
Academy of Romanian Scientists

Autumnal Session, 24 – 26 september 2015

Online ISSN 2067 - 9564 Volume 7, Number 2/2015 43

IMPROVING SOFTWARE QUALITY BY DESIGN

Grigore ALBEANU1,

Florin POPENTIU-VLADICESCU2

Rezumat. Această lucrare prezintă mai multe aspecte privind metodologiile recente de

proiectare software, în scopul de a produce programe de înaltă calitate. Caracteristicile

calitative ale programelor şi strategiile de dezvoltare software sunt factori importanti in

asigurarea unui management performant al proiectelor software .

Abstract. This paper outlines several aspects of recent software design methodologies in

order to produce high quality software. Software quality attributes and the development

strategies are considered as influential factors for a successful software project

management.

Keywords: software quality, software design, mobile apps, modern methodologies

1. Introduction

While the engineers are able to design highly reliable hardware, the

software developers are working hard to increase the quality of the code produced

to be validated and installed. Some catastrophic events generated by poor software

quality are well known. Starting from 1945, during the testing of Harvard Mark

System, when the word “debugging” was used in computer engineering by Grace

Hopper, not only catastrophic cases as: Mariner I, Therac-25, Arianne 5 and

others, but also projects related to computer security motivate the engineers to

study ways to improve the software quality and to manage the projects in order to

maximize the system reliability under a suitable cost level [27].

According to [28], “software is developed or engineered; it is not

manufactured in the classical sense”, even some similarities exist - high quality

being achieved through good design. In the following, the paper investigates on

software quality attributes, design methodologies, and CASE tools useful to assist

software development teams, and reports, in the end, some recent approaches

proposed to increase software quality.

This paper is based on our previous research [1, 4, 19, 20, and 21] and

describes modern software design approaches supporting reliability improvement

(as required by [7] and [31]) and the current CASE tools supporting the high

software quality development.

1Prof., PhD, Faculty of Mathematics and Informatics, “Spiru Haret” University, Bucharest,

Romania, (g.albeanu.mi@spiruharet.ro).
2Prof., PhD, Eng., “UNESCO Chair” Department, University of Oradea, Romania, Romanian

Academy of Scientists, Bucharest, Romania, (popentiu@imm.dtu.dk).

44 Grigore ALBEANU, Florin POPENTIU-VLADICESCU

2. Modern software design approaches

According to [9], “the software life-cycle typically includes the following:

requirements analysis, design, construction, testing (validation), installation,

operation, maintenance, and retirement.” Usually, these five phases of the

Software Development Life Cycle model are used: Analysis, Design,

Implementation, Testing, and Deployment and maintenance.

The analysis phase is the most important for the process of building high

quality software: the problem is analyzed, the requirements are defined, and the

specifications are established. The problem analysis will establish the scope of the

project and a clear understanding of what the customer asks for. By interactions

with customer the problem will be recursively reformulated in such a way to

assure a well-defined context and to find out the answer to the following

questions: What is the context of the problem? What are the parts or elements of

the problem? Why the user needs a software product to solve the problem? Who

or what is affected by this problem? How the user will validate the product?

Once a well-defined problem is given, the next activity consists of

requirements’ collection and analysis (to establish the product capabilities and

constraints). Both qualitative and quantitative requirements have to be identified.

The requirements addresses both quality software attributes (correctness,

reliability, usability, integrity, efficiency, portability, reusability, interoperability,

maintainability, flexibility, testability/verifiability, survivability, expandability,

robustness, stability, security, safety, and availability) and constraints about the

schedule and resources (computer and input/output equipments, staff availability

for operation, maintenance actions, cost for development and operation) as

addressed by [4]. These requirements should be not only identified but also

analyzed in order to estimate costs and benefits, and to manage the software

project risk. Finally all results of the requirements collection and analyses are

documented in the project plan, a reference document for all phases of project

lifecycle.

From financial reason motivated by project risk analysis, the costs

associated with a computer project are related to the following activities: systems

analysis and design; purchase of hardware; software costs; training costs;

installation costs; conversion and changeover costs; redundancy costs, and

operating costs, including people costs, according to [4]. Some examples of risks

are: customer will change or modify requirements, technology will not meet

expectations (the advancement in technology is too fast when considers the length

of the software lifecycle); inexperienced project team, delivery deadline will be

tightened; users will not attend training, system will be hacked, etc.

The transformation of user-oriented requirements into software

specifications is the next step. The functionality of the future software (details on

input, output, process captured by the information system, and interfaces),

 Improving Software Quality by Design 45

technical feasibility (characteristics of people and equipment required by the

project development), and software quality specifications should be detailed. Not

only specifications on reliability and security, but also those related to software

performance and the quality of human factor should be addressed. The benefits of

a good software requirements specification are: a customer-supplier complete

understanding of the future product characteristics; a reduced project cost; a real

estimate of cost, schedule, and risk; a clear understanding of the validation and

verification steps, and improved project performability.

The phase of building the software according to the specification is called

design. Following [30], the design is ‘‘the process of applying various techniques

and principles for the purpose of defining a device, a process, or a system in

sufficient detail to permit its physical realization.’’ Both architectural (structural)

design and detailed (including algorithms) design activities will contribute to a

good design. The structural design is responsible with system decomposition in

order to identify, in a top-down approach, subsystems/classes and their interfaces

to decrease the development time. According to [11], the phases of the design

process of software products are: data design (to produce the data structures),

architectural design (produces the structural units or classes, interface design

(specifies the interfaces between the units), and procedural design (specifies the

algorithms of each method). Alternative (and most used, nowadays)

methodologies for the architectural design are based on the object-oriented

approach. Object-oriented systems development follows the same pattern as

structured systems development. Firstly, the system is analyzed (object-oriented

analysis or OOA) and the system is designed using object-oriented design or

OOD. Finally, for coding are used object oriented (OOP) programming techniques

and languages.

The detailed design should provide: the software structure (data structures

and algorithms or classes and the diagrams, and structure quality measurement),

the software tools (languages, compilers etc.), verification/validation procedures,

a test plan (items to be tested and test specifications), and the design

documentation. The documented design specifications should cover, at least, the

following aspects [4]: an executive summary outlining the principal aspects in the

specification; a description of the proposed system and its objectives; a full

description of all components (module specifications and structure charts, together

with test data); descriptions of inputs (including validation tests), outputs (screen,

listings, sound, etc.), and specific interfaces; a description of all data storage to

include specification of file and database structure; a detailed specification of

controls operating over procedures within the system, a specification of all

hardware requirements and performance characteristics to be satisfied, a detailed

schedule for the implementation of the system, cost estimates and constraints, and

46 Grigore ALBEANU, Florin POPENTIU-VLADICESCU

standards to be considered for documentation, coding, testing and validation, and

quality assurance.

Transforming algorithms and their data structures in computer programs,

coding or implementation, in a suitable programming language is responsible for

fast, portable and bugs-free software products. The implementation phase starts

with reusable module/class/package identification (the component-based

approach, the object-oriented design). It continues with code editing (writing new

code, and modifying reusable code) according to a good coding style. The next

step is dedicated to code inspection which includes: code reviews (mainly the

aspects concerning the program logic and code readability), code quality

(performance related concerns on speed, and memory used, reliability and

security) and the software maintainability (how easy the code will be maintained).

The final step of implementation phase is related to code testing

(modules/classes/packages to be tested, testing strategies and methods, testing

schedules, and the resource required for an efficient testing. A good practice is

based on the test driven development methodology: test-driven development asks

to developers automated unit tests, containing assertions, created before writing

the code. Software testing and debugging represent some of the most important

components of the software engineering process with major concerns on software

reliability [27]. Even, when the newest and powerful automatic testing tools are

used and a quality assurance strategy in defect removing is applied, some

uncertainties in software testing can be identified in the following activities: test

planning, test selection, test execution, test result checking, error tracing, and

quality estimation, as stated in [17] and [18]. Software testing methods and

techniques “vary greatly in variety, effectiveness, cost, need for automated tool

support, and ease of use”, according to [23]. Even, “program testing can be used

to show the presence of bugs, but never to show their absence”, as Dahl and his

team shown in [8], every test performed increases intrinsic software quality by no

fault reveals, or by discovering a latent fault.

The existence of specifications is essential to software testing. Correctness

in software has a meaning only if the program mapping is the same as the

specification mapping. Following [11], ‘‘a program without a specification is

always correct’’. Therefore, the software without a specification does what is does

and cannot be tested against any specification because this does violate nothing

(Falsity implies anything).

Moreover, following [12], given a specification and a computer program,

"any activity that exposes the program behavior violating a specification can be

called testing." The efforts will be directed to test against the following classes of

faults, according to [17, 18]: physical/human-made, accidental/intentional non-

malicious/ intentional malicious, development/operational, internal/ external, and

permanent/temporary. For web-based software, the following classes should be

 Improving Software Quality by Design 47

taken into consideration (according to [2]): data storage class covering all possible

faults related to data structures, logic faults generated during implementing

algorithms and the application control flow (some of them being related to

session/paging faults, inconsistent browser interaction parsing faults, mistakes in

coding encoding/decoding and encryption/decryption algorithms), data input

faults generated by input validation mistakes related to files and forms,

appearance faults generated by inappropriate coding for controlling the display of

the web-pages, and linking faults due to mistakes in controlling the transfer to

different locations in the World Wide Web (URL–Uniform Resource Locator).

The last class is reach for the case of web applications working with URL data

bases. This taxonomy is rich enough and contains also cookies’ manipulation,

communication encryption, user authentication, account management, and

accessing/using resources without permission.

In this view, not only program running, but also activities like: design

reviews, code inspections and static analysis of source code, are labeled as testing

activities even they form the so called "static testing". Following [17], the test

cases design could be based on the knowledge of the code - the “white-box”

method. Also, the “black-box” testing approach addressing “the overall

functionality of the software is used to discover faults like incorrect or missing

functions, errors in any of the communication interfaces, errors in data structures

management, including databases and defects related to response time, software

start-up or software termination.”

According to the mentioned reference, the “white-box” testing method

consists of the following tasks:

a) The investigation of all independent paths within every module, based on

the flow graph analysis – “structured testing using the Cyclomatic

complexity metric”;

b) The examination of all logical predicates – “branch/domain testing”;

c) The analysis of all loops to check their limits, and

d) The internal/external data structures validity checking.

On the other side, the “black-box” method, based on the relationships

between all modules in the system model, uses the equivalence partitioning

approach, the boundary-value analysis (BVA) method and, the back-to-back

testing procedure. Input conditions are divided into equivalence classes (logical,

ordinal values, range (interval) or set of values). The BVA approach consists of

designing the test cases in order to examine the upper and lower limits of the

equivalence class and the corresponding outputs. Back-to-back testing is used

only for many-versions software. The versions are tested in parallel to see if the

outputs are identical. Pressman & Ince, in [28], provides more insides to these

testing methods. Mainly, as Pham [25] mentioned, the testing phase has the

following goals: “to affirm the quality of the product by finding and eliminating

48 Grigore ALBEANU, Florin POPENTIU-VLADICESCU

faults in the program”, “to demonstrate the presence of all specified functionality

in the product”, and “to estimate the operational reliability of the software”. Unit

testing, the integration testing, and the acceptance testing are core tasks in order to

obtain highly reliable software accepted by customers.

The unit test, which belongs to “white-box” approach, is the responsibility

of programmers (the software house or an outsourcing entity). They have to use

various approaches depending on the programming language used during coding

phase. In a test-driven development approach the developers often use testing

frameworks to create and automatically run sets of test cases. For many

programming languages there are available unit testing frameworks. When

working with components, and for some of them creating some wrappers, a

regression testing is required.

The integration test includes subsystem and system test. The system test

tests all the subsystems interconnected as a whole to verify functional,

performance, and reliability requirements placed on major design items. The

integration testing step can use the following approaches: Big Bang (all or most of

the developed modules are coupled together), Bottom Up Testing (where the

lowest level components are tested first, then used to facilitate the testing of

higher level components), Top Down Testing (testing is conducted from main

module to sub module; if the sub module is not developed a temporary program

called STUB is used for simulate the component functionality), and Sandwich

Testing (combine top down testing with bottom up testing).

The acceptance test is a validation of the testing phase and makes use of

internal tests (in-house) and field tests (user environment). The acceptance test is

defined, by Pham [25], as the “formal testing conducted to determine whether a

software system satisfies its acceptance criteria and to enable the customer to

determine whether the system is acceptable.”

Putting into operation is the final phase of the software development

process. The operation will continue with or without maintenance till the end of

the software lifecycle (retirement). The main activities during this phase are:

release (includes all the operations to prepare a system for assembly and transfer

to the customer site), install and activate (starting up the executable component of

software), adapt (modify a software system that has been previously installed) or

update (replaces an earlier version of all or part of a software system with a newer

release), deactivate (before adapting or updating), uninstall (before retirement),

and retire (at the end of the life cycle of a software product). During maintenance

the following approaches can be added: a version tracking system (to help the user

find and install updates to software systems installed), and a built-in mechanism

for installing updates (correcting maintenance: the modification of a software

product after delivery to correct faults, to improve performance or other

attributes). Other maintenance activities are of the following nature: adaptive

 Improving Software Quality by Design 49

(dealing with changes and adapting in the software environment), perfective

(accommodating to user requirements), and preventive (oriented to increase the

time mission period - in general by keeping stable data structures, files and

databases).

Many complementary software development methods to systems

development life cycle (SDLC) there exist. However, the most important are [4]:

1. Iterative prototyping (compressing the development cycle to shorten the time to

market and providing interim results to the end user) which consists, mainly, of

three steps: 1) listen to customer; 2) build and revise a prototype; 3) have

customer test drive the prototype and then return to step 1.

2. Rapid application development (RAD) in four phases: 1. Requirements

planning - joint requirements planning (JRP), establishes high-level objectives; 2.

Applications development - JAD follows JRP, involves users in workshops; 3.

Systems construction - design specifications, used to develop and generate code,

and 4. Cutover - users trained and the system tested.

3. Extreme programming (XP) is a new agile software development methodology

adopted few years ago.

4. Other agile methods.

According to [4, 15], XP is the application of a group of practices to

software development projects like:

1) The planning game: collaboration of business and programming

professionals to estimate the time for short tasks;

2) Small releases: a ship cycle measured in weeks rather than years;

3) Metaphor: “a single overarching metaphor” to guide development

substitutes for a formal architectural specification;

4) Simple design: no provision in the code for future changes or flexibility;

5) Testing: every piece of code exercised by unit tests when written, and the

full suite of tests when integrated;

6) Refactoring: any piece of code subject to rewriting to make it simpler;

7) Pair programming: all production code jointly written by two developers;

8) Collective ownership: the right of any developer to change any piece of

code on the project;

9) Continuous integration: code integrated to the main line every few Hours;

10) On-site customer: a business person dedicated to the project, and

11) Coding standards: one standard per project.

Agile methodologies are appropriate for project management processes that

encourage frequent inspection and adaptation as proved in [3] and [5] for the e-

Learning software domain. The mentioned references emphasize the usage of

face-to-face communication over written documents (working in same location)

or in different locations but having video contact daily, communicating by

videoconferencing, voice, e-mail etc. It was outlined that other agile methods are

50 Grigore ALBEANU, Florin POPENTIU-VLADICESCU

also suitable when dealing with E-learning component-based software

development: Scrum, Crystal approach, Feature driven development, the rational

unified process, dynamic software development, adaptive software development,

open source development, Agile-CMM, Agile-CMMI etc.

3. Recent approaches in computer aided software engineering for

quality improvement

The term computer-aided software engineering (CASE) is used to describe a

set of tools which are able to automate all or some of various tasks of the software

life cycle, like: requirements capture, tracing, and tracking; configuration

management; model verification; facilitation of model validation; maintenance of

all project-related information; collection and reporting of project management

data, document production and CASE data import-export. Mainly, the CASE

functions include analysis, design, and programming. Therefore, a CASE

framework provides design editors, data dictionaries, compilers, debuggers,

system building tools, etc.

There are a large variety of CASE products. A CASE product index is

maintained by (http://www.unl.csi.cuny.edu/faqs/software-enginering/tools. html),

belonging to a category: CASE tools (provide support for some specific tasks in

the software process), CASE workbenches (supporting only one or few activities),

and CASE Environments (supporting a large part of the software process).

The CASE Environments can be simple toolkits (example: the Unix

Programmer's Work Bench), oriented towards a programming language (IBM

Rational ClearCase), integrated (IBM Application Development Cycle), fourth

generation language (4GL) based (Informix 4GL, FourGen CASE Tools:

http://www.gillani.com/CASETools.htm), process-centered environments

(Enterprise Architect: Enterprise II), and CASE applications (covering all aspects

of the software development life cycle).

SourceForge.net provides a web-based platform for creating and publishing

open software [29]. Also, GitHub offers, according to [31] “both plans for private

repositories and free accounts, which are usually used to host open-source

software projects”. The popularity of GitHub increased yearly, and for 2015,

GitHub reports having over 10.6 million users and over 25.9 million repositories,

making it the largest host of source code in the World, as GitHub press

(https://github.com/about/press) announced on August 17, 2015.

The user can find a lot of tools useful to software project management, both

on SourceForge and GitHub. However, software reliability is not covered, in

general, by CASE products. There are specific software tools, called Computer

Aided Software Reliability Engineering [27]. Many of them being dedicated to

estimation of software reliability [27], such as ROBUST (Reliability of Basic and

Ultrareliable Software system), FRestimate, TERSE, SREPT (Software Reliability

 Improving Software Quality by Design 51

Estimation and Prediction Tool), SRETOOLS (AT&T Software Reliability

Engineering Toolkit), SRMP (Statistical Modeling and Reliability Program),

SoRel (Software Reliability Program), CASRE (Computer-Aided Software

Reliability Estimation Tool), ESTM (Economic Stop Testing Model Tool),

SMERFS (Statistical Modeling and Estimation of Software Reliability Functions),

RGA(Software for Repairable System and Reliability Growth Analysis), DACS’s

GOEL (An automated version of the Goel-Okumoto NHPP Software Reliability

Growth Model), according to the study realized in [6] which presents a powerful

computer-aided reliability assessment tool for software based on object-oriented

analysis and design, called CARATS.

SMERFS was used in [3] to study the reliability growth of two projects: a

virtual campus project and the DISTeFAX software. FRestimate was used by

Oradea University to teach software reliability and analyses software metrics of

software modules developed by master students.

A large scale methodology is based on component-base software design.

The components are developed in house or are selected from available collections.

The software reliability allocation in order to obtain a high reliable integrated

software product keeping cost as low as possible is applied by many organizations

implementing software quality management. Software reliability optimization can

be studied both in single and multi-objective frameworks. Classical optimization

methods and recent approaches based on computational intelligence techniques

can be used as reported in [20] for large software products over various software

architectures, including fog computing extensions [21].

The increasing market of mobile applications asks also for quality assurance

procedures in order to minimize risk [33], mainly due to security threats. The first

step is to apply the ISO 9126 software quality model. The second step consists of

risk assessment. A major challenge appears because “security risks for mobile

apps go beyond those of a standard desktop application; unique concerns include

the loss of a device, exposing access/data to mobile apps; employees using their

devices in public/unsecured Wi-Fi hotspots; and mobile malware”, according to

[33]. The first category of mobile app risks addresses the “malicious functionality,

which is unwanted and dangerous behaviors that are placed in a Trojan app that

the user is tricked into installing”. The second category addresses the

vulnerabilities of mobile apps, which are bugs due to poor design or errors in

implementation. In our context, the development of CASE/CASRE tools for

secure mobile apps development is a must. For the moment, the software analysts

and engineers use already existing CASE/CASRE tools.

52 Grigore ALBEANU, Florin POPENTIU-VLADICESCU

4. Conclusions

This paper has described the most used software designing approaches in

order to release high quality software. Various quality attributes were considered,

including software reliability. The security of mobile apps is an important quality

attribute and more effort should be allocated in future.

R E F E R E N C E S

[1] G. Albeanu and F. Popenţiu, Total Quality for Software Engineering

Management, In H. Pham (ed.) “Springer Reliability Engineering

Handbook” (Springer Verlag, 2003), pp. 567-584.

[2] G. Albeanu, Agile CMMI for e-learning software development, In I.

Roceanu (coord.), R. Jugureanu, V. Stefan, V. Popescu and C. Radu (eds.),

“Proceedings of the 5th International Scientific Conference eLSE 2009”

(Bucharest, 2009), pp. 135-142.

[3] G. Albeanu, A. Averian and I. Duda, R & RATA, Electronic Journal of

International Group on Reliability, 2(4), 47(2009).

[4] G. Albeanu and Fl. Popenţiu-Vlădicescu, OptimumQ, 22(3–4), 97(2011).

Averian, G. Duda and G. Albeanu, Quality assurance for agile

component-based software development, In H Pham, T Nakagawa (eds.),

“Proceedings of the 15th ISSAT International Conference on Reliability

and Quality in Design” (San Francisco, California, 2009), pp. 100-104.

[5] Chen et al., CARATS: A Computer-Aided Reliability Assessment Tool for

Software Based on Object-Oriented Design (TENCON, IEEE, 2006), DOI:

http://dx.doi.org/10.1109/TENCON.2006.344182

[6] D. Crowe and A. Feinberg (eds.), Design for Reliability (CRC Press, 2001).

[7] O.J. Dahl et al, Structured programming (Academic Press, London, 1972).

[8] D. Howe (ed.), The Free On-line Dictionary of Computing, http://foldoc.org/

(retrieved 2015)

[9] W.H. Farr and O.D. Smith, Statistical Modeling and Estimation of

Reliability Functions for Software (SMERFS) (NSWCDD TR 84-371,

1993).

[10] D.A. Gustafson, Theory and Problems of Software Engineering (McGraw-

Hill, 2002).

[11] B. Hailpern and P. Santhanam, IBM Systems Journal 41(1), 4(2002).

[12] D. Ince, An introduction to quality assurance and its implementation

(McGraw-Hill, 1994).

[13] C. Jones, IBM Systems Journal 17 (1), 39(1978).

[14] K. E. Kendall, Extreme Programming in Practice: A Human-Valued

Approach to the DSI Conference Management System, Decision Line 35

(2004)

http://dx.doi.org/10.1109/TENCON.2006.344182
http://foldoc.org/

 Improving Software Quality by Design 53

[15] S.H. Kan, Metrics and Models in Software Quality Engineering (Addison

Wesley, 2002).

[16] H. Madsen, P. Thyregod, B. Burtschy, G. Albeanu and F. Popentiu, A fuzzy

logic approach to software testing and debugging, In C. Guedes Soares and

E. Zio (ed.), “Safety and Reliability for Managing Risk (ESREL 2006)”

(Taylor and Francisc Group, London, 2006), Vol. II, pp. 1435-1442.

[17] H. Madsen, P. Thyregod, B. Burtschy, G. Albeanu and F. Popenţiu,

International Journal of Reliability, Quality, and Safety Engineering 13(1),

61(2006).

[18] H. Madsen, G. Albeanu, Fl. Popentiu-Vladicescu, International Journal of

Performability Engineering 8(1), 67(2012).

[19] H. Madsen, G. Albeanu, Fl. Popentiu–Vladicescu and R.-D. Albu, Optimal

Reliability Allocation for Large Software Projects through Soft Computing

Techniques, In “Proceedings of PSAM 11 & ESREL 2012” (Helsinki,

Finland, 2012).

[20] H. Madsen, G. Albeanu, B. Burtschy, Fl. Popentiu-Vladicescu, Reliability in

the Utility Computing Era: Towards Reliable Fog Computing, In

“Proceedings of IWSSIP” (IEEE, 2013) DOI:

10.1109/IWSSIP.2013.6623445, pp. 43-46.

[21] J.D. Meier, C. Farre, P. Bansode, S. Barber and D. Rea, Performance Testing

Guidance for Web Applications (Microsoft Corporation, 2007).

[22] E. Miller, How Software Testing Enhances Reliability, In “Proceedings of the

5th International Symposium on Software Reliability Engineering” (IEEE,

Los Alamitos, 1994) pp. 2.

[23] K. Naik, P. Tripathy, Software Testing and Quality Assurance. Theory and

Practice (Wiley, 2008).

[24] H. Pham, Software Reliability (Springer, Berlin, 2000).

[25] H. Pham (ed.), Handbook of Reliability Engineering (Springer, 2003).

[26] Fl. Popentiu-Vladicescu, Software Reliability Engineering (Course book of

Series of Advanced Mechatronics Systems, Debrecen, 2012).

[27] R.S. Pressman and D. Ince, Software Engineering: A Practitioner’s Approach

(McGraw Hill, 2000).

[28] SourceForge, http://sourceforge.net/ (2015)

[29] A.Taylor, The nature of creative process, In P. Smith (ed.) Creativity

(Hastings House, New York, 1959).

[30] J. Tian, Software Quality Engineering Testing, Quality Assurance, and

Quantifiable Improvement (IEEE, 2005).

[31] Wiki, GitHub, https://en.wikipedia.org/wiki/GitHub (retrieved August 17,

2015).

[32] ***, KPMG: Addressing mobile applications risk: A software quality focus

(KPMG, Delaware, 2014).

http://sourceforge.net/
https://en.wikipedia.org/wiki/GitHub

