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CONVERSION OF ENVIRONMENTAL HEAT  

INTO USABLE ENERGY 

Eliade STEFANESCU 

Rezumat. Prezentăm descoperirea recentă a unui fenomen de conversie a căldurii 

mediului ambiant în energie de câmp electromagnetic coerent, şi mai departe în energie 

electrică, pe baza a două dispozitive pe care le-am numit ‚convertor de căldură 

cuantic’ şi ‚sistem de injecţie cuantic’. Un convertor de căldură cuantic se bazează pe 

cuplarea a două fenomene cunoscute anterior: superradianţa şi efectul Peltier, cuplate 

printr-un element activ pe care l-am numit ‚transistor superradiant’. Când un curent 

electric este injectat într-un dispozitivcare conţine un număr suficient de mare de 

transistoare superradiante, un câmp electromagnetic coerent este emis prin tranziţii 

cuantice în joncţiunile emitor-bază, pe seama unei absorpţii de căldură prin joncţiunile 

colector-bază. Energia radiată de acest dispozitiv poate fi utilizată direct, în unele 

aplicaţii, sau convertită în energie electrică prin utilizarea unui sistem de injecţie 

cuantic. 

Abstract. We present a recent discovery of a phenomenon of conversion of the 

environmental heat into coherent electromagnetic energy, and further, into electric 

energy, on the basis of two semiconductor devices we called ‚quantum heat converter’ 

and ‚quantum injection system’. A quantum heat converter is based on the coupling of 

two phenomena, previously known: the superradiance and the Peltier effect, coupled by a 

active element we called ‚superradiant transistor’. While an electric current is injected in 

a device containing a sufficiently large number of superradiant transistors, a coherent 

electromagnetic field is emitted by quantum transitions in the emitter-base junctions, on 

the account of heat absorption by the collector-base junctions. The energy radiated by 

this device can be directly used, in some applications, or converted into electricity by a 

quantum injection system. 

Keywords: coherent field, correlated transitions, superradiant transistor, quantum heat 

converter, quantum injection system. 

 

1. Introduction  

Our civilization is based on a large energy consumption, mainly obtained by 

burning different fuels, chemical, or nuclear. However, these processes producing 

large chemical, or nuclear wastes, began to become dangerous for our life 

conditions on this planet. 

Consequently, other techniques for the energy production from clean 

sources as waterfalls, winds, marine tides, or solar radiation, have been developed. 

However, these technologies are generally based on big installations, with small 

efficiencies, and critically depending on external conditions, which are not 

satisfied everywhere on the Earth. A much more accessible energy source is heat, 

but previously it was believed that its conversion into usable energy is not 

possible, due to the second law of thermodynamics [1]. However, approximately 

in the last half-century, a new remarkable field of scence has been developed, we 
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call open quantum physics [2-10]. In this framework, we found that a conversion 

of the environmental heat into usable energy is possible with a very high 

efficiency, in the framework of the very well-known technology of the 

optoelectronic semiconductor devices [11-15].  

We showed that principle 2 of thermodynamics does not hold any more in a 

quantum matter-field system [16]. Such a system, we called superradiant quantum 

injection dot [17], composed of a two-level system with the density matrix  tS , 

and a coupled electromagnetic field with the amplitude  tE , has an entropy time 

variation  
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where  t
S
00  and  t

S
11  are the asymptotic values of the occupation 

probabilities for a field amplitude  tE , while   is the frequency of this field, 

A
AK

V


  is the quantization number of the system with the quantization 

volume AV  in a resonant electromagnetic field with a wavelength   , 01  is the 

decay rate from the excited state 1  to the ground state 0 , F  is the decay rate 

of the electromagnetic energy, and ,, e  are the usual notations for universal 

constants. In this expression, we distinguish the positively defined atomic term, 

proportional to the decay rate 01 , and a term depending on field, which can be 

negative. Really, when the electromagnetic field increases, the population  tS
11  

of the excited states also increases, tending to the asymptotic value  t
S
11  for 

this field, while the population  tS
00  of the ground state decreases, to the 

equilibrium value  t
S
00 . With these values,         tttt

SSSS
00001111 ,  , 

we get a positive field term in the curly bracket, with the negative logarithmic 

factor multiplying this bracket. 
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A microscopic description of this phenomenon has been performed in the 

framework of a recently developed theory, based on master equations with 

explicit dissipation coefficients, which depend on the interaction potentials 

between the system and environmental particles, densities of states, and 

temperature [18-21]. We showed that this description, with 1
2
N  transition 

operators ji cc


 for a system with N  states, Nji , , is not only more explicit, but 

also more correct, compared to the most theoretical approaches existing in 

literature, which take into account only two non-orthogonal operators, coordinate 

and momentum [22]. In section 2, we present the three master equations of the 

systems of interest for a semiconductor optoelectronic structure: the activ 

electrons, the coherent electromagnetic field, and the optical phonons. In section 

3, we present the operation of a quantum heat converter. We obtain the output 

power as a function of the device characteristics and physical constants, and 

evaluate this power for a realistic system. 

 

2.  Quantum master equations for a superradiant transistor 

A superradiant transistor is a semiconductor structure, with an array of quantum 

injection dots, as an emitter-base junction, and a p-i-n deep-level path, as a base-

collector junction (Fig. 1). 

 

Fig. 1. Superradiant transistor with an n-nb-na-i-pa-pb-p superradiant junction and a p-i-n junction 

with a deep-level path, absorbing heat by Peltier effect. 

A quantum injection dot is a donor-acceptor pair, embedded in two na and pa 

thin layers, of lower band gap, with an i-layer of a higher band gap between these 

layers. The quantum dot density  2
mNe , the thicknesses 10 xx   and 24 xx   of 
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the two layers na and pa, the thickness 02 xx   of the i-layer, and the barriers 3U  

and 4U  with the thicknesses 31 xx   and 45 xx  , between the conduction regions 

n and p with the conduction and valence band margins cU and vU  (Fig. 2), are 

chosen for quantum dot eigenenergies  

vc UEUE  01 , .  

 

Fig. 2. Quantum injection dot with the energy levels 0E  and 1E , coupled to a coherent 

electromagnetic field GGFE ii  , in a cavity with mirror transmission coefficients 

00 T  and T , while an electron current he III   is injected in this quantum dot. 

 

The two potential barriers, which separate the quantum dot levels 1E  and 

0E  from the high density levels of the conduction regions n and p, diminish the 

dissipative coupling of the active quantum dot electrons to the conduction 

electrons and holes. Of course, the dimensions of the separation barriers are 

chosen for a sufficient high penetrability, to provide the necessary electron flow 

for the device operation. When a sufficiently high current is injected in the device, 

a coherent electromagnetic field of an amplitude E  is generated, by quantum 

transitions from the excited state 1  with the energy 1E , to the ground state 0  

with the energy 0E . When these electrons cross the base-collector junction, the 

lower states of the deep level path are enhanced, while the higher states of this 

path are depleted, which means a temperature decrease of this junction. This leads 

to heat absorption in this junction, tending to remake the electron distribution for 

the environmental temperature T . The field amplitude E  is determined by the 
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coupling of this field to the quantum transitions 01  , and other couplings in 

this matter-field system: 

1. The dissipative couplings of the active electrons with the crystal lattice 

vibrations, the conduction electrons and holes, and the free 

electromagnetic field existing at a certain temperature T ; 

2. The coupling of the electromagnetic field with the optical vibrations of the 

crystal lattice, and the dissipative couplings with the conduction electrons 

and holes; 

3. The dissipative couplings of the optical vibrations of the crystal lattice with 

the valence electrons. 

Consequently, we describe this physical system by three master equations 

[10]: 

1. Master equation for a system of Fermions interacting with an 

electromagnetic field, with dissipative coefficients for couplings to other 

Fermions, Bosons, and a free electromagnetic field; 

2. Master equation for an electromagnetic field mode interacting with a system 

of active Fermions and the optical vibrations of a crystal lattice, with 

dissipative coefficients for couplings to an environment of other Fermions; 

3. Master equation for the optical vibrations of a crystal lattice excited by an 

electromagnetic field, with dissipative coefficients for the coupling to the 

valence electrons. 

We consider a system of Fermions described by the creation-annihilation 

operators 

ic - ic , and an energy spectrum i  in a potential well situated at a 

coordinate x  of a Fabry-Perot cavity, with the resonant electromagnetic field 

modes of the cavity 
a - a  for the forward wave, and 

a - a  for the backward 

wave. Here, we take into account dimensions of this well much smaller than the 

electromagnetic field wavelength. This system is described by a Hamiltonian 

(2) 

where 

(3) 

is the Hamiltonian of the system of Fermions, and 

(4) 

is the interaction potential of this system in electromagnetic field, with the 

transition frequencies 


ij
ji





  and the dipole moments jririj


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dynamics of such a system in a dissipative system of F
Y  Fermions, with a density 

of states  
F

g , a mean number  
F

f  of Fermions on these states, and a 

potential F
V , a system of Bosons, with a density of states  

B
g , a mean 

number  
B

f  on these states, and a potential B
V , and a free electromagnetic 

fiel

d at 

a 

tem

per

atur

e 

T , 

is 

described by the quantum master equation [10,15,21]: 

 

(5) 

 

 

 

This equation depends on the dissipative potential fluctuations ij , of the 

amplitude mean-value 

(6) 

the memory time  , and the random phases  t , of these fluctuations, and the 

dissipative coefficients 

(7) 

For ji   and transition energies much larger than the thermal energy, 

Tji  , the terms of these coefficients are of the form 

(8) 
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for the coupling with the environmental Fermions, 

(9) 

 

for the coupling with the environmental Bosons, and 

 (10) 

for the coupling with the free electromagnetic field at a temperature T . These 

coefficients describe a resonant dissipation, when a transition of a Fermion of the 

system of interest is correlated to a transition of an environmental particle, with a 

certain probability (Fig. 3).  

 

 

 

 

 

Fig. 3.  Resonant dissipation. 

These probabilities correspond to the detailed balance principle [22]. For a 

system of active electrons in a semiconductor structure, the dissipation 

coefficients 
F
ij  and 

F
ji  of the coupling with a conduction electron situated at a 

distance r  in a conduction region, is obtained with the Coulomb potential of 

interaction 

(11) 

For a two-level quantum dot in a crystal lattice, which is of interest for our 

application, the dissipation coefficients of the coupling to the vibrational modes of 

this lattice are of the form [15]: 
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where M is the electron mass, 
a - a  are creation-annihilation operators  of 

phonons of frequency   and polarization 1


, D  is the crystal density, and  

(14) 

is the sound velocity in a crystal with a Young elasticity coefficient E . In such a 

dissipation process, an electron decay/excitation with an energy 10  is correlated 

to a phonon creation/annihilation of the same energy, 10  . 

From the master equation (5), we derive equations of the density matrix elements, 

for a two-level system with a transition energy 010   , which depend on a 

quasi-resonant electromagnetic field of amplitude  tE  and frequency 0  , 

(15) 

For the polarization amplitude  tS , 

(16) 

and the population difference  

 (17) 

we obtain the polarization-population equations 
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propagates through the semiconductor, is highly influenced by the uncanceled 

charge of valence electron distribution over the ion distribution of this material, 

which leads to an important variation of the field propagation velocity, according 

to a refractive index 1  (Fig. 4). 

 
Fig. 4. An external electromagnetic field exciting an internal field of the uncanceled charge in the 

crystal, and an optical vibration of this crystal, which propagates with the sound velocity v . 
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(21) 

 

 

 

 

and the electromagnetic field propagating backward,  
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generated by the electromagnetic field with the same wavelength, or wave vector 

kk   (Fig. 4), which means a frequency 

(25) 

The master equations (21)-(22) of an electromagnetic field in a quantization 

volume 3
1LV , describe the couplings of this field to the active electrons with 

the transition operators ij cc


, the optical vibrations with the creation-annihilation 

operators 

a - a  and 


a - a , and the quasi-free electrons/holes encountered 

in the conduction regions, by propagation between the two surfaces of the device, 

0x  and DLx  , with the dissipation coefficient 

(26) 

The master equations (23)-(24), of the optical vibrations of a crystal lattice 

with a lattice constant a  and an uncanceled charge ratio uf , describe the coupling 

to the electromagnetic field exciting these vibrations, with the creation-

annihilation operators 
a - a  and 

a - a , and the valence electrons excited by 

these vibrations to free states at a temperature T , with the dissipation coefficient 

(27) 

From the master equations (21)-(22) of the electromagnetic field, and (23)-

(24) of the optical vibrations, for the mean values of the field 

(28) 
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(31) 

 

 

which describe a Raman frequency shift .
2


R  From these equations with 

(20) and (25)-(27),  and the polarization-population equations (18) with (6)-(8) 

and (10)-(14), we obtain an analytical description of a superradiant semiconductor 

structure, depending on the crystal atomic mass AM , the crystal density D , the 

uncanceled charge ratio uf , the quasi-resonant quantum dot frequency  0 , 

the conduction electron/hole density  0
F

g , the donor and acceptor 

concentrations DN  and AN  of the conduction regions which determine the 

potentials cU  and vU , the Coulomb potential F
V  of the conduction electrons and 

holes in the field of a quantum dot, the elasticity coefficient E , the quantum dot 

transition dipole moment 01r


, and the thickness DL  of the active structure. 

 

3. Quantum heat converter 

A quantum heat converter is a device composed of a packet of superradiant 

transistors in a Fabry-Perot cavity with a total reflection mirror, 00 T , and an 

output mirror with a transmission coefficient T , in intimate contact with a heat 

absorbent (Fig. 5) [10], [12-17]. The quantum dot arrays of these transistors are 

situated in the antinodes of a quasi-resonant electromagnetic mode of the cavity, 

while the heat absorbing junctions are placed in nodes. An electromagnetic field 

flow   is generated by a strong electron-field coupling in antinodes, while the 

absorption of this field by the weak electron-field coupling in nodes is negligible. 

Two versions of this device are conceivable: (1) a longitudinal device, with the 

two mirrors on the two surfaces of the semiconductor chip, and (2) a transversal 

device, with the two mirrors on two lateral surfaces of the cheap.  

 

Fig. 5. Quantum heat converter, as a packet of 

superradiant transistors in a Fabry-Perot cavity, 

with the superradiant emitter-base junctions in 

the antinodes of a quasi-resonant 

electromagnetic mode of the cavity, and the heat 

absorbing base-collector junctions in nodes. 
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With a chip of active area DA  and thickness DL , including tN  superradiant 

transistors with a quantum dot density eN , we obtain the energy flows for a 

longitudinal device, 

(32) 

 

and a transversal one, 

(33) 

 

depending on threshold currents 

(34) 

 

(35) 

and a coefficient RK  for to the Raman effect, which, for a sufficiently low 

dephasing rate R , is   1TRK . We notice that the current I  injected in 

the device must be lower than the maximum value  TDeM wAeNI  | | , 

otherwise the quantum dot neutrality is no more spared. Thus, we obtain an 

operation condition for the thresholds of the population inversions in the 

expressions (34) and (35) of the threshold currents: 

(36) 

 

(37) 

 

i.e.  for the quantum dot density eN , the number of superradiant transistors tN , 

the dipole moment 01r


, the dephasing rate  , and the decay rate of the field F .    
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For reasonable values of a GaAs - AsGaAl xx 1  semiconductor structure, with 

an active zone area 2
4 cmAD  , and thickness mmLD 2 , donor and acceptor 

concentrations 316
1016.3


 cmNN AD , which mean a density of superradiant 

dots 2
476.1


 mNe  and a transition frequency eV186.00  , i. e. a field 

frequency 114
0 1082.2


 s , which, for the refractive index 3.3 , means 

1000tN  superradiant transistors in this structure, a transition dipole moment 

nmr
4

01 105





, a dephasing rate 17
109.1


  s , and a field decay rate 

16
102.4


 sF , which means a transmission coefficient of the output mirror 

210.0T , we obtain the population inversion threshold 

 

 

(38) 

 

With a decay rate   2| | , from (34) with (36) and (38), we obtain the threshold 
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For a current AIAI M 896.3534  , injected in this chip with an electric 

resistance 

(39) 

  

from (32) we obtain an electromagnetic power 

(39) 

 

much larger than the electric power W2.8
2
 RIPE , which is necessary for this 

current injection. 
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Conclusions 

We proposed a new technological development for the energy production, 

by heat absorption from the environment. In this framework, high efficiency 

devices are feasible: for instance, we obtained KW1  from a superradiant chip 

with an area of 2
4 cm  and a thickness of mm2 . A microscopic theory is available 

for a complete analytical description. In this framework, the essential 

characteristics of the device are readily understandable from physical reasons. 

Thus, we found that the superradiant power is proportional to the transition energy 

of the active quantum dots, the electric current injected over a threshold value, and 

the number of superradiant transistors, and is inverse proportional to a term 

describing the absorption of the field in its propagation through the cavity, and a 

term depending on the transparency of the output mirror. This transparency is 

determined from the condition of stationary waves propagation in the cavity, 

depending on the absorption coefficient of these waves. The threshold current is 

proportional to the quantum dot density, the area of the active zone, and the decay 

rate of the active electrons. The quantum dot density is determined from the 

transition energy condition, for the electron injection from the n-zone of the 

emitter to the p-zone of the base. The threshold current essentially depends on the 

population inversion, which is proportional to the dephasing rate and the sum of 

the output mirror transparency with the field absorption term, and inverse 

proportional to the transition frequency, the number of superradiant transistors, 

the quantum dot density, and the square of the transition dipole moment. These 

characteristics are obtained as explicit functions of the crystal properties, and 

device parameters.  
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