 

of equal amplitudes linearly polarized   of the time-averaged Poynting vectors 

in the plane of incidence having an inter-  resulting from superposition 
ference angle of 90°. Periodical spatial   of two orthogonally linearly  

polarization modulation takes      polarized waves with  
place in the plane of incidence.     an interference angle of 90°. 

 

 

The instantaneous magnitude of the electric (magnetic) field strength‟s vector of 

the resulting distribution formed in the plane of observation is written as 

eet aEEE )()()(   cos21  (or hht aHHH )cos()()(   21 ), where, ea , 

ha  are the unit vectors in the direction of propagation of the electric (magnetic) 

components for the resulting field in the plane of observation; )(  he   is the 

phase difference of the electric (magnetic) field components of superposed waves. 

Thus, the instantaneous magnitude of the Poynting vector is 
 

  ))(cos(cos heheinst tt aaHEHES   ,  
 

and the time-averaged Poynting vector magnitude is 
 

)cos()()cos()( heheheave  


 HEaa
HE

S
2

1

2
. (10) 
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 Because the phase difference of the electric field changes from point to point 

(polarization modulation), the time-averaged magnitude of the Poynting vector is 

modulated in space taking the maximum (minimum) at different points of the 

plane of observation, as it is seen from Eq. (10). 
 

Periodical spatial modulation of the Poynting vector in the observation region 

have previously been discussed [47, 48]. Spatial polarization modulation at the 

plane of observation is caused by superposition of the xE  and zE  field 

components with changing the phase difference from point to point, cf. Fig. 7a. A 

photodetector registers only intensity, 22 += zx EEI . The sum of the squared 

amplitudes of the electrical field components is constant at the plane of 

observation, but the state of polarization changes. 

 

One observes the dependence of the result on the phase relation between vectors 

E  and H  through the vector magnitude and its direction. This relation changes 

from point to point in the plane of observation that manifests itself in polarization 

modulation. Both the magnitudes of projections xE and zE  and their phases 

change from point to point. As a consequence, the Poynting vector also changes, 

see Fig. 8. 

 
Figure 8. The polarization distribution in the registration plane is marked by thin lines. 

The direction and magnitude of the Poynting vector are marked by bold lines.  

The point at the end of the vector determines the energy transfer direction.  

The modulation of the Poynting vector takes place according  

to the polarization modulation at the plane of observation. 
 

 

The results of simulating the motion of particles embedded in the field of the 

considered distribution of the Poynting vector are shown in Fig. 9. It is tacitly 

assumed the particles to be absorbing and of size 0.1 µm. One observes that in the 

case of the distribution resulting from superposition of completely mutually 

coherent waves, the velocities of particle motion along the lines of maxima and 

zeroes of the Poynting vector are considerably different from one another.        
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The particle size is here comparable with a half-period of the corresponding 

distribution; however, the resultant force giving rise to the particle motion along 

the lines close to the Poynting vector maxima exceeds the resultant force for lines 

close to the zeroes of the Poynting vector. The results of modulation of particle 

movement velocity along the peaks and zeroes of the field of the averaged 

Poynting vector are shown in Fig. 9a and Fig. 9b, respectively. 

 

 

Figure 9. The change of the particle motion velocity with time obtained for different  

magnitudes of the degree of coherence of superposing waves in the case of particles moving: 

a. along the peak          b. along the minimum 

of the field of time-averaged       of the time-averaged  

Poynting vector magnitude    Poynting vectors magnitude  
Curves 1, 2, and 3 correspond to the degree of coherence,  

which equals 1, 0.5, and 0.25, respectively. 
 

 

If the degree of mutual coherence of the superposed waves equals 0.2, the spatial 

distribution of the averaged Poynting vectors becomes more homogeneous, the 

modulation depth decreases considerably, and the velocities of nanoparticles 

become almost identical. When the degree of mutual coherence reaches 0.5, the 

relative velocities of the nanoparticles along the same trajectories are lower in 

comparison with velocities in case of complete mutual coherence of the 

superposed waves and lie in the vicinity of the average magnitudes for coherent 

and incoherent cases [49]. One observes the influence of mutual coherence of the 

superposed waves on motion velocities of nanoparticles with constant size and 

form in media with constant viscosity [49]. When analyzing the motion of test 

particles in the region of distributed magnitude of the Poynting vector, the 

influence of the parameters of superposing fields on the character of particle 

motion can be determined, cf. Fig. 9a, 9b. 
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It is clear [22, 48, 49], the degree of coherence of superposing waves in 

arrangement Fig. 7a determines the polarization structure of a field, viz. the spatial 

distribution of the Poynting vector. Under the same other conditions, changing the 

degree of mutual coherence of superposing waves results in changing motion 

velocity of the test particles, what can serve as an estimating parameter for 

determining the coherence properties of superposing waves. These differences in 

velocities of motion of nanoparticles are explained physically in the following 

manner: Increasing the share of incoherent part of the resulting field distribution 

causes a decrease of the modulation depth of the Poynting vector‟s spatial 

distribution, as well as decreasing resultant force magnitude along the lines of 

energy transfer, which induces the motion of nanoparticles. The increase of the 

degree of coherence brings about an accelerated particle motion in the field of 

averaged energy magnitudes. 

4.2. Four-wave superposition of for changeable degree of mutual coherence 

of the components 

For the case of superposition of four waves, see Fig. 10a,  involving two sets of 

counter-propagating plane waves of equal intensities, linearly polarized in the 

plane of incidence and oriented at an angle of 90° with respect to each other, the 

spatial distribution of the time-averaged Poynting vectors with 2D periodicity  is 

shown in Fig. 10b.  

Figure 10. 
a. Arrangement of superposition    b. 2D distribution of the time-averaged 

of four plane waves.       Poynting vectors resulting from  

   the superposition of four waves 

   shown in Figure 10a. 
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As in the previous case, the lengths of the time-averaged Poynting vectors are 

proportional to their magnitudes. The nodal points in this distribution correspond 

to zero magnitudes (singularities) of the Poynting vector. In the following 

simulation, the diameters of the particles are changed to be comparable with a 

half-period of the corresponding spatial distribution of the Poynting vector. If the 

phase relations between four superposed beams are such that the modulation 

depth of the spatial distribution of the Poynting vector is maximal, the particle 

velocities will depend on the degree of mutual coherence between the interfering 

beams, see Fig. 11 a. In order to compare the influence of the temporal and spatial 

parameters of coherence on the motion of the nanoparticles, we have analyzed the 

maps of the time-averaged Poynting vector with a superposition of four plane 

waves over a large area. For that, we have tracked the nanoparticles‟ motion. The 

dependence of nanoparticles‟ velocities on the phase difference of the superposing 

beams has thus been revealed. So, in the case of pair-by-pair four opposite-in-

phase superposed beams, particles become motionless. For that, the “opposite-in-

phase” configuration covers the situation where two sets of mutually orthogonal 

standing waves are such that their nodes strictly coincide. 

Figure 11. 
a. The variation of motion velocity      b. The change of the resultant force of the  

of a test particles in an averaged field     test particle motion in the time-averaged 

of distributed Poynting vectors with    field of distributed Poynting vectors 

      the change of the degree of mutual    with the change of the degree of mutual 

      coherence of the waves (four     coherence of the waves (four 
superposing waves are in phase):       superposing waves are in phase): 

curve 1 – one of the waves         curve 1 – one of the waves is incoherent 

is incoherent; curves 2, 3, 4         with all other waves; curves 2, 3 and 4 

correspond to the degree of coherence      correspond to the degree of coherence 

0.25, 0.5, and 0.75, respectively.      0.25, 0.5, and 0.75, respectively. 
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Increasing the degree of mutual coherence of the waves results in more uniform 

velocity magnitude of moving particles. The magnitude of the resultant force 

causing this motion under increasing degree of coherence, practically, does not 

change with time, see Fig. 11 b. The maximum depth of modulation for coherent 

equiphase waves determines the stable position of particles. The chaotic state and 

the average particle velocity magnitude can be taken as a possible guideline in 

estimating the degree of coherence of superposing waves. 
 

The four-wave superposition of waves linearly polarized in the plane of incidence 

results in forming “cellular” structure of the resulting field distribution [11], 

which can be used for transfer (transporting) of the set of periodically positioned 

nanoparticles as an entity to desired zone. The use of strongly reflected test 

spherical particles provides obtaining more realistic notion on movement of 

particles in the field modulated in polarization in the incidence plane. So, the test 

particles are concentrated in zones (planes) of minima of the time-averaged 

Poynting vector and move along these planes. This situation reflects in the most 

adequate manner the processes of particle moving in the fields spatially 

modulated in polarization. 

4.3. Experimental results 

Direct experimental verification of the results of computer simulation is rather 

difficult. Spatial period of the polarization modulation resulting from 

superposition of plane waves meeting at right angle is less than a wavelength of 

the corresponding radiation. In this case, diagnostics of optical currents presumes 

the using test particles (preferably spherical) of size much less than the period of 

polarization distribution. That is why, direct visualization and diagnostics of such 

particle currents is hampered. 
 

For verifying the results of above consideration, we have studied experimentally 

the influence of the field resulting from two-wave superposition (cf. Fig. 7a) with 

various combinations of their states of polarization on the test particles. In our 

experiments we have used spherical particles of hydrosol of gold with diameter 40 

nm, approximately, for the period of spatial field distribution 449 nm. (Interested 

reader is persistently encouraged to find important practical details in [11].)  
 

Periodical intensity distribution causes movement of particles and formation of 

the periodical distribution of particles‟ concentration at the planes coinciding with 

interference minima of the intensity distribution at the area of superposition of 

two beams. These planes can be regarded as the analog of crystallographic planes 

in crystals. Direct visualization of particles and their currents is hampered due to 

small particle size. However, at planes of dense packing of particles self-

diffraction takes place. We have observed this phenomenon for angles of meeting 
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of two beams less than 40°. For right angle of meeting of the beams, the each self-

diffracted beam propagates along of and contrary to the propagation direction of 

other of two superposing beams. Thus, it is impossible to discriminate the initial 

and self-diffracted beams. That is why, taking into account the Bragg law, we use, 

for diagnostics of periodical distributions of particles, the test laser beam with 

another wavelength, λ=532 nm. To form the same interference distribution (with 

the period 449 nm) with such wavelength the angle of meeting of two beams 

could be 72.6°. So, the angle of incidence of the probing beam must be 36.3° in 

respect to bisector of the writing beams. In this case, the Bragg law is fulfilled 

strictly for the probing beam. The mentioned angles are the angles of propagation 

in light-scattering media, in our case in water. 
 

If two beams of red laser are polarized in the plane of incidence and the angle of 

meeting of them is equal to 90°, only polarization modulation takes place in the in 

the plane of observation. In this case the diffracted probing beam is present as 

well. The signal at the photodetector output is shown in Fig. 12 b. The diffracted 

probing beam is present, but is approximately of half the intensity in comparison 

with the case illustrated in Fig. 12 a. This experimental result is also in accordance 

with the result of computer simulation. The spatially modulated in polarization 

field is correlated with concentration of the test particles at the planes of minima 

of the time-averaged magnitude of the Poynting vector, and particles move along 

these planes. If two beams from red laser are linearly polarized, but one of them in 

the plane of incidence, while another one perpendicularly to this plane, the 

diffracted probing beam is absent, cf. Fig. 12 c. This shows that at the focal plane 

where the beams from red laser superpose, the periodical distributions of gold 

particles are absent. This experimental result is also in agreement with earlier 

computer simulation [43]. In other words, there are no any ordered optical 

currents being liable to optical diagnostics, as it has been made in previous case. 

 

Figure 12. Relative signal of a photodetector (modulating plane-parallel plate is inserted 

on 2 sec at one interferometer leg and then removed) in the case  

when radiation of red laser is linearly polarized: 
 a. both beams are polarized b. both beams are c. one beam is polarized 

 in the plane perpendicular polarized in the plane in the plane of incidence, 

 to the plane of incidence; of incidence; while another one is 

    polarized perpendicularly 

        to this plane. 

Time (s) Time (s) Time (s) 
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Thus, temporal and space peculiarities of particle‟s motion in optical fields 

without intensity modulation, but only due to polarization modulation causing the 

spatial modulation of the time-averaged Poynting vector (depending on the degree 

of mutual coherence of superpose waves) opens up new feasibilities for the use of 

such field characteristics and the parameters of nanoparticles motion for 

estimating the temporal coherence of the tested field. We have demonstrated a 

possibility of influence of only the polarization factor on formation of optical 

currents in liquids by the use of the principles of spatial polarization modulation 

in the observation plane. Besides, we have shown the possibility of diagnostics of 

optical currents using test particles of nanoscale. To all appearance, this 

metrology of fine structure of optical fields may be extended on polychromatic 

waves. The initial steps in this direction have been recently made [44-49]. 

5. Conclusions  

Thus, new optical correlation approaches to metrology of partially coherent and 

partially polarized light fields have been developed. One of them reveals 

interconnection between polarization singularities inherent in partially polarized 

optical beams for the general case of partial mutual coherence of orthogonally 

polarized components. Another one concerns to exploring the spatial modulated 

time-averaged Poynting vector in completely and partially coherent paraxial light 

fields for control the motion of nanoparticles in optical currents. The represented 

approaches show fruitfulness of attracting the concepts and metrological tools of 

correlation optics in formation and investigation of unconventional polarization 

distributions that can be of usefulness in solving the problems of optical 

correlation diagnostics and optical telecommunications. 
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