

PRODUCTICA Scientific Session

Online ISSN 2067 - 9564 23
rd

 April – 2010 93

PROGRAMABLE AUTONOMOUS ROBOTS

Lucian PESTRIłU
1
, Cosmin GABRIAN

2
, Octavian IORGA

2
,

Andrei MELNEC
2
, Cătălin Gheorghe AMZA

3

Rezumat. Această lucrare prezintă avansul tehnologic al micro-controlerelor

programabile şi cum aceste circuite electronice pot fi „echipate” cu aplicaŃii software

complexe în aşa fel încât să poată acŃiona independent, devenind un aşa numit robot

autonom sau agent autonom. Pentru a ilustra acest lucru, un robot de tip Pololu 3PI a

fost folosit, are ca sarcină rezolvarea unui labirint (ieşirea din labirint). Pentru a face

acest lucru posibil, a fost implementat un algoritm pentru a ajuta robotul să găsească şi

să memoreze ruta corectă de ieşire din labirint.

Abstract. This paper aims to present how technology has advanced in terms of

programmable microcontrollers and how circuits can be equipped with complex software

so they can to act on their own, becoming a so-called autonomous robot or agent. To

illustrate this, the 3PI robot is used, which is faced with solving a problem by itself,

namely: solving a maze on it's own. To make this possible so we had to implement this

robot with a computer algorithm that helps it to remember the route that it had just

travelled and then find the shortest and fastest way to the destination point.

Keywords: autonomous robots, maze-solving robots

1. Introduction

According to Wikipedia.com, an autonomous robot is a robot which can perform

desired tasks in unstructured environments without continuous human guidance

and intervention [1]. There are various degrees of autonomy for various existing

robots. A high degree of autonomy is particularly desirable in fields such as space

exploration, cleaning floors, mowing lawns, etc. A fully autonomous robot has the

ability to [1]:

• Gain information about the environment;

• Work for an extended period without human intervention;

• Move either all or part of itself throughout its operating environment

without human assistance;

• Avoid situations that are harmful to people, property, or itself unless those

are part of its design specifications.

1
 Student, Computer Science and Automation Faculty, University Politehnica of Bucharest,

Bucharest, Romania
2
 Student, IMST Faculty, University Politehnica of Bucharest, Bucharest, Romania

(iorga.octavian@yahoo.com)
3
 Reader, PhD., IMST Faculty, University Politehnica of Bucharest, Bucharest, Romania

(acata1@camis.pub.ro)

Lucian Pestri�u, Cosmin Gabrian, Octavian Iorga,

94 Andrei Melnec, Cătălin Gheorghe Amza

An autonomous robot may also learn or gain new capabilities like adjusting

strategies for accomplishing its task(s) or adapting to changing surroundings.

Furthermore, an autonomous robot, under certain conditions may become an

autonomous agent. An autonomous agent is a new way of analysing, designing

and implementing complex software systems [2]. An agent is a computer system

situated in some environment (the robot in the present case) capable of flexible

autonomous action to meet design objectives. It tries to fulfill a complex set of

goals. It is adaptive by improving its competence at dealing with goals based on

experience. Robust means that it never breaks down (graceful degradation when

components within fail). Effective means that the agent is successul at eventually

achieving goals. Flexibility: responsive-it perceives changes from environment

and acts accordingly; pro-active it can take initiatives; social it is able to interact

with humans and other agents [2]. A control system for a completely autonomous

mobile robot must perform many complex information processing tasks in real

time. It operates in an environment where the boundary conditions are changing

rapidly. The usual approach to building control systems for such robots is to

decompose the problem into a series of functional units as it will be demonstrated

below using the Pololu 3PI robot.

2. The robot used in the experiments

The Pololu 3pi robot (Figure 1) is a small, high-performance, autonomous robot

designed to excel in line-following and line-maze-solving competitions. Powered

by four AAA batteries (not included) and a unique power system that runs the

motors at a regulated 9.25 V, 3pi is capable of speeds up to 100 cm/second while

making precise turns and spins that don’t vary with the battery voltage. This

results in highly consistent and repeatable performance of well-tuned code even as

the batteries run low [3].

Fig.1. The Pololu 3PI Robot

Fig. 2. Example of maze

 Programable Autonomous Robots 95

The robot is equipped with two micro metal gearmotors, five reflectance sensors,

an 8x2 character LCD, a buzzer, three user pushbuttons, all connected to a user-

programmable AVR microcontroller. The 3pi measures approximately 3.7 inches

(9.5 cm) in diameter and weighs 2.9 oz (83 g) without batteries.

The 3pi is based on an Atmel ATmega328 microcontroller, henceforth referred to

as the “ATmegaxx8”, running at 20 MHz. ATmega328-based 3pi robots feature

32 KB of flash program memory, 2 KB RAM, and 1 KB of persistent EEPROM

memory. Free C and C++ development tools are available, and an extensive set of

libraries make it easy to interface with all of the integrated hardware [3].

3. The implemented algorithm

The problem imposed for exemplifying how an autonomous robot is implemented

to the 3PI robot is solving a maze, which means going through the maze from the

start to the end in a fair way, without going through unnecessary lines.

The 3PI robot is able to travel on the lines of the maze with the help of its five

reflector sensors. The line is usually black on a white background (preferably duct

tape), but it can also be a white line on a black background. The thickness of the

line should be approximately 2 centimeters.

The proposed labyrinth consists of several lines that meet the above requirements

and have the particularity to have a starting and ending point (see Figure 2). The

robot’s mission is to get from the starting point to the end on the optimal route. In

the present paper a labyrinth that doesn’t contain loops has been created.

For this, the robot is implemented with an classic algorithm that will be presented

in the following paragraphs. The algorithm used is written in C++ and is

implemented with the help of WinAvr development platform.

The algorithm has two separate stages. The first stage consists of the robot

exploring the labyrinth in his quest to find a solution (to reach the exit). During

this stage, the robot may take all possible routes and spend a lot of time doing this.

All moves are memorized by the robot. In the second stage, the robot must be able

to recall the solution from its memory and solve the maze without having to go

back and explore the maze again.

The implemented algorithm which makes the robot act on its own is named “left

hand” [4-7]. It carries this name because the robot always tries to make a left turn

at an intersection for the first time he goes through the labyrinth. For the robot to

find the optimum course it is necessary for him to go through the whole labyrinth

to learn every move it takes to get the end point. The explicit rule is that when the

robot gets to an intersection, the first time it tries to make a left turn. If this is not

possible it will then try to go straight ahead. In the last instance if neither of this is

possible, it will go right. The major condition for this to work is that the labyrinth

doesn’t contain loops. Also we have to mention that one can also use a variant of

Lucian Pestri�u, Cosmin Gabrian, Octavian Iorga,

96 Andrei Melnec, Cătălin Gheorghe Amza

this algorithm the “right hand” rule, the conditions, reversing the terms listed if it

preferred to go left.

Figure 3 presents all the cases in which the robot can be in an intersection of the

labyrinth.

Left Turn Only Right Turn Only Left or Right(“T”) Four Way

Straight or left Straight or Right Dead End End of Maze

Fig. 3. Possible situations

The robot, most of the time, will be involved in one of the following behaviors:

(i) Following the line, looking for the next intersection;

(ii) At an intersection, deciding what type of intersection it is;

(iii) At an intersection, making a turn.

These steps continue looping over and over until the robot senses the end of the

maze.

3PI robot uses sensors in the following way in order to unravel the maze lines:

Line sensors shine visible or infrared light down at the floor and then measure the

reflection. Using a 1 to mean “Sensor sees black.” and 0 to mean “Sensor sees

white.”, a robot travelling along the black line to the right might produce several

patterns:

1 0 0 0 0 = Line off to left

0 1 0 0 0 = Line a little to left

0 0 1 0 0 = Dead center!

0 0 0 1 0 = Line a little to right

0 0 0 0 1 = Line off to right

 Programable Autonomous Robots 97

Following the line is relatively easy. Here is some pseudocode:
Select Case Pattern

Case Pattern = %00100 „ Full speed ahead

leftMotor=fast; rightMotor=fast

Case Pattern = %01100 „Go left a little

leftMotor=medium; rightMotor=fast

Case Pattern= %10000 „ Way off!

leftMotor=slow; rightMotor=medium

…and so on

leftMotor=fast; rightMotor=fast

leftMotor=medium; rightMotor=fast

leftMotor=slow; rightMotor=medium

Slow, medium and fast are arbitrary speeds that should get the robot turning or

moving in the correct direction when straying from the line.

For a better understanding of the method proposed in the algorithm the following

maze is proposed in Figure 4.

Fig. 4. Algorithm exemplification

The robot will leave from the START. Initially there isn’t any information about

the course in its memory. First te robot will go along the first line to the first

intersection where it will be facing the question “what will I do next, go forward

or go right?“ and according to our algorithm it will prefer to go forward. At this

moment the first information is written in its memory, regarding the first action at

the first intersection. The letter S (straight) is what will be shown on its display.

After this, 3PI will reaches a dead end, where according to the “left hand”

algorithm it will go “backwards”, the information in its memory for this action

being the letter T (turn). Turning back it will reach the first intersection where he

will make a “left turn” memorizing the letter L (left). Now the robot will have in

is memory the combination of letters “STL”. It can be noticed that ideally the

robot should have made the first right instead of the combination “forward-

backwards-left”, so one can simplify its trail by replacing the combination of

letters “STL” with letter R (right). At the second intersection the robot will go left

then turn around and at the intersection will make another left. So at this moment

in the meroy of 3PI there will be a route defined by the letters “RLTL”. It can be

Lucian Pestri�u, Cosmin Gabrian, Octavian Iorga,

98 Andrei Melnec, Cătălin Gheorghe Amza

noticed that the directions used by the robot to go straight ahead were useless so it

will appear a new optimization rule. So we replace “LTL” (left-turn-left) with “S”

so in the robot’s memory will only the letters “RS”.

Again the robot reaches a dead end and he will turn back to the same intersection

and making a left turn. Now in his memory he will have the letters “RSTL”. At

this junction the robot would have followed the optimum route if he had made a

right turn. So instead of going on the directions “straight-backwards-left” he will

make a right, the letters now in his memory being “RR”.

At the final junction the robot is going to go left and reach the end of the maze.

After going through the whole maze, 3PI will have in his memory the optimum

directions he should go: “right-right- left-”(RRL)

From the given example we can simplify the “left hand” algorithm as follows:

• instead of “straight-back-left” the robot will only go “right”;

• instead of “left-back-left`` the robot will only go “straight”.

Conclusions and further work

In conclusion, it is remarkable how a microcontroller like 3PI has the ability of

being programmed to manage on his own in a situation like the one we presented.

The above problem is only a small part of what one can achieve when

programming a robot to be autonomous. The labyrinth can be more complex and

it can have obstacles and loops that make the presented algorithm inefficient. As

future work we are going to enhance this algorithm with artificial intelligence

techniques such as neural networks and fuzzy logic to overcome the problems

presented above.

R E F E R E N C E S

[1] Autonomous navigation robots, www.wikipedia.org;

[2] R. Brooks, A robust layered Control System for a Mobile Robot, IEEE Journal of

Robotics and Automation, vol. RA-2, no.1, march 1996;

[3] The Pololu 3PI robot, www.pololu.com;

[4] Richard T. Vannoyii , Design a Line Maze Solving Robot;

[5] David Cook, Robot Building for Beginners;

[6] Myke Predko, Programming Robot Controllers;

[7] Joe Jones, Daniel Roth, Robot Programming.

