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REVIEW 

Abstract. Synthetic hydroxyapatite (Ca10(PO4)6(OH)2, HAP) is widely used in regards to 

orthopedic applications due to its similarity to the mineral component in bone. However, 

while HAP aids with osseointegration it does nothing when it comes to orthopedic 

infections. Moreover, the prevalence of antibiotic resistance makes treatment even more 

difficult. In view of this, adding silver to hydroxyapatite has been a focus of many studies 

due to the combined bioactivity of HAP and excellent antibacterial properties of Ag. The 

present work brings a brief introduction to more recent studies regarding the HAP-silver 

combination and its effect on different pathogenic strains. The effect of silver on benign 

cells is also discussed based on in vitro cultures and in vivo studies. 
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1. Introduction 

The ability of pathogens to resist treatment has become the most prevalent 

problem, with 700,000 people dying each year due to drug-resistant pathogens [1]. 

Moreover, orthopedic infections are one of the most common complications after 

surgery, especially when metallic implants are involved, due to the tendency of 

bacteria to form a biofilm on their surface. Tissue contamination and 

inflammation might lead to implant failure, especially since antibiotic resistance 

has to be taken into account, in terms of treatment. Biocompatible coatings on 

such metallic implants are quite common as they tend to help with the osseo-

integration of said implants. Thus, combining these coatings with an antimicrobial 

agent would be an important and useful step. In particular, one in vivo study on 

New Zeeland rabbits [2], dealing with hydroxyapatite, HAP, and silver 

nanoparticles, AgNPs, deposited on a Ti6Al4V titanium alloy, revealed that the 

addition of silver nanoparticles influenced the implant stabilization in a positive 
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manner. Here, silver nanoparticles helped to reduce the period of inflammation 

and accelerated healing, when compared to the implants without AgNPs.  

This is of no surprise, considering the fact that hydroxyapatite is highly 

biocompatible and bioactive, being extensively researched for biomedical 

applications. However, the properties and applications of HAP may differ due to 

different parameters such as particle size, morphology or surface characteristics. 

In terms of drug delivery, nano hydroxyapatite is preferred due to its larger 

surface area and thus higher loading capacity. The intracellular transportation 

capability of nanoparticles has to also be taken into account, as smaller 

nanoparticles tend to be more successful.   

On the other hand, silver is a well-known antibacterial agent with little to 

no toxicity to human cells at low concentrations. While the full mechanism is not 

yet fully understood, it does depend on the form in which silver is administered. 

Literature proposes three mechanisms of action: i) disruption of DNA replication 

through influencing adenosine triphosphate, ATP, production; ii) prevention of 

proton transportation through accumulation within the membrane; iii) through the 

generation of oxygen reactive species (ROS) [3]. In addition, silver has been 

reported to have a prolonged effect. It was found that bacteria tend to absorb silver 

as they die, silver which can then leach out killing viable bacteria. So, it can be 

said that dead pathogens kill viable ones which is why this effect was titled as the 

“zombies effect” by Wakshlak et al. [4].  

Hydroxyapatite may also help with ROS generation as calcium is an 

important controller in mitochondrial function, specifically within the synthesis of 

adenosine triphosphate [5]. There is a fragile balance between the positive and 

negative effects of calcium ions. An overload of mitochondrial Ca2+ ions can 

cause an amplified generation of ROS with cytochrome c release and enhanced 

permeability, in the end, leading to apoptosis [6]. Of course this is only helpful for 

pathogens that do contain a mitochondria.  

In this context, the following will focus on antibacterial studies dealing 

with hydroxyapatite and silver, namely hydroxyapatite substituted with silver ions 

and hydroxyapatite to which silver nanoparticles were added. Studies with 

different pathogens will be analyzed to see if the way in which these two 

components interact and play a role on the final antibacterial effect. To eliminate 

all possible variables, studies that contained any other elements (i.e. secondary 

substitution ion alongside Ag+ or antimicrobial drugs) have not been considered. 

2. Silver ions versus silver nanoparticles 

A feature of hydroxyapatite that has been in focus recently is its ability for 

ionic substitution, with cations, anions or both at once [7-26]. Of course, to 

preserve structural stability, especially in terms of further processing, said ions 
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have to be similar in size and charge to the ones they substitute. Another thing 

worth mentioning is that while substitution can be performed in small amounts, in 

some cases, a total substitution is possible (i.e. calcium substituted with 

strontium). Regarding Ag+ ions, they substitute Ca2+ with a preference for Ca(I) 

sites in the HAP lattice [Ca10-x/2Agx(PO4)6(OH)2] which increases unit cell 

parameters due to the larger ionic radius of Ag+ (1.28 Å) when compared to Ca2+ 

(1.12 Å) [27]. A Rietveld study performed on silver-substituted hydroxyapatite is 

in favor of a substitution mechanism at both calcium sites, namely Ca(I) and 

Ca(II), with occupancies of about 3-5% and not the expected 10% [28]. While the 

theoretical limit of Ca2+ substitution with Ag+ ions is 20%, in practice this might 

not be attainable as silver substitution tends to decrease the stability of the 

hydroxyapatite structure, as well as increase its solubility, depending on the added 

amount.   

Here, structural stability is crucial in regards to further processing for 

medical implants. For example, as per ISO 13779-3: 2018 [29, 30] hydroxyapatite 

for implants has to have the Ca/P atomic ratio in the range 1.67–1.76 and be stable 

for 15 hours while undergoing a thermal treatment at 1000 oC. As for 

hydroxyapatite deposition on metallic substrates, in order to avoid metal oxidation 

with air treatments, the temperature is generally maintained up to 550 oC for the 

annealing; however with controlled atmospheres the temperature does reach up to 

1000 oC [31]. Regardless of the chosen method, if intended for medical use, the 

final coated implant has to be tested in accordance to ISO standards [32, 33].  

The substitution of HAP with silver ions is understandable considering 

they have been proven to have a slightly stronger activity than silver nanoparticles 

on four specific strains, namely E. coli, P. aeruginosa, S. aureus and S. epidermis 

with all bacteria showing cell alterations after a 2 μg/mL exposure for 5 hours 

[34]. In the case of substituted hydroxyapatite, the consensus is that that Ag+ ions 

would leach from within the HAP structure and would then interact with 

microorganisms. For example, Zhao et al. determined that the release of silver 

ions from Ag-HAP was 0.2 ppm after 1h, 0.32 ppm after 3 h and 0.34 ppm after 

6h [35]. Ag+ ions can deactivate the bacterial cell membrane by exchanging the H 

in the thiolic groups in proteins [36, 37]. This leads to the impossibility of the 

bacterial cell to perform its most basic functions. Once they enter the 

microorganism cell, Ag+ ions also tend to bind to cytoplasm components or 

nucleic acids [38]. 

Many studies take another route and adsorb silver nanoparticles onto 

hydroxyapatite. Their mechanism of action is more or less the same, as AgNPs do 

tend to produce silver ions when in contact with aqueous environments. For 

example, one study [39] reported that 0.05 mg/L (50 ppb) silver ions were 

continuously released from AgNPs. When it comes to silver nanoparticles the 

consensus is that the production of reactive oxygen species (ROS) and their 
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interaction with the cellular membrane of bacteria which leads to an increased 

permeability is the main mechanism of action. Still, exposure to high 

concentrations of silver nanoparticles can induce bioaccumulation, toxicity and 

histological alterations [40, 41]. However, while silver nanoparticles might lead to 

accumulation and damage to mammalian cells, with smaller ones having a deeper 

effect, forming composites with biomaterials would dampen bioaccumulation 

while still allowing a continuous release of antibacterial Ag+ ions [42]. In view of 

this, the following will present studies regarding silver coupled with 

hydroxyapatite and their effect on a variety of pathogens. 

 

3. In vitro antibacterial studies 

 

In vitro studies on pathogens are usually performed for any new potential 

antimicrobial agent in order to determine its lowest concentration for bacterium 

inhibition (MIC=minimum inhibitory concentration). However, to obtain accurate 

reproducible results with as little bias as possible, several factors have to be taken 

into account. Firstly, the choice of study method, either solid or liquid, plays an 

important factor as each have their pros and cons. The standard methods 

employed by scientific literature are agar diffusion and broth dilution.  

The type of bacteria on which the antibacterial testing is performed has to 

also be considered as gram positive and gram negative pathogens have different 

structures. Typically, gram negative bacteria are harder to destroy due to their 

outer membrane. Fungal infections require attention as well, as fungi can be 

difficult to avoid. Though surgical site fungal infections are less than prevalent 

they might occur in certain hospital conditions.  

Another crucial aspect is the fact that results tend to greatly differ with the 

composition of the used media. If said medium is very rich in components, silver 

ions tend to either form oxides, hydroxides or salts with them, thereby limiting 

their activity against cultured pathogens [43]. 

  

 

3.1. Agar diffusion method 

 

    This method has the advantage to allow the testing of multiple concentrations 

or even different antibacterial agents at the same time. Nevertheless, access to 

nutrients for bacteria can be quite limited depending on the gel content [44]. After 

incubation, the result is interpreted based on the measured diameter of the inhibition 

zone. The bigger the diameter the more susceptible that particular strain is to the 

tested agent. However, while agar diffusion provides a result, it does not also provide 

the MIC. Also, while this method is quite straightforward, certain factors have to be 

considered such as the form of the tested agent (pellet, loose powder, impregnated 
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disks) or its chemical nature (polar vs non-polar) as these can influence diffusion. 

Moreno et al. [45] reports that compounds with less polarity tend to have a slower 

diffusion when compared to their more polar counterparts, which limits the use of this 

method for more natural agents.  

      In view of this, Table 1 provides some examples of more recent studies on 

hydroxyapatite and silver combinations that employ agar diffusion as the method of 

choice for antibacterial studies. These studies were chosen as they address many 

different types of pathogens, gram positive and gram negative bacteria or fungi. 

 

Table 1. Antibacterial effects of hydroxyapatite and silver performed by the disk 

diffusion 
Amount of silver Addition 

method 

 

Microorganism Zone of inhibition (mm) Ref. 

0.54 wt% Silver substitution S. aureus 
S. epidermis 
E. coli 
P. aeruginosa 

S. aureus: 12  
S. epidermis: 13  
E. coli: 11 mm 
P. aeruginosa: 12  

[46] 

(0.1 M AgNO3 
for 0.1 M CaNO3) 

Silver substitution E. coli 
P. aeruginosa 
S. aureus 
B. subtilis 
C. albicans 
C. neoformans 

E. coli: 14.0±0.55 
P. aeruginosa: 12.8±0.40 
S. aureus: 15.5±0.85 
B. subtilis:13.2±0.98 
C. albicans:12.8±0.72 
C. neoformans: 12.1±0.68 

[47] 

Ca10-x/2 

Agx(PO4)6(OH)2 

Where x=1.0 

Silver substitution  S. aureus 
B. cereus 
B. subtilis 
E. coli 
P. aerugnosa 

For 10 mg/mL 
S. aureus: 13.31±0.21 
B. cereus: 11.68±0.00 
B. subtilis: 8.44±0.26 
E coli: no detection 
P. aeruginosa: no detection 
 
For 30 mg/mL 
S. aureus: 13.58±0.40 
B. cereus: 12.65±0.24 
B. subtilis: 10.35±0.08 
E coli: no detection 
P. aeruginosa: no detection 

[48] 

Ag/[Ag + Ca] = 
0.2 
 
[Ca + 2Ag]/P = 
1.67 

hydroxyapatite 
doped silver 
nanoparticles 
(HAp – AgNPs) 

K. pneumonie 
S. aureus 
B. cereus 

Black Sumatra 
bone derived HAp/AgNPs: 
K. pneumonie:28 
S. aureus:26 
B. cereus:24 
 
Fighting cock bones derived 
HAp/AgNPs: 
K. pneumonie:22 
S. aureus:25 
B. cereus:23 

[49] 
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AgNPs 1, 3, 5 % AgNPs decorated 
HAP 

S. aureus Visible zone of inhibition  
(exact zone not mentioned) 

[50] 

0.5, 1, 2.5 and 5 
mM AgNPs 

HAP-AgNPs 
powders 

E. coli 
K. oxytoca 
P. aeruginosa 
S. aureus 
S. mutans 
B. subtilis  

The higher the concentration 
the higher the inhibition zone 
(exact zone not mentioned) 
 

[51] 

Ca10-x/2 Agx(PO4)6 

(OH)2 

Where x=0.3; 0.4; 
0.5 
 

Silver substitution E. coli x=0.3: 2.00±0.025  
x=0.4: 4.00±0.012 
x=0.5: 5.00±0.016 

[52] 

1.07, 3.13, and 
9.72 wt% Ag 

silver 
nanoparticle-
decorated 
hydroxyapatite 
(HA@Ag) 

E. coli 
P. aeruginosa 
S. aureus 

E. coli: 19.0  
P. aeruginosa: 21.0 
S. aureus: 21.0 

[53] 

 

 Crystallinity of hydroxyapatite is also an important parameter to consider as it 

can affect its solubility and antimicrobial activity. For example, one study [54] 

confirmed that a 3%Ag-HAP with a degree of crystallinity of 0.064 and less silver led 

to a larger zone of inhibition compared to the 5%Ag-HAP with a higher degree of 

crystallinity (0.110) and more silver.   

Contrary to agar diffusion, agar dilution is able to provide the MIC of tested 

agents. Tested bacteria is seeded onto agar plates supplemented with different 

concentrations of said antimicrobial agents. After incubation, the colony forming 

units (CFU) are counted. One particular benefit of this method is the ability to work 

with multiple strains at the same time as it is possible to stain only the resistant ones 

[55]. However, this method does not seem to be extremely popular for testing 

hydroxyapatite-silver materials, at least to the authors’ knowledge. 

 

3.2. Broth dilution method 

 

Broth dilutions, on the other hand, provide good access to nutrients, especially 

considering the incubation under stirring which leads to a renewal of said nutrients 

[44]. The presence of bacteria in this case is provided by the appearance of turbidity. 

Moreover, broth dilutions are preferred in order to determine the minimal inhibitory 

concentration (MIC) of the tested antibacterial agent. These types of dilutions can be 

carried out either in glass test tubes (macrodilution) or in plastic plates with 96 wells 

(microdilutions). Microdilutions are preferred for the testing of multiple strains and 

antimicrobial agent concentrations as they require less effort and materials. 

 Table 2 provides the results of some more recent studies dealing with the 

influence of HAP-silver combinations on different types of pathogens tested by 

the broth dilution method.  
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Table 2. Antibacterial effects of hydroxyapatite and silver performed by the broth 

microdilution method 
Amount 
of silver 

Addition 
method 

Microorganis
m 

MIC* MBC** Ref. 

(0.1 M 

AgNO3 

for 0.1 M 

CaNO3) 

Silver 

substitutio

n 

E. coli 

P. aeruginosa 

S. aureus 

B. subtilis 

C. albicans 

C. neoformans 

E. coli: 0.321 μg/mL 

P. aeruginosa: 1.250 μg/mL 

S. aureus: 0.156 μg/mL 

B. subtilis: 0.625 μg/mL 

C. albicans: 1.250 μg/mL 

C. neoformans: 2.50 μg/mL 

- [47] 

Ag/[Ag + 

Ca] = 0.2 

 

[Ca + 

2Ag]/P = 

1.67 

hydroxyap

atite doped 

silver 

nanoparticl

es (HAp – 

AgNPs) 

K. pneumonie 

S. aureus 

B. cereus 

Black Sumatra 

bone derived HAp/AgNPs: 

S. aureus: 45 ± 1.2 μg/ml 

K. pneumonie: 49.5 ± 3.1 

μg/ml 

S. pyrogenes: 63 ± 2.5 μg/ml 

E. coli: 72 ± 0.5 μg/ml 

B. cereus: 46 ± 1.25 μg/ml 

E. aerogenes: 89 ± 5 μg/ml 

 

Fighting cock bones 

derived HAp/AgNPs: 

S. aureus: 49 ± 2.5 μg/ml 

K. pneumonie: 53 ± 1.8 

μg/ml 

S. pyrogenes: 68 ± 0.35 

μg/ml 

E. coli: 79 ± 2.5 μg/ml 

B. cereus: 68 ± 1.25 μg/ml 

E. aerogenes: 104 ± 

0.128μg/ml 

 

- [49] 

0.5, 1, 2.5 

and 5 mM 

AgNPs 

HAP-

AgNPs 

powders 

E. coli  

S. mutans 

E. aureus 

K. oxytoca 

P. aeruginosa 

B. subtilis 

E. coli / >0.5 mM 

S. mutans / > 0.5 mM 

E. aureus / > 0.5 mM 

K. oxytoca / > 0 5 nM 

P. aeruginosa / > 0.5 mM 

B. subtilis / > 0.5 mM 

- [51] 

1.07, 3.13, 

and 

9.72 wt% 

Ag 

silver 

nanoparticl

e-

decorated 

hydroxyap

atite 

(HA@Ag) 

E. coli 

P. aeruginosa 

S. aureus 

E. coli: 7.8 μg/ml 

P. aeruginosa: 15.6 μg/ml 

S. aureus: 3.9 μg/ml  

E. coli: 15.6 μg/ml 

P. aeruginosa: 62.5 

μg/ml 

S. aureus: 7.8 μg/ml 

[53] 
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Agx 

Ca10-x/2 

(PO4)6 

(OH)2) 

where 

x=1, 3, 5 

Silver 

substitutio

n 

E. coli 

S. aureus 

Muller Hinton broth 

E coli: 

x=1: >1,500 μg/ml 

x=3: 220 μg/ml 

x=5: 160 μg/ml 

S.aureus: 

x=1: >1,500 μg/ml 

x=3: 450 μg/ml 

x=5: 300 μg/ml 

 

M9 minimal media 

E coli: 

x=1: 10 μg/ml 

x=3: 3 μg/ml 

x=5: 2 μg/ml 

S.aureus: 

x=1: 17 μg/ml 

x=3: 4 μg/ml 

x=5: 3 μg/ml 

Muller Hinton broth 

E coli: 

x=1: >1,500 μg/ml 

x=3: 240 μg/ml 

x=5: 180 μg/ml 

S.aureus: 

x=1: >1,500 μg/ml 

x=3: 475 μg/ml 

x=5: 350 μg/ml 

 

M9 minimal media 

E coli: 

x=1: 15 μg/ml 

x=3: 5 μg/ml 

x=5: 3 μg/ml 

S.aureus: 

x=1: 23 μg/ml 

x=3: 6 μg/ml 

x=5: 4 μg/ml 

 

[54] 

Ag/[Ag+ 

Ca] at 

1.0; 1.6; 

2.4% 

Hydroxyap

atite doped 

with 

AgNPs 

E. coli 

S. aureus 

K. pneumonie 

S. pyogenes 

Ag1.0/HA: 

E. coli: 5 μg/mL 

S. aureus: 20 μg/mL 

K. pneumonie:20 μg/mL 

S. pyogenes: 40 μg/mL 

 

Ag1.6/HA: 

E. coli: 10 μg/mL 

S. aureus: 10 μg/mL 

K. pneumonie:20μg/mL 

S. pyogenes: 20 μg/mL 

 

Ag2.4/HA: 

E. coli: 10 μg/mL 

S. aureus: 10 μg/mL 

K. pneumonie:20μg/mL 

S. pyogenes: 20 μg/mL 

 

 

- [56] 

2%  E. faecalis 75 μg/ml after 24 hours of 

incubation 

- [57] 

*MIC is the minimum inhibition concentration 
**MBC is the minimum bactericidal concentration (the concentration required to kill 99.9% 

bacteria after incubation) 
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While parameters such as the amount of silver, the type of incorporation or 

characteristics of used hydroxyapatite might influence MIC values, there is also a 

correlation between MIC and the used medium. For example, one study [54] 

reported silver-substituted hydroxyapatite MIC concentrations for both E. coli and 

S. aureus using two mediums, namely Muller Hinton broth and M9 minimal 

media. As can be observed from Table 2 (ref [54]), MIC values are firmly lower 

in minimal media when compared to Muller Hinton broth. This is the case for 

both tested strains, gram positive S. aureus and gram negative E. coli.  

This can be explained by the nutrient composition of each media and the 

interaction of Ag+ ions with each individual component. M9 minimal broth only 

contains salts and nitrogen, being supplemented with vitamins, amino acids and 

glucose as needed. On the other hand, Muller Hinton broth is much more 

complex, having all nutrients necessary for bacterial growth. An experiment on 

how different metal ions interact with different culture media [58] revealed that, 

silver ions are quite active in both simple and more complex media, producing 

precipitates (when in M9 media, Ag+ ions precipitate to AgCl). It could be 

deduced that the more nutritious the medium, the more compounds there are for 

silver to interact with, thus reducing its antibacterial properties. While it could be 

said that testing could be done in less nutritious environments, this is not entirely 

attainable in reality as certain bacterial strains do need more nutrients to survive.   

 

4. Silver toxicity and cell compatibility 

Silver has been successfully applied in clinical practice in different forms 

and it is generally considered safe in certain doses. This becomes even more 

accurate when it is coupled with hydroxyapatite, the quintessential biomaterial. In 

one instance, it is reported that when immersed in PBS (1-42 days), HAP/AgNPs 

(1, 3, 5 % AgNPs) nanocomposites release a silver ion concentration below the 

cytotoxicity level (10 mg/L) toward human cells [50]. However, when creating a 

new type of material for antibacterial purposes the focus should not be only on its 

effect on pathogens. Cytocompatibility studies are advisable when working with 

new materials.  

Fortunately, there are some studies dealing with the response of different 

types of cells in regards to the hydroxyapatite-silver combination. For example, 

Rajendran et al. evaluated the cytocompatibility of an Ag-HAP (10 wt% Ag) 

ceramic against the NIH3T3 mouse fibroblast line, revealing no cytotoxicity in the 

5 - 200 μg/ml concentration range [59]. One other study researching the effect of 

2 - 5 % silver-HAP on L929 cells, osteoblast and VERO cells determined that a 

decrease in cell viability is observed with an increase in the amount of silver 

within the system while a very good cell progression is recorded for 2%Ag-HAP 

[60].  
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Even so, in vitro studies permit a choice in terms of cultures, cells are 

isolated, with free access to nutrients and there is a lack of an immune system. 

However, the toxicity or lack thereof of silver-HAP combinations has also been 

studied in vivo. One group [61] implanted both simple HAP and 3%Ag-HAP 

coated pure titanium disks that were inoculated with Methicillin resistant S. 

aureus (MRSA, UOEH6 isolated from the blood of a septic patient) into rats.  

Although the experiment duration was quite short (7 days) which does impose a 

limitation, it was showed that the 3%Ag-HAP could reduce, even if not prevent 

biofilm formation. On the other hand, another study [62] performed in vivo testing 

for 12 weeks and reported that 3%Ag-HAP offered high osteoconductivity and 

low toxicity, while 50% Ag-HAP coating inhibited bone formation. Here, the 

silver serum concentrations (at 2 weeks) were 1.1 ppb for 3%Ag-HAP and 5.3 

ppb for 50%Ag-HAP which would not lead to any harmful side effects.  

A comparison between HAP coatings with more or less silver was 

performed in vivo, on Sprague–Dawley rats by Eto [63], revealing that the 

implants coated with 50%Ag-HAP required less force in pull-out tests than those 

with 3%Ag-HAP. A clinical study by the same group [64] assessed the total hip 

arthroplasty of Ag-HAP coated implants on 20 patients with a total silver of 2.9 

mg/implant. The study determined that the blood silver level was within a normal 

range, unlikely to cause any damaging effects. It is worth mentioning here that 

although the silver amount might appear high, generalized argyria (a rare skin 

condition) is only developed with a minimal dose of 4-5 g of silver [65].  

 

5. Metal resistance, the new multi-drug resistance? 

 

 All the studies presented show that when coupled with silver, 

hydroxyapatite exhibits either an inhibitory or bactericidal effect on different 

types of strains, depending on silver concentrations. This effect is indeed 

promising especially considering the major problem of bacterial resistance to 

antibiotics. However, while not an extensively researched area, it is worth 

mentioning that pathogens can also develop resistance to silver nanoparticles after 

repeated exposure. Panacek studied this effect on different types of Gram negative 

bacteria, namely: Escherichia coli 013, Pseudomonas aeruginosa CCM 3955 and 

E. coli CCM 3954, observing a gradual increase in MIC values during 20 

consequent cultures [66].  

 Over time, bacteria are capable to evolve metal-resistance mechanisms to 

protect itself from unpleasant effects such as disruption of membrane 

permeability, DNA damage or protein inactivation [67]. As concisely presented 

by Imran in a study dealing with metal and microplastic contaminated 

environments [68], there are a few of these mechanisms for metals, namely:  
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• Intracellular sequestration – this processed is controlled by the cysteine-

rich protein called metallothionein. Several studies have examined this for 

silver, for example in the case of Amanita strobiliformis [69] or Hebeloma 

mesophaeum [70]. 

• Extracellular sequestration – the immobilization of metals through the 

extracellular secretion of polymeric substances that contain negative 

functional groups (EPS), thus possessing a perfect affinity for metal ions 

which are positively charged. One study on Escherichia coli confirmed 

that silver ions are reduced to nanoparticles and entrapped by EPS 

secretions [71]. In this case, cell growth was actually enhanced in the 

presence of silver ions (up to 0.19 mg/L). Cytochrome c (a key participant 

in ATP mitochondrial synthesis) found in EPS from Shewanella 

oneidensis, Aeromonas hydrophila, and Pseudomonas putida is thought to 

be highly involved in Ag+ reduction to nanoparticles [72].  

• Bioprecipitation and biotransformation – this mechanism transforms 

metals into insoluble complexes that are stable. One particular study [73] 

observed three silver-tolerant bacterial strains, namely BAgAK-6, 

BAgBK-1.1, and BAgBK-3, isolated from silver-craft waste in Indonesia. 

BAgBK-3 especially can transform silver ions and precipitate AgNPs 

through NADH-dependent nitrate reductase.  

• The alteration of morphology and the production of pigment – over time 

and frequent exposure, pathogens suffer alterations in morphology. For 

example E. coli 013 and P. aeruginosa CCM 3955 have been shown to 

avoid nanoparticles (20 nm) by agglomeration through the overexpression 

of a flagellin matrix [66]. On the other hand, Pseudomonas aeruginosa 

develops a resistance to silver nanoparticles through a phenazine pigment 

generation [74]. 

• Efflux mechanism – excessive metal ions are released through an efflux 

pump. This mechanism can be dealt with through the use of an efflux-

pump blocking agent such as Verapamil used successfully on silver-

resistant pathogens such as Vibrio alginolyticus, Escherichia coli, 

Staphylococcus aureus, and Bacillus subtilis [75].   

It is quite alarming that pathogens are very adaptive and versatile when it 

comes to finding ways to protect themselves against attacks from antibacterial 

agents. Undoubtely, there is an imperative need to rethink and redesign 

antibacterial systems, in order to offer the best effect possible and avoid such 

pathogenic resistance.  
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6. Future trends 

 

 Evidently, silver has a good antimicrobial effect and its combination with 

hydroxyapatite does not impair it. This is quite promising for orthopedic 

applications in terms of combining osseointegration properties with strong 

antibacterial properties. Different drugs have also been studied in relation to 

hydroxyapatite and silver for quite some time – nitroxoline [76], lidocaine [77], 

vancomycin [78, 79], and dexamethasone [80], with increased activity. This is 

understandable as silver ions do tend to enhance the activity of drugs, such as 

antibiotics [81] and they are generally used to prevent a surgical site infection, 

SSI, which might occur after surgery in a particular part of the body.  

Also, considering the prevalence of silver-based materials in more and 

more clinical applications and its overuse, more studies are needed to address the 

emergence of silver-resistant bacteria. This is of particular importance especially 

when it comes to hospital burn units (i.e. silver sulfadiazine, nanocrystalline silver 

dressings), dental care or with catheters and endotracheal tubes [82, 83].  

In the case of orthopedic implants and surgical site infections, composites 

where each component would exhibit a form of antibacterial effect would be more 

practical. For example, taking hydroxyapatite and its predilection for ionic 

substitution, an addition of Mg2+ [84-88], Zn2+ [89-92], or Sr2+ [93], ions proven 

to exhibit certain antimicrobial properties, would be quite attainable. Forsterite 

(FS, Mg2SiO4), a biocompatible and bioactive magnesium silicate that can form 

hydroxyapatite in biological environments [94-99], has also been proven to hold 

antibacterial properties [97, 100-102]. It was also studied in combination with 

silver [103] so it would be a good addition to hydroxyapatite silver composites as 

potential coatings on metallic implants.  

In addition, a further functionalization of these ceramic coating with more 

natural substances that would not hold any side effects, such as carotenoids [104-

122], would also be beneficial. Some carotenoids have been proven to exhibit 

antibacterial properties [123-128]. For example, a methicillin resistant strain of S. 

aureus was inhibited alongside a multi-drug resistant strain of E. coli with 

bacterial carotenoids [129]. This is of particular importance considering the 

constant increase in drug-resistant strains and the emergence of ones resistant to 

silver.  

 An addition of some secondary nanoparticles such as gold nanoparticles 

(GNPs, AuNPs) [130-145] could also be of interest due to their outstanding 

surface functionalization chemistry that allows them to be functionalized with 

almost all electron-donating molecules [146]. Moreover, different formulations of 

GNPs have been proven as quite efficacious against some pathogenic strains such 

as E. coli, S. aureus, B. subtilis, K. pneumoniae, C. albicans or P. aeruginosa 
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[147-149]. Due to their photothermic properties they could also help exterminate 

bacteria through photothermic treatments [150].  

 Of course, such improvements to hydroxyapatite and silver combinations 

could only help enhance their efficacy. Nevertheless, considering the difference in 

the cell structure of pathogens, with gram positive bacteria having a thick layer of 

peptidoglycan and gram negative ones having a thin peptidoglycan layer but also 

an outer membrane, more studies on model membranes would be advisable. A 

potential way forward here would be the interaction of either hydroxyapatite-

silver combinations or even more complex systems with Langmuir-Blodgett 

layers [151-158], monolayers [158-167], bilayers and blood red cells [168-171]. 

 

 

7. Conclusions 

 

The hydroxyapatite-silver combination does tend to produce excellent 

results in terms of antibacterial effect and silver ions can get sustainably released 

over time, whether it be from the lattice of substituted hydroxyapatite or from 

AgNPs added to HAP. All in vitro antibacterial studies have promising results 

although the chosen method of analysis does impose certain limitations. These 

limitations may come in the form of poor access to nutrients and limited diffusion 

in solid agar and broth composition for broth dilutions.  

The characteristics of the used hydroxyapatite itself are also of 

consequence as crystallinity was proven to affect solubility and thus antibacterial 

properties, with lower crystallinity HAP giving better results even at lower silver 

concentrations. While the antibacterial effect is mainly attributed to silver, 

hydroxyapatite is also a contributor, mainly through the calcium in its structure. It 

has been proven that an overload of mitochondrial Ca2+ ions can cause an 

amplified generation of ROS with cytochrome c release and enhanced 

permeability which leads to apoptosis for pathogens that possess a mitochondria.  

However, cytotoxicity studies are also important alongside antimicrobial 

ones. In vitro studies on viable cells show a good cell progression and no toxicity. 

Still, a decrease in cell viability is recorded with an increase in the amount of 

silver. No toxicity is also documented in vivo with a 3%Ag-HAP offering high 

osteo-conductivity and low toxicity, while a 50% Ag-HAP coating inhibited bone 

formation. Also, this higher amount of silver led to a lesser force being needed in 

push-out tests.  

In terms of clinical studies, a total hip arthroplasty of Ag-HAP coated 

implants (total silver of 2.9 mg/implant) on 20 patients, determined that silver 

blood levels were within the normal range which is reassuring. Of course, more 

studies are needed to better understand the interactions of silver ions and 

nanoparticles with different types of bacteria in terms of membrane and 
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organelles, and to better determine what combinations with drugs or natural 

substances would minimize or potentially eliminate different types of bacterial 

resistance.  
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