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Abstract. In order to evolve as a society we need increasingly efficient technologies and 

implicitly materials with great performance that promote safety and sustainability. The 

discovery of high entropy alloys was received with much enthusiasm due to the possibility 

of designing new materials with improved properties, that could be used in applications 

that require extreme conditions or a very specific combination of properties. As the 

research in this area is continuously increasing and the results are very promising, this 

review focuses on the most recent investigations on medium entropy alloys (MEAs) 

applications, highlighting their properties, but taking into consideration other factors, such 

as economic and environmental factors. Additionally, considering the high cost associated 

with MEAs fabrication, MEA coatings are also explored, as they are nowadays regarded as 

a more convenient procedure to obtain the required properties for various substrate 

materials. 
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1. Introduction 

Around twenty years ago, in 2004 [1,2], a new class of alloys was introduced, 

marked by an increase in the number of alloying elements. It was hypothesized that 

when the entropic contribution to the total free energy overcomes the enthalpic 

value, the formation of intermetallic phases is suppressed. According to 

thermodynamics, for an alloy to form a solid solution, the Gibbs free energy of the 

system should be at a minimum value and when the Gibbs free energy approaches 

zero, this high-entropy effect stabilizes the system [3], thus reducing the number of 

phases. Based on this idea, high entropy alloys (HEA) were initially defined as 

alloys formed with at least five principal elements in equiatomic or near-

equiatomic proportions that form single-phase solid solutions and the medium 

entropy alloys (MEA) as their counterparts with lower entropy. However, the 
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terms have become generic and nowadays many alloys receive this label although 

they don’t meet those initial requirements. Some other terms were introduced, 

such as multiple principal element alloys (MPEA) and complex concentrated 

alloys (CCA), but they are not that popular, mainly because classifying the alloys 

based on their entropy is simple [4,5]. Based on the entropy of mixing, the 

categories are presented in figure 1. 

 
Later, the strategy was to introduce a rarer element, with special properties, in 

a low proportion, typically less than 5%, besides the principal constituents. Due to 

the random arrangement of elements, the local disorder is leading to outstanding 

properties such as corrosion, abrasion, and oxidation resistance [5–7]. In addition, 

due to the variety of elements in such alloys, mechanical and thermal properties, 

such as high strength/hardness, high toughness, and ultra-high fracture toughness 

at very high and cryogenic temperatures may manifest [8,9]. Special corrosion 

properties in bioliquids and superior biocompatibility as a result of well-selected 

elements in specific ratios have led to the elaboration of bio-HEA and bio-MEA 

[10–12] representing alloys that are able to function as biomaterials. Initially, a 

great part of them was based on well-known Ti biomaterials alloys [13–15], but 

after a while, new HEAs and MEAs were elaborated and tested in vitro and in 

vivo [16,17].  

Since the number of possible alloys seems endless, we need faster, more 

efficient ways to asses and predict both phase formation and mechanical 

properties, other than the traditional trial and error method, which is very time-

consuming and inefficient. Although high and medium entropy alloys were 

initially regarded as single-phase solid solutions with equiatomic composition, 
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nowadays, alloys with non-equiatomic compositions, as well as multiphase alloys 

and intermetallic compounds are being increasingly investigated. These alloys 

could exhibit superior high-temperature strength and thermal stability [18–21]. 

A better understanding of microstructural features and deformation 

mechanisms is crucial to engineering new alloys with suitable properties for 

future applications that will require better performance and improved resistance in 

more extreme environments [22–24]. Atomistic methods, such as density 

functional theory (DFT) and molecular dynamics (MD) are being used to 

investigate the mechanical properties. The CALPHAD method is used to 

investigate the phase diagrams and the crystal plasticity finite element method 

(GPFEM) to predict the microstructural behaviour using experimentally 

determined mechanical properties [25–28]. 

Usually, bulk new HEAs and MEAs [29] have higher costs than traditional 

alloys, containing rare expensive elements, and thus their use on a larger scale 

could be restricted. Based on their lower costs, HEA and MEA coatings and films 

have been developed in the last few years for larger industrial applications 

[30,31]. Such coatings present superior merits compared with traditional coatings, 

such as high strength and hardness, better wear and corrosion resistance, thermal 

stability, irradiation resistance, high toughness for special-temperature 

applications, and so forth. The new advanced technologies seem to be very 

suitable for the fabrication of such alloys. Therefore, several researchers have 

worked on the development of coating-based technologies [32–35]. 

2. MEAs as structural materials 

An important aspect of the materials used in structural applications is 

represented by the resistance of metallic alloys to hydrogen embrittlement. Both 

high entropy alloys, such as FeNiCoCrMn and medium entropy alloys, such as 

CoCrV and CoCrNi have a high resistance to embrittlement, but at relatively low 

hydrogen concentrations. Micro-alloying elements could be an appropriate 

method to improve their resistance, as shown on the CoCrNi alloy, which was 

doped with Mo, thus inducing a change in the deformation mechanism by 

inhibiting the access of hydrogen to the grain boundary [36]. Another MEA with 

very good resistance to hydrogen embrittlement is the CoNiV alloy, which can 

also be further improved through micro-alloying with Al [37]. 

Regarding the corrosion resistance, when the CoCrNi MEA and the 

CrMnFeCoNi HEA were analyzed comparatively in 0.1 M H2SO4 and 0.1 M 

NaCl, the MEA showed superior corrosion resistance [38]. Due to this behavior, 

the alloy could be used in ocean engineering structures as it was also shown that it 

exhibits superior passivity compared with 316L and Inconel 600 [39]. The 

CoCrNi alloy was also tested under an ultrahigh explosive loading rate to evaluate 

its suitability as a shaped charge liner, which could be used in many industries, 
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such as oil, mining and construction. Under the extremely high strain rate and 

large plastic deformation, the grain size was reduced from 16 m to under 5 m, 

thus inducing dynamic recrystallization [40]. 

Furthermore, these alloys can also be reinforced with particles such as Al2O3, 

SiC and TiC to significantly increase the yield strength, compressive strength and 

resistance to corrosion [41]. Other methods can also be used to improve the 

properties of such alloy, such as introducing lattice defects through cold rolling 

and annealing [42] or introducing nano-scale features through oxide dispersion 

strengthening [43]. 

Micro-alloying has also been used to increase the yield strength of FCC 

structured MEAs and HEAs. The addition of Al in the FeCoNiCrMn alloy led to 

an increase in yield strength from 200 MPa to 500 MPa. Similarly, using the 

CALPHAD method, Tian et al. have studied the phase diagrams of VCoNi MEA 

alloyed with Al and developed several alloys, finding that for the Al7(VCoNi) 

alloy the yield strength can reach 1634 MPa, compared to 787 MPa in the VCoNi 

alloy [44]. 

An even more impressive enhancement was seen for the NiCoCr MEA in 

which, after doping with Al and Ti, the yield strength increases from 147 MPa to 

792 MPa and the ultimate tensile strength from 447 MPa to 1004 MPa [45]. 

Another challenge faced by materials in their service life is to resist to 

microbiologically influenced corrosion. In the same way microorganisms attach to 

teeth and form a biofilm by producing extracellular polymeric substances [46], 

they attach to metals causing bio-degradation of the substrate through the 

metabolites produced. Many materials, such as steels, Cu and Ti alloys are 

susceptible to this type of corrosion. One study conducted on MEA TiZrNb using 

Deulfovibrio desulfuricans showed that in the absence of an organic carbon 

source, the microorganisms can use Ti as an electron donor, causing selective 

dissolution of Ti in the tested MEA [47]. 

Some technological advancements were hindered by the lack of suitable 

structural materials that could perform efficiently in specific harsh conditions, but 

the development of multi principal complex alloys might help in maintaining the 

fast pace of technological development. One such alloy was developed, namely 

the MoCrNiCo MEA. This alloy shows ultra-high corrosion resistance in acidic 

media, which is due to the formation of a medium entropy oxide film with a very 

low amount of defects [48]. 

With the fast-paced development of technology in the aerospace industry and 

gas transporting, better-performing alloys at cryogenic temperatures are also 

needed. The traditional CoCrFeMnNi high entropy alloy showed an impressive 

high-yielding strength of 1692 MPa at 77 K. However, due to the increased cost 

of Co, Co-free alloys, such as Fe50Mn20Cr20Ni10 MEA were also investigated, 

showing a yield strength of 605 MPa at 77 K [49]. 
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Lightweight materials are also very desired in the field of aerospace and in the 

automobile industry to improve energy efficiency and multiple MEAs and HEAs, 

such as AlMgLi, TiVZrNb, TiVCrAl, AlBeFeSiTi and AlNbTiV were found to 

have densities between 2.2 g/cm3 and 6.5 g/cm3 and promising mechanical 

properties [50,51]. Another lightweight alloy, Al-Ti-Cr-Mn-V, with great 

compression strength (1940 MPa) and ductility (30%), was developed by Liao et 

al., who identified a dual phase comprised of BCC and FCC with approx.. 4,5 

g/cm3. Other MEAs, based on vanadium, could be used in advanced energy 

applications, such as hydrogen storage [52]. It is to mention the investigation on  

V47Fe11Ti30Cr10RE2 (RE = La, Ce, Y, Sc), which shows a significantly faster 

hydrogen uptake compared to other vanadium-based alloys [53]. 

3. Coatings with MEA 

MEA coatings with good metallurgical bonding are also an option to increase 

the performance of structural material, while also being more cost-efficient. For 

example, a coating of CoNiTi on a Ti substrate has increased the hardness from 

114 HV to 571 HV [54] and on an Mg substrate the deposition of 

TiB/Ti50Zr25Al15Cu10 refined with LaB6 has reduced the wear rate by 77%, while 

increasing the resistance to corrosion and the micro-hardness from 62 HV to 679 

HV [7]. 

As researchers observed that single-phase BCC complex concentrated alloys 

tend to have high strength, but low plasticity and single-phase FCC complex 

concentrated alloys possess great plasticity, but have low strength, the 

development of eutectic MEAs and HEAs has started to get momentum [55–57]. 

A similar approach had Meghal et al., who combined AlCoCrFeNi BCC/B2 as 

a hard phase and CoCrFeNi FCC to create a coating on 316 L substrate. The 

coating thus created exhibited superior wear resistance even at elevated 

temperatures and higher hardness that the individual phases [31]. 

Other materials that could benefit from MEAs coating are the materials used 

in nuclear reactors, such as the zirconium alloys used as cladding material. Xin et 

al have created on N36 Zr alloy substrate a coating of AlNbTiZr. It was shown 

that the addition of Al initially decreased the hardness and the elasticity, but both 

increased after increasing the Al content. Additionally, the corrosion resistance 

was significantly improved [58]. Furthermore, the alloy might have better 

irradiation resistance [59].  The properties of other MEA coatings are presented in 

Table 1 in comparison to those of the uncoated substrate. It is worth mentioning 

that choosing an appropriate surface treatment prior to the coating deposition 

could improve the film adhesion and thus the properties of the coated material 

[17,60]. 
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4. MEAs as biomaterials 

The development of HEAs and MEAs has also gained interest in the world of 

biomaterials. Although not an extreme environment, the alloys used as 

biomaterials need a specific set of properties, such as high strength, superior 

corrosion resistance and Young’s modulus close to that of the human bone to 

avoid “stress shielding” [67]. One such alloy, based on the traditional TiZr alloy 

which has outstanding biocompatibility [68,69] is the Ti45Zr37Nb16Fe1Mo1, having 

a tensile strength over 700 MPa and Young’s modulus below 63 GPa  [70]. The 

Zr50Ti35Nb15 MEA also shows a promising combination of mechanical properties, 

having an Young’s modulus of 62 GPa, an yield strength of 657 MPa and great 

corrosion resistance [71]. 

Other Ti-based MEAs such as TiVMo, TiZrMo, TiZrNbTa TiZrNbMo and 

TiVZrMo were also recently investigated [72–74]. Compared to the traditional 

and highly researched Ti-6Al-4V alloy, the newly developed 

Ti40Zr20Hf10Nb20Ta10 shows similar strength and ductility. However, compared 

with cp-Ti in terms of biocompatibility, it shows a significantly better response in 

the interaction with human gingival fibroblasts [75]. 

The TiZrHfNbTa and its three sub-variants, TiZrNbTa, TiZrHfTa and 

TiZrHfNb are of particular interest due to their combination of yield stress and 

compression ductility, but also biocompatibility, making them great candidates for 

multiple applications [76,77]. 

These alloys can also prove strong and ductile, such as the Ti45Nb25Zr25Ta5, 

which has a tensile strength of over 900 MPa, but a tensile strain to fracture 

greater than 15% [78]. The ternary Ti-Nb-Zr MEA was also evaluated for its 

potential medical applications, showing a good combination of mechanical 

properties, having an elastic modulus of 72 GPa and a yield strength of up to 1060 

MPa, while also displaying corrosion resistance [79]. It was found that depending 

on the elemental composition and if heat treatments are applied, the yield strength 

can vary from 694 MPa to 831 MPa and the Young’s modulus from 74 GPa to 

104 GPa. It was observed that these alloys also exhibit superior resistance to 

corrosion in PBS compared with Ti-6Al-V and cp-Ti. Moreover, cell adhesion 

also proved comparable to that of cp-Ti, thus recommending these alloys as 

biomaterials [80]. 

Other possible future bio-MEAs are those composed of TiZrNbTa, having 

outstanding mechanical properties, namely an ultra-high bending strength of 1102 

MPa and an ultra-low Young’s modulus of 49 GPa. Furthermore, they display 

superior resistance to corrosion probably due to the rich oxide layer [81]. 
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5. Conclusions 

MEAs seem to be more sustainable materials that could be elaborated via 

greener technologies. One of the biggest challenges that mankind is facing right 

now is reducing the use of fossil fuels and thus the level of CO2 emission and 

finding alternatives with zero-carbon energy sources. A highly researched idea is 

the use of hydrogen, due to its high caloric value and environmental friendliness 

and therefore of storage materials, where, as was mentioned above, MEAs have a 

place.  

More environmentally friendly alternatives to conventional applications are 

also desired. One such example is the use of magnetic refrigeration as compared 

to vapor compression refrigeration. For this, materials with high magnetic entropy 

change and outstanding magnetic refrigerant capacity are needed. Additionally, 

the possibility of microalloying HEAs and MEAs with small amounts of rare 

elements is a great strategy in designing materials with specific properties 

However, we can conclude that MEAs are part of the materials of the future 

and the future has to be a sustainable one. 
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