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Abstract: In a Schrödinger-type and Madelung-type scenarios for the description of 

complex economics system dynamics, SL(2R) symmetries are highlighted.  The 

emergence of such symmetries has several consequences:  the existence of analogic-

type behavior as a gauge invariance of Riccati type as well as the existence of 

digital-type behavior through the spontaneous symmetry breaking of the same gauge 

invariance.    

When said symmetries are discussed in the context of economics dynamics, the 

individual reaction to market signals can be associated to period doubling and 

modulated dynamics (i.e. to the digital signals) while, the behaviors of large 

investors and of the State, through banking or monetary policies, can associated to 

the “complex economics system background” (i.e. analogical signals).  

Moreover, the markets have a fractal/multi-fractal structure on the long term, being 

characterized by a “self-memory”. The economic structures emphasize fluctuations 

but, they never reach the chaos state. Thus, a holographic approach on complex 

economics system dynamics (and, on economics complex economics systems) 

provides a valid and more natural perspective, compared to the standard 

approaches. Our research provides a qualitative insight of economics complex 

system dynamics, remaining a more rigorous study which reveals a quantitative 

analysis of financial fractal bubbles to be done in further research. 
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1. Introduction 

The usual physical models used in describing the dynamics of complex economics 

systems are based on the hypothesis of the differentiability of the econo-physical 

quantities used to describe their evolution. As a consequence, the validity of these 

models must be understood gradually, in areas where differentiability and 

integrability are still functional [1-5]. However, when discussing nonlinearity and 

chaoticity in the dynamics of complex economics systems, differentiable and 

integrable mathematical procedures are of little use. Therefore, in order to 

properly describe the dynamics of complex economics systems, it is necessary to 

introduce the scale resolution both into the expressions of the physical variables as 

well as into the expressions of the fundamental equations governing these 

dynamics [6-9]. 

Accepting the above affirmation, any physical variable (used in the description of 

complex economics system dynamics), will depend on both the usual 

mathematical procedures on spatial and time coordinates as well as on a scale 

resolution. Specifically, instead of working with a single physical variable (a 

strictly non-differentiable mathematical function), it is possible to operate only 

with approximations of this mathematical function, resulting by averaging it at 

different scale resolutions. Thus, any physical variable used to describe the 

dynamics of complex economics systems will operate as the limit of a family of 

mathematical functions, the function being non-differentiable for zero scale 

resolution and differentiable for non-zero scale resolution [6-9]. 

This way of describing the dynamics of complex economics systems, obviously 

implies the development of both new geometric structures and physical theories, 

consistent with these geometric structures, for which the laws of motion, invariant 

to time coordinate transformations are also invariant to transformations with 

respect to scale resolution.  Such a geometric structure is the one based on the 

concept of the fractal/multifractal and the corresponding physical model described 

in the Scale Relativity Theory (SRT) [7-9]. This article aims to present a novel 

approach to understanding the dynamics of complex economic systems through a 

holographic implementation. By examining the behavior of the structural units 

within these intricate systems, we explore the use of continuous, non-

differentiable curves, such as fractal or multifractal curves, to provide a 

comprehensive and explicit depiction of their dynamics. Through this perspective, 

we shed light on the interconnections and complexities inherent in economic 

systems, offering new insights into their functioning and behavior. 

Let it be shown that the information above becomes functional for economic 

systems. Dynamic and historical through its very nature, the economic activity 

was carried out based on time- and place-dependent conditions, changing its 
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organization as a function of the nature of the economic system. Andre Marchal 

[10] defined the economic system as a coherent ensemble of social and 

institutional, economic and technical, psychological or mental structures. The 

complexity of a system derives from its functionality, from its number of 

participants or deciders, from the nature or intensity of specific relations or from 

the magnitude of its imbalances. The theory of complex economics systems 

assumes that individual entities interact in a non-linear manner and the effect of 

said interactions is a consequence or a result of the collective actions. By fulfilling 

the criteria of a complex economics system, economics has become a fertile 

domain for the application of specific mathematical or physical theories. In such a 

context, the study of complex economics systems through the fractal theory 

perspective has become, in the last decades, an important endeavor for 

researchers. The pioneering research of Pareto [11], in order to identify the 

economic “optimum”, or the analyses of Gini [12] paved the way towards the 

holographic analysis of economic phenomena. 

 The work of Mandelbrot [6] introduced the scientific world to the concept of 

fractality. He found empirically that a chart of market price changes of cotton 

price looks similar to another chart with different time resolution. The holographic 

analysis thus comes off as a necessity in simulations, being able to model and 

predict the generally statistical nature of a system, without predicting its behavior 

in a certain moment.  The classic and neoclassic theories, based on the hypothesis 

of rationality, supported the self-regulating capacity of the market. The premise 

was that supply and demand automatically adjust through the price mechanism, 

thus inducing an equilibrium trend. Empirical analyses have proven that self-

regulating, or the tendency towards reaching an equilibrium, are not consistent 

with reality. Demand is dominated by the imperfect behavior of consumers and 

supply is adjusted through the signals transmitted by prices. 

Initially applied in the consumer goods market, the fractal/multi-fractal theory has 

encompassed other economics domain such as: price changes in open market, the 

distribution of income of companies and the scaling relation of company’s size 

fluctuations [13,14] 

The financial markets, through their inherently speculative character, can 

constitute a trans- and interdisciplinary domain. The globalization of financial 

markets and the application of new informational technologies emphasize the 

complexity degree of these markets.  

The 2008 economic crisis has challenged the mainstream economic theory. In 

such a context, the speculative bubbles, an phenomenon increasingly encountered 

on these markets, is the result of individual reaction to market signals through the 

price at that particular moment (an aspect which can be assimilated to the digital 

signals), in the context of an optimistic state induced by the behaviors of large 
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investors and of the State, through banking or monetary policies (aspect which 

can be assimilated to analogical signals) [15,16]. The results of contemporary 

empirical studies prove that the market dynamics and the evolution of economic 

indicators are not a random phenomenon. Besides this our proposed model, there 

is another approach to explain the nonlinear behavior of complex economics 

system through fractional derivatives formalism. In reference [44] it is presented a 

model using an operational procedure in the sense of evolution of fractional order 

chaotic economic system based on non-degenerative equilibrium points where 

have been obtained various chaotic scenarios such as doubling period, 

intermittence shown in bifurcation and time series diagrams. We note that our 

model offers more general description of the non-linear behavior of complex 

economics system based both on scale resolutions change and fractal dimensions 

choice of motion curves associated to the economical phenomenon. 

In the present paper, the analogic/digital type behaviors are explained in the 

dynamics of complex economics systems and particularly, for economic systems, 

by using the SRT model in the form of Schrödinger and Madelung type scenarios. 

The holographic character in the description of the complex economics system 

dynamics will thus be highlighted.  

 

2. Schrödinger and Madelung-type scenarios in the description of complex 

economics system dynamics 

It is a known the fact that the dynamics of complex economics systems in the SRT 

[7-9] can be described through the multifractal Schrödinger equation – the 

Schrödinger-type scenario: 

 

                                      (1) 

where: 

                                                         (2) 

In the above relations  is the states function,  is the scale resolution,  is the 

multifractal spatial coordinate,  is the non-multifractal temporal coordinate with 

the role of an affine parameter of the motion curves (it is mentioned that in SRT, 

the dynamics of the structural units belonging to any complex economics system 

are described through continuous and non-differentiable curves - fractal curves),  

is a parameter associated to the fractal/multifractal-non-fractal/non-multifractal 
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scale transition,  is the singularity spectrum with a singularity index of order 

 and  is the fractal dimension of the motion curves [3,4,6].  

 

On the other hand, by choosing  of the form  

 

, (3) 

 

where  is the amplitude and  is the phase, and introducing the real velocity 

fields ( - differentiable velocity field, -non-differentiable velocity field): 

 

 

, (4) 

, (5) 

 

the multifractal Schrödinger equation is reduced to the multifractal hydrodynamic 

equation system – the Madelung-type scenario: 

 

 

, (6) 

, (7) 

 

with  the multifractal specific potential: 

 

. 
(8) 

Equation (6) corresponds to the multifractal specific momentum conservation law, 

while equation (7) corresponds to the multifractal state density conservation law. 

The multifractal specific potential (8) implies the multifractal specific force: 

, 

(

(9) 

which is a measure of the multifractality of the motion curves of the dynamics. 
From the equations (6)-(8) the following meanings result: 

• Any complex economics system structural units are in a permanent contact 
with a multifractal medium through the multifractal specific force; 
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• The multifractal medium can be assimilated with a multifractal fluid whose 
dynamics are characterized by the multifractal hydrodynamic equation 
system; 

• The velocity field  is absent from the multifractal states density 
conservation laws. In a such context it induces non-manifest complex 
economics system dynamics facilitating the transmission of multifractal 
specific momentum and multifractal energy of focus; 

• In the complex economics system dynamics the ”self – aspect” of the 
multifractal specific momentum, transfer the reversibility and existence of 
eigenstates are guaranteed by the conservation of multifractal energy and 
multifractal momentum. Using the tensor: 

, 
(

(10) 

 equation (9) takes the form of a multifractal equilibrium equation: 
 

. (

(11) 

Moreover, since the tensor  can also be written in the form: 

, (

(12) 

with: 

. 
(

(13) 

 a multifractal linear constitutive equation for a multifractal “viscous fluid”, 

becomes functionally offering in the same time  the reason for an original 

interpretation of coefficient as a multifractal dynamic viscosity of the 

multifractal fluid. 

 

3. “Digital” type behavior in the dynamics of complex economics systems 

through Riccati type gauge 

The multifractal Schrödinger equation admits, besides the clasical Galilei group 

proper, an extra set of symmetries [17] that, in general conditions, can be taken in 

a form involving just one space dimension and time, as a SL(2,R) type group in 

two variables with three parameters [18]. Limiting the general conditions, the 
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space dimension can be chosen as the radial coordinate in a free fall, as in the case 

of Galilei kinematics, which can also be extended as such in general relativity 

[19,20], for instance in the case of free fall in a Schwarzschild field.  

The essentials of the argument of Alicia Herrero’s and Juan Antonio 

Morales’ work just cited are delineated based on the fact that the radial motion in 

a Minkowski spacetime should be a conformal Killing field, which is a three-

parameter realization of the SL(2R) algebra in time and the radial coordinate. This 

is a Riemannian manifold of the Bianchi type VIII (or even type IX, forcing the 

concepts a little) [21]. The bottom line here is that, as long as the general relativity 

is involved, the nonstationary Schrödinger equation describes the continuity of 

matter.  

And since, as a universal instrument of knowledge, the multifractal 

Schrödinger equation is referring to free particles, we need to show what kind of 

freedom is this in classical terms. 

 For our current necessities it is best to start with the finite equations of the 

specific SL(2,R) group, and build gradually upon these [22,23], in order to 

discover the connotations we are seeking for. Working in the variables  as 

above, the finite equations of this group are given by the transformations: 

 
 

(14) 

This transformation is a realization of the SL(2,R) structure in variables (t,r), with 

three essential parameters (one of the four constants , ,  and  is superfluous 

here). Every vector in the tangent space SL(2R) is a linear combination of three 

fundamental vectors, the infinitesimal generators: 

 
 

(15) 

satisfying the basic structure equations: 

  (16) 

which we take as standard commutation relations for this type of algebraic 

structure, all along the present work. The group has an invariant function, which 

can be obtained as the solution of a partial differential equation: 
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(17) 

The general solution of this equation is a function of the constant values of the 

ratio: 

 
 

(18) 

which represents the different paths of transitivity of the action described by 

equation (4). 

 

In order to draw some proper conclusions from these mathematical facts, let us go 

back to the transformation (14) and consider it from the point of view of 

multifractal physics.  

Firstly, let it be observed that the multifractal specific force (9) is defined with the 

help of a gradient. As an immediate consequence,  if ‘r’ denotes the distance of 

the moving complex economics system structural unit from the center of 

multifractal specific force, then 

 
          

(19) 

where  is the central angle of the position vector of the moving complex 

economics system structural unit with respect to the center of multifractal specific 

force and   is the constant of the multifractal kinetic moment. 

Now, since according with (7)  

 

 
 , 

(20) 

 

then from (20) and (19), through the substitutions  

 

 
 

(21) 
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the following Riccati-type differential equation is satisfied (i.e., we operate here 

with a Riccati-type gauge): 

  (22) 

 

For obviously physical reasons, it is therefore important to find the most general 

solution of that equation. José Carineña et al. offer us a pass in short but modern 

and pertinent review of the integrability of Riccati's equation [24]. For our current 

needs it is enough to note that the complex numbers 

  (23) 

 

roots of the quadratic polynomial on the right side of equation (22), are two 

solutions (constants, that's right) of the equation: being constants, their derivative 

is zero, being roots of the right-hand polynomial, it cancels. So, first we do the 

homographic transformation: 

  (24) 

 

and now it can easily be seen by direct calculation that  is a solution of the linear 

and homogeneous equation of the first order 

  (25) 

 

Therefore, if we conveniently express the initial condition , we can give the 

general solution of the equation (22) by simply inverting the transformation (24), 

with the result 

  (26) 
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where  and  are two real constants that characterize the solution. Using 

equation (23) we can put this solution in real terms, i.e. 

 

 

(27) 

 

which highlights a frequency modulation through what we would call a Stoler 

transformation [22,23] which leads us to a complex form of this parameter. More 

than that, if we make the notation 

  (28) 

 

equation (27) becomes 

  (29) 

 

where  is given by 

  (30) 

The meaning of this complex parameter will be clear a little later. For the 

moment, let's note that any dynamic process appears here as a frequency 

modulation process by means of a gauge invariance of a Riccati-type, imposed 

through the multifractal kinetic momentum conservation law.  
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(a) 3D diagram (b) contour diagram 

 

  
(c) time series      (d) reconstituted attractor 

 

 

Fig. 1 a-d: The ”modulated dynamic modes” of the structural units of complex 

economics system dynamics are presented:  (a) - 3D diagram, (b) - contour 

diagram, (c) - time series and (d) - reconstituted attractor for scale resolutions 

given by Ωmax. 
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(a) (b) 

 

  
(c)      (d) 

 

Fig. 2 a-d: The ”double period dynamic modes” of the structural units of complex 

economics system dynamics are presented:(a) - 3D diagram, (b) - contour 

diagram, (c) - time series and (d) - reconstituted attractor for scale resolutions 

given by Ωmax. 

 

In these figures, Real (h) (the amplitude at various scale resolutions given by the 

maximum value of Ω) is represented as functions of t and Ω for r=0,5. 

As it can be observed in Figures 1 and 2 a-d, the natural transition of complex 

economics system dynamics is to evolve from normal period doubling state 

towards modulated dynamics. The complex economics system dynamics never 

reach chaotic state but they permanently evolve towards that state. All of the 

above highlight an “digital”-type behavior (double period and modulated 

dynamics). Similar behaviors are often seen in the dynamics of other complex 
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economics systems like transient plasmas[25-28] or other depositions system 

based on flow of multi-component fluid [29]. 

In particular, when referring to economics dynamics, the speculative bubbles, 

which can be the result of individual reaction to market signals through the price 

at a particular moment, can be assimilated to the digital signals [15, 16]. 

4. “Analogic” type behavior in the dynamics of complex economics systems 

through spontaneous symmetry breaking of Riccati type  

Let it be admitted that relation (20) is not operable anymore (i.e. null constant). 

Then,   

 (31) 

 

If we accept the null vectors as being the “complex economics system 

background”, it follows that they have a major importance in “vacuum” problems.  

Now, it is naturally to suppose that, the most general invariance group is the group 

with three rotation parameters, whose infinitesimal generators are:  

 

, 

, 

, 

 

 

 

(32) 

  

This fact was put into evidence by [9], which highlights that the form (31) of 

infinitesimal generators is equivalent to the form resulting from it for: 

 (33) 

 

that is:  

 

=  (34) 
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=  

The action of the operators (33) on the spin “eigenfunctions”:  

 

  
(35) 

 

reproduces the action of the Pauli matrices, according to relations:  

 

=  

=  

=  

 

 

 

(36) 

It can be shown in a straight manner that the operators (34) satisfy the same 

algebras as Pauli’s matrices.  

The infinitesimal transformations (34) and (32) don’t tell us very much about this 

group. To this end, we shall look for some finite transformations, generated by the 

infinitesimal ones. In this respect, we shall set operators (34) in a form capable to 

put into evidence its isomorphism to the group, considered in Section 2. The new 

operators are given by the linear combinations: 

, 

 

, 

 

(37) 

and satisfy the same structure relations as the infinitesimal generators of the group 

(15).  

Taking α and  as group variables, with α =  from (35), the operators (37) also 
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write: 

  
(38) 

 

In order to find out the finite transformations generated by these infinitesimal 

transformations; we shall proceed to determine invariant functions of the operator: 

U= ,  

which are solutions of the equation Uψ = 0: 

 

(39) 

with the characteristic system: 

 

(40) 

We now look for another two constants m and n, so that the linear combination  

resulting from (40): 

 

(41) 

is a total differential. This can happen only under conditions: 

 

 

 

 

(42) 

 

where ρ is an arbitrary factor. This system is compatible only for the following 

values of ρ: 

  
(43) 

 

For the first value, (41) yields the integral: 
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, 
(44) 

and for the second, the integral: 

, 
(45) 

where  and  are the values of α and  for τ = 0. Relations (43) and (44) give: 

 

 

 

 

(46) 

In order that (46) make sense, it is necessary that λ be the complex conjugate of μ: 

 = μ= , while ν has to be real – and we take it as zero. Therefore, the finite 

transformations of the group (37), generated by the infinitesimal transformations, 

are given by the unimodular group: 

 

 

(47) 

It is no accident that we have denoted by α the group variable. This notation is 

commonly used to denote the complex amplitude of the harmonic oscillators, that 

is the eigenvalue of the annihilation operator in the second quantization [24]. 

Transformation (47) was first given by Stoler [30], in connection with 

generalization of the eigenstates of the annihilation operator (coherent states). If 

α0 describes, for example, an oscillator in a state satisfying the minimum 

conditions of momentum- coordinate uncertainty, the state α is characterized by 

the uncertainty relation: 

 

(48) 

 

where (∆p) and (∆q) are variations of the momentum, – respectively, coordinate – 

of the oscillator, while the interaction constant (in particular, the Planck constant) 

has been taken as equal to unity.  

In particular, when referring to economics dynamics, the “economics” complex 
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economics system background, by means of coherence states of Stoler type, refers 

to an optimistic state induced by the behaviors of large investors and of the State, 

through banking or monetary policies. This aspect can be assimilated to analogical 

signals [15,16].  

5. Conclusions 

In a Schrödinger-type and Madelung-type scenarios for the description of 

complex economics system dynamics, SL(2R) symmetries are highlighted. The 

existence of such symmetries has several consequences:  the existence of 

analogic-type behavior as a gauge invariance of Riccati type as well as the 

existence of digital-type behavior through the spontaneous symmetry breaking of 

the same gauge invariance.    

When referring to economics dynamics, the markets have a fractal/multi-fractal 

structure on the long term, being characterized by a “self memory”. In such a 

context, the individual reaction to market signals can be associated to period 

doubling and modulated dynamics (i.e. to the digital signals) while, the behaviors 

of large investors and of the State, through banking or monetary policies, can 

associated to the “complex economics system background” (i.e. analogical 

signals). The economic structures emphasize fluctuations but, they never reach the 

chaos state. 

Moreover, when referring to biostructures, smart materials etc., the above 

mathematical formalism can be applied to a large collection of research domains 

[32-43]. Based on this model, many properties and characterizations can be 

explained. 

As a final conclusion, a holographic approach on complex economics system 

dynamics becomes more natural than the standard approaches. 
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