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ON SOME MOTIONS OF SECOND GRADE FLUIDS
INDUCED BY A SPHERE THAT APPLIES
OSCILLATING SHEAR STRESSES TO THE FLUID

Constantin FETECAU?, Nehad Ali SHAH?2, Corina FETECAU?

Abstract. Exact solutions for the laminar basic flow of second grade fluids due to a
sphere that applies oscillating shear stresses to the fluid are presented as a sum of
permanent and transient solutions. The corresponding solutions for Newtonian fluids, as
expected, are obtained as limiting cases of general solutions and the required time to
reach the steady-state is graphically determined. This time is very small for both type of
oscillating motions. Consequently, the steady-state or permanent solutions corresponding
to such motions are most important.
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1. Introduction

Flows near spinning bodies are of interest both for theory and practice.
Their direct applications to centrifugal pumps and lubrication problems justify the
growing interest for motions near rotating bodies [1]. Such flows also appear on a
large scale in meteorology and astrophysics and more elementary forms of motion
around a sphere or between two concentric spheres have been investigated. The
first approximate solutions for the motion of a non-Newtonian fluid due to an
oscillating sphere seem to be those of Frater [2]. Later, Zierep and Kulman [3]
studied the motion of Newtonian fluids inside a rotating sphere and established a
closed-form solution for its primary component. Other exact solutions for motions

of Newtonian or second grade fluids in a sphere have been obtained by Zierep [4],
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respectively Fetecau and Zierep [5]. However, all these solutions correspond fo
motions induced by a moving sphere when the velocity is given on the boundary.

In some physical sifuations, contrary to what is usually assumed, the force
with which the sphere is moved can be prescribed. To reiterate, in Newtonian
mechanics force is the cause and kinematics is the effect [6]. Prescribing the shear
stress on the sphere surface 1s tantamount to prescribe the (shear) force applied to
move it and Renardy [7] showed how to formulate a well-posed shear stress
boundary-value problem. Unfortunately, exact solutions comesponding fo such
motions in spherical domains are lack in the existing literature.

The main purpose of this work 15 to provide some exact solutions for motions
of second grade fluids due to a sphere that applies oscillatory shear stresses to the
fluid. These solutions, presented in simple forms in terms of some standard or
modified Bessel functions, can be easy reduced to the similar solutions for
Newtonian fluids. They correspond to laminar basic flows which are symmetric
with respect to the equator plane.

2. Constitutive and governing equations
The Cauchy stress tensor for an incompressible second grade fluid is [5, 8]
T=—pl+uA; + @A, + a,Af. (1)
where — pI denotes the indeterminate spherical stress, u is the coefficient of
viscosity, o and o, are the normal stress moduli while A; and A, are
kinematic tensors defined by
:l| =1.+1.T, .%] =%:‘.1+.{1L+LT:'11._ [2}
Here L 15 the velocity gradient, d /4t denotes the material time derivative and the
superscpt “T indicates the transpose operation.
In the following we consider a unsteady unidirectional motion whose velocity
field v in the spherical coordinate system », & and @ has the form [8, Eq. (2.11)]

v=v(r f)smébe,_. (3)
where e_ is the unit vector in the ¢ -direction. For such motions. the constraint of
incompressibility is identically satisfied while [9. Anhang B]

¢
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Introducing Eq. (4) into (2) in order to obtain A;, A, and A{ and using them
mn Eq. (1), 1t results that the non-trivial shear stress 7,,(r,8,7) 1s given by

Tpp(r,8,1) = t(r. f)sind, (5)
where
(r,t) ={,u +cr1£][£—l)v(r\ f). (6)
_ gt h\or r
As the shear stress 7,, = 0, the balance of lmear momentum yields
ovir,t) (¢ 3} .
PT—[E'F;JT(? ,I), (?:l

where p 1s the constant density of the fluid. Into above equation op/dp 1s zero
due to the rotational symmetry and the body force has been neglected.
In order to solve a problem with shear stress on the boundary, we eliminate the
velocity v(r, 1) between Eqs. (6) and (7) and find that
or(r,t) [ 3') é* 28 6
=\v+ta— | —+——-——|r(r.1), 8
ot atflart ror il .1 ®
where v = u/ p 15 the kinematic viscosity and a = ¢ / p . Making the change of
unknown function

r(r,) =120 (r,1) ©)
and droppmg out the star notation, we attain to the more suitable partial
differential equation

ar(r.t) [ 8y 8l 18 25 ]
=lv+ta— | —+——-——=|t(r,1). 10
a "\t tre w2 SO (10)

3. Starting solutions for oscillating motions inside a sphere

Let us consider an mcompressible second grade fluid at rest into a sphere of radius
R. At time f=07 the sphere begins to oscillate about the axis =0 due to an
oscillating torque 2aRfsm(at)sin(f) or 2aRfcos(@f)sin(d) . Owimg to the shear
the fluad 15 moved and its velocity has the form (3). More exactly, the flmd 1s
deflected away i a thin radial jet at the equator and sucked back near the poles,
producmg a meridional flow component [1]. Because of the rotation, the flmd

moves m spirals from poles to the equator and for latitudes smaller than 40° no

turbulent flow could be detected. Furthermore, beyond 30° the flow was always
laminar for all Reynolds numbers that have been tested [10].

The governing equation for the shear stress 7(r,t) 1s given by Eq. (10) and the
corresponding mitial and boundary conditions are
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(r,0)=0; re[0,R), (11)

r(R.f)=f JRH (D)sm(wt) or (R, )= f JRH ( t)cos(at), (12)
where H(f) 1s the Heaviside unit step function and f and @ are the amplitude,
respectively, the frequency of the oscillations. The natural condition

<00, (13)

has to be also satisfied.
In order to solve this problem we shall use the finite Hankel transform

.EJ(F'n)=‘[r§(?')fs.-=z(?'?iq}d-“~ (14)
0
of g(7) and the identity [11, Sec. 14, Eq. (59)]
R 5 .
Jus o ;,,)[ 0 1; 425 )g(r )dr = —Rrg(R)5p(R) - 12g5(r). (15
0

If g(r) satisfies Dirichlet’s conditions in the nterval (0, R), then at any point of
(0, R) where this function is continunous

2 = .]-5.'2 (T T )
) =— ) e 16
g R2 ;gj n [JS.'Q(R"n)]! (16)
where the sum 1s taken over all positive roots of the transcendental equation

Consequently, multiplying Eq. (10) by rJs5(rr,), mtegrating the result with
respect to r from 0 to R and bearmng in mind the identity (15) and the boundary
conditions (12), we find that

d?’hﬁ_(?'n,ﬂ)_’_ vi? grlsj(}?rﬂ)[

n_ro(r 1)+ fRY vH(t)sin(ar)
dr 1+ar) K R 1+ ar] (18)

+aeH (Deos(wt) + ao( t)sjn(mz)] =0; n=L23..

2
dr!c(rmr) + Vi . T,_J'g( f:]"'ng 2? JRQ(R?‘”) [lr'H(E)CDS(ﬂJ‘I)
dr l+ar 1+ar; (19)

—amH ()sin(wf) + ad( f)ms(a:rr)] =0; n=123__
where 6(.) 1s the Darac delta function and the finite Hankel transforms 7;.(r,, 1)
and 7,.(7,.t) of the problem solutions satisfy the initial conditions
T5(r,,00=0, 75.(r,,00=0 for n=1273,.. (20)

Solving the linear ordinary differential equations (18) and (19) with the boundary
conditions (20) and usmg the mnversion formula (16), we find that
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(rr,)
r (r, I)_ H(I) Isn
: ZV r +m2(1+c;rr )2 J;a(Rr}
. (21)
5 _ 1t
X 1’&1205(&3]—[1’2?}; +crm2(1+cxrn2}]5m(mr)—m)ex _ Y 5 11
l+ar,
2f - 1 Fl,(rr)
7.(r.t == H(t . . n 52 n
-0 VR ( )HZ_“ vir+et(l+ar?)? I;(Rr,)
B (22)

. ) _ 2,2 2
X —[vlrn-+arm2(l+ ar,;}]cos(af)—umsm{&x]+ "y —exp| — Yy — |
l+ar 1+ar;

In order to obtain the starting solutions (21) and (22), we also used the known
results

%-"](R?ﬁ) = Ii_-'j(R ?n) if Jj,-:r(R ?"”) =0 and

3=£X0) = [ 3(c - )gtoXs = [ 5(6)e(e - 5Xs =g @3
0 0

The starting solutions (21) and (22) describe the motion of the fluid some time
after its mmtiation. After that time, when the transients disappear, the motion of
fluad 1s deseribed b}' the steady-state (pemla_nent) solutions

+ 1+ Tonlrr
T;;:(F',f)=— 'sm(mz)z a'r;( ar, j)f}, sp(r,)
Ve r +@ (l+c:r1n-)- I.5(RE)
(24)
lfmcos(a}zjz Tl 'r(?'i"],
vin o (1+m 12 T3n(R7)
il v o1+ an]) ns(r
rp(rf) =~ icos(mt)zl 1 a0 (e @) il ()
vit ol an))? 135(Rr,)
(25)

}"J;Q(J'?':I
ua:sm(mz)zv +m (1+cxr )2 Tn(RT, )

which are penodlc m fime and independent of the initial conditions but satisfy the

governing equafion and the boundary conditions. However, in this form, the

solutions (24) and (25) seem to not satisfy the boundary conditions. In order to

take away this drawback we use the result (see [11] the entry 2 of Table X)
"r(r

5/2 3/2 ] :
r =-2R E T:n(RF, 0 26
= ,;Jj »,(R ) f 52( :) ( :'

and write them in the equiv alent forms
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2

2f (e l+a::tf:"n2 Isn(rr)
vﬁ( 1/] gm(mt);r [ +(@/v) 1+ ar)?] T35 (RT) 27)

¥, Jig(? )
+——c05(mr) = 3 :
JR v erf+{mflf)*{l+fl’ﬁf]z T1n(R1y)

2 (o 1+ar, Isn(rr,)
[ ] "““‘“Z; i+ @/ 1+ar))?1 1R, o

(e &
—Eﬂsm(ax) T Isn(rry)
\.'{E V = rn4+(m!v)3(1+ cxrj)] I:5(RT,)

The corresponding velocity fields can be immediately obtained by introducing
Eqs. (21) and (22) into Eq. (7), integrating with respect to the temporal vanable
from 0 to t and using the mitial condition

v(R,0)=0: re[0,R). (29)
It 1s worth pointing out that making & =0 into Eqs. (21), (22), (27) and (28), the
solutions corresponding to Newtonian flmds performing the same motions are
obtamned. The starting solutions (21) and (22), for instance, take the simple forms

2/H(D) < 1 [e . @ _w,g{JL

Tﬂ_‘r(?'? I) =

—cos(er) —rsin(@r) ——e
) 4 2 "
'R A (w/v) v
o - G0)
w ?}JJSQ (?" rn)
I3p(R 1)
2fH (1) ~ 1 - )
T{.'p\r(r, f) — -}H"_( :I - J’_Esm((w) _ ?;,,ECDE(&JE) + rnze—lr‘ﬂf}
‘ VR &rts@m)?l v
K?hji-'ﬁ(rrn)_ €2))
13-'2 (R J"”]

Furthermore, by now letting @w=0 into Eqgs. (22), (25).(28) and (31), the
solutions corresponding to the motion induced by a sphere that applies a torque
T,5(R.0,9) = 27Rfsm@ (that 1s constant in time) to the flmd are obtamned Eq.

(22), for mnstance, becomes (see again Eq. (26))
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572 i . 2,
(1) = %H(r)’ = 1 JsnCrr) Exp[ L‘*” 32)

R¥2 1+arl nly(Ry) o\ l+ar?

n—-1

Generally, the starting solufions for unsteady motions of flmds are importani
for those who want to eliminate the fransients from their expeniments.
Consequently, an important problem regarding the technical relevance of these
solutions 1s to find the required time to reach the steady-state. More exactly, to
determine the time after which the flmid moves according to the permanent
solutions. This time, as 1t results from Figs. 1 and 2, 1s very small for both motions
induced by sine or cosine oscillations of the shear stress on the boundary. Indeed.

with an error of 107 order, the profiles of starting shear stresses (21) and (22) are
almost identical to those corresponding to the permanent solutions (24) and (25).
Consequently, in such motions, the permanent solutions are very important.

4. Permanent solutions for motions around a sphere

Let us now assume that a solid sphere of radius R, immersed in an incompressible
second grade flmd, applies the same oscillatory torques to the fluid. Due to the
shear the fluud around the sphere 1s gradually moved and the mendional
component of velocity has again the same form (3). The governing equation for
the shear stress 7(r,f) 1s given by Eq. (10) and the corresponding boundary
conditions for permanent motions are

r,(R,1)= fv/Rsin(@r) or 7,(R,1)= fReos(ar). (33)
Denoting by ?'Sp(?‘, 1) and T (7,1) the steady-state solutions corresponding to the

two distinet motions and by

T(r, D) =tg(r,0)+itg(r,1), (34)
the complex shear stress, 1t results that
8T, (r.1) [ oy eé* 18 25
AN BN FAR TR y
ot _ gt \ers rér 4r- (-1 (35)
The corresponding boundary condition 1s
T,(r.) = fRe'™. (36)

Furthermore, we assume that the fluid 1s quiescent at infimity. Consequently, there
1s no shear 1n the free stream and
TP(J',I)—H} as F—»w. (37)
In order to solve this problem, we seek a separable solution
T,(r,0)=G(r)e'. (38)
By substituting Eq. (38) into (35), we find that
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G'(r}+lG’(r)—{2{+ 1 JG(r}=u, (39)
F 4r- v+ige

where the prime denotes differentiation. Introducing a new variable

s=ry; y=ie/(v+iae), (40)
Eq. (39) takes the form of a Bessel equation, namely
d2G(s) dG(s) [ 25 ]
52 —+35 - —+5" |G(s)=0. 41
) PR (s) (41)
The general solution of Eq. (41) 15
G(s) = Cll5p(s) + C1K 55(5), (42)

where C; and C, are arbitrary constants and Is,(-), Ksp() are modified
functions of the first and second kind of order 5/2. Bearing in mund Eqs. (34),

(38), the boundary condition (36) as well as the natural condition (37), 1t results
that

— :
T,(rt)=f JR RE{—Kj’H3 (ry .i) el Jl
Ks5(Ry7)
- (43)
T,(r.0= 7R M{Mef‘“},
Ksp(Ryy)
where Re and Im denote the real part, respectively the imaginary part of the
complex number that follows.
The velocity fields corresponding to these motions, namely,

o . —
ety =L | R e V732 OND) taarry
P 2 Pm-‘lil I KE.Q(RQIY:] ]

— . (44)

= — |

V., (7. 1) _i ||£ Iﬂl{"u' ;VKS-."E(? i ay) ef{m_;r,-'ZJ}
P ? - \| . . E

PONT Ksp(Ry7)

are obtained by mtroducing Eqs. (43) mnto (9) and using Eq. (7) and the identity

[12, chapter VIII, Eq. (7.7)]

Kl (1) + gKm (¥) = XK 3 (0). (45)

5. Conclusions

The motion of a second grade flmd mside a sphere that applies oscillatory shear
stresses to the fluid 15 studied by means of the finite Hankel transform. More
exactly, exact expressions are determined for the non-trivial shear stress
corresponding to the meridional flow component of velocity. The solutions that
have been obtained, presented as a sum of steady-state and transient components,
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describe the motion of the fluid at least for latitudes smaller than 40° where
turbulent flows couldn’t be detected [10]. They satisfy all imposed imtial and
boundary conditions and can be immediately reduced to the similar solutions for
Newtonian flmids. The corresponding velocity of the fluid can be easy obtained by
means of a simple infegration of the motion equation. Further, the shear stress
correspondmng to the motion mnduced by a sphere that applies a constant shear to
the flmd for each & 1s obtained as a limiting case of one of our solutions.

The starting solutions for unsteady motions of fluids are useful for those who
want to eliminate the transients from their rheological experiments. They describe
the motion of the fluid some tume after its initiation. After that time when the
transients disappear, the fluid moves according to the steady-state solutions that
are periodic in time and independent of the imnifial conditions. Consequently, an
important problem regarding the technical relevance of starting solufions 1s to
determine the required time to reach the steady state. This time, as 1t clearly
results from Figs. 1 and 2. 1s very small for both types of oscillating motions.

In conclusion, the steady-state or permanent solutions correspondmg to
oscillating motions due to a sphere that apphes oscillating shear stresses to the
flmd are of great importance. This 15 the reason that, for oscillating motions
around a sphere, only the permanent solutions have been determined. Finally, for
completion, we mention that the permanent solutions corresponding to oscillating
motions through a sphere can also be written under the simple forms (43) and (44)

with L5, () and I;5(-) mstead of Ksj;(-), respectively K;,5().

5 f=1.w=2EK=3 a=41=00011744
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Fig. 1. Profiles of starting and permanent shear stresses
(7, and rm) given by Eqs. (21) and (24).
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Fig. 2. Profiles of starting and permanent shear stresses

(7, and r¢) given by Eqgs. (22) and (25).
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