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Abstract. The research to find an ideal bone substitute material is still ongoing. The 

majority of research is focused on calcium phosphates and predominantly on 

hydroxyapatite. However, forsterite, a magnesium silicate (FS, Mg2SiO4), has recently 

received a large attention in regards to biomedical applications due to its high 

bioactivity. Its superior mechanical properties also recommend it for load-bearing 

applications. This work focusses on the significance of the properties of FS as a 

promising candidate for bone substitutions. 
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1. Introduction. Human bone and implants 

A dynamic tissue, bone is different from the rest of human tissues on account 

of its hardness. It is composed of a limited number of cells in a fibrous collagen 

matrix that becomes the adhesion surface for hydroxyapatite as well as other 

inorganic compounds (magnesium hydroxide, fluorides, and sulphates). Although 

bone cells (osteocytes, osteoblasts, osteoclasts, osteogenic cells) are small in 

number, they are quite significant for bone function. Osteoclast cells resorb the 

old bone lining the medullary cavity, while osteoblasts, by intramembranous 

ossification, produce young bone tissue under the periosteum. The bone goes 

through a remodeling process, in which the absorption of damaged or old tissue 

takes place at the same interface where osteoblasts produce new bone to replace 

the resorbed one. With excessive resorption, the incapability to produce an 

optimal osseous matter, or an inadequate response to the increased resorption 

during the bone remodeling process, the skeleton gains the fragility trait of 

osteoporosis [1]. 

To aid in healing the bone, or at least support it, several types of materials 

have been used along the years, such as metals, either pure or in alloy form, 
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polymers, different types of ceramic materials and lastly, composites. This 

imposed a challenge to create new bone substitutes with a similar composition to 

that of natural human bone but with the ability to control/improve upon their 

properties which led to synthetic calcium phosphates. Among these, 

stoichiometric hydroxyapatite (HAP) has been the favorite material for a large 

number of studies to its biocompatibility, similarity to natural bone tissue and 

good osseointegration. Some studies even improved upon the properties of HAP 

through cationic or anionic substitutions [2-9]. 

2. Why forsterite? 

Developing implants of bioactive materials that can stimulate osseointegration 

and vascularization has become one of the most important research areas [10]. 

Forsterite is a promising candidate for such implants due to the ions present in its 

structure. Magnesium (Mg) and silicon (Si), have roles in a wide variety of 

metabolic processes, some of which regarding bone health and development.  

As the fourth most abundant element in the human body, Mg plays an 

important part in skeletal growth, being an essential element for osteoblasts and 

osteoclasts. Approximately 65% of the total Mg amount is mineralized in bone 

[11]. Of this, about a third can be found in cortical bone, on the hydroxyapatite 

surface or in the hydration layer surrounding the crystal [12]. A lack of necessary 

Mg can lead to stiff, brittle bones with low density. The structure of newly formed 

hydroxyapatite is changed, the crystals becoming larger and much better 

organized at low Mg levels, the bones being incapable to support large loads [13, 

14]. He et al. [15] reported on the role of different concentrations of magnesium 

on human osteoblasts, where Mg ions increased both cell viability and 

differentiation.  

On the other hand, Si has also been demonstrated to be beneficial to bone 

health according to clinical trials in humans [16]. It is an essential element in 

skeletal development and repair, significantly enhancing the proliferation, 

mineralization, bone matrix proteins and bone gene expression at a 0.625 mM 

concentration [17]. Particularly concentrated in bone tissue, for the most part in 

the osteoid, silicate ions stimulate osteoblasts and play a part in bone calcification 

[18]. Si has been found to impact the function of cells and advance osteogenesis 

and angiogenesis [19], a lack of it leading to an abnormal growth and possible 

growth defects.  

 So, considering the importance of both ions, forsterite is definitely a suitable 

candidate for bone regeneration. The fact that these elements are already present 

in normal bone also ensures for a better bone – implant surface interaction giving 

forsterite a high level of biocompatibility. Regarding this, there are several studies 

that have demonstrated its ability to generate hydroxyapatite, in vitro, on its 

surface [20-22].  
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An advantageous durable host-implant attachment has to ensure an effective 

force transfer between natural bone and the implant material so that the latter does 

not loosen [23]. However, materials used in orthopedics or dentistry must be able 

to bear the high level of wear, stresses and fatigue during the course of day-to-day 

use. Forsterite is a good candidate for load-bearing applications due to its high 

mechanical properties that have been the focus of a number of studies [24-30].  

3. On the synthesis of forsterite  

Forsterite nanoparticles can be synthesized through a wide variety of methods 

such as solid state [31-33], sol-gel [34-38], sol-gel coupled with ball-milling [39], 

sol-gel-combustion [40-42], sol-gel surfactant approach [43, 44] precipitation [45, 

46], mechanical activation [47-52], microwave-assisted [53, 54], alkoxide method 

[55], geopolymer technique [56], catalyst-free chemical vapor deposition [57] or 

hydrothermal method [58].  

The first synthesis step is followed by a thermal treatment at fairly high 

temperatures (commonly in the range of 700-1200 oC) to ensure the formation of 

Mg2SiO4. Regardless of the method, the synthesis parameters (such as amount of 

solvent, pH, temperature) have to be carefully controlled to obtain a single 

forsterite phase. However, a common issue is the fact that the final magnesium 

silicate may contain traces of periclase (MgO) or enstatite (MgSiO3). This 

problem can be eliminated by using higher temperatures (up to 1600 oC) for the 

final thermal treatment [59]. This of course is not ideal as the individual particles 

will not be as small. Usually, the particle size falls in the range of a few 

nanometers (nm), though some methods do lead to micrometer-type particles 

(µm) as it is the case for solid state reactions. In regards to this, table 1 presents a 

correlation of the synthesis method, thermal treatment and final particle size.   

 
Table 1. Comparison of particle size versus some synthesis methods and thermal treatments 

 

Synthesis 

method 

Materials Thermal treatment Particle size Reference 

Precipitation Mg(NO3)2·6H2O 

C8H20O4Si 

sodium hydroxide as 

pH regulator  

900 oC -2h 10 - 42 nm 45 

Sol-gel  Mg (NO3)2·6H2O 

C8H20O4Si 

polyvinyl alcohol 

(PVA), sucrose and 

nitric acid as binder 

and pH regulators 

800, 900, 1000 oC 

-2h 

10 – 64 nm 39 
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Sol-gel 

combustion 

Magnesium nitrate 

C8H20O4Si 

Glycine and Urea 

(fuels) 

nitric acid (catalyst) 

Combustion at 

400 oC -30 min 

Calcination at 

700-100 oC  

28 nm – with 

glycine 

1.951 μm – 

with urea  

40 

Microwave-

assisted 

Silica gel  

Mg(OH)2 

500-1200 oC 100 nm 53 

Solid-state Mg3Si4O10(OH)2 

MgCO3 

1000, 1100, 1200 
oC-1h 

25 nm – 70 µm 33 

Mechanical 

activation  

Mg3Si4O10(OH)2 

MgO 

1000, 1200 oC-1h 500 nm 60 

Polymer matrix 

method 

Mg(NO3)2·6H2O 

Colloidal silica 

Sucrose, PVA 

500-1000 oC-3h < 200 nm 61 

 

Along with shape, surface topography and charge, size control and particle 

size homogeneity are quintessential for biomedical applications. Due to their 

larger surface area, smaller particles have a higher biological response than larger 

ones [62].  

4. Physical characteristics of forsterite ceramics 

Bioactive ceramics have become an emerging field of research related to bone 

substitutes in orthopedics. Of course, due to its similarity to natural components in 

human bone, synthetic hydroxyapatite (Ca10(PO4)6(OH)2) has been the subject of 

a wide variety of studies [63-76]. Here, forsterite-based ceramics deserve notice as 

they are reported to have good mechanical properties [24, 27, 29, 77, 78]. One 

such comparison can be seen in the data in table 2.  
 

Table 2. Mechanical properties of forsterite (FS) versus hydroxyapatite (HAP) ceramics  

 

Cera-

mic 

type 

Vickers 

Hardness  

[Hv] 

Fracture 

toughness 

[MPa m1/2] 

Compressive 

strength [MPa] 

Bending 

strength 

[MPa] 

Young 

elastic modulus  

[MPa]  

Ref. 

 

 

 

 

 

FS 

- - 2.06 (±0.09) 

(900 oC) 

- 145 (±9) (900 oC) 

[MPa] 

 

24 

2.19 (±0.06) 

(1000 oC) 

165 (±12) (1000 

oC) [MPa] 

2.31 (±0.07) 

(1100 oC) 

171 (±21) (1100 

oC) [MPa] 

2.43 (±0.11) 

(1200 oC) 

182 (±19) (1200 

oC) [MPa] 
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830-1098  3.2-4.1 - - - 27 

450-940  1.5-3.61 - - - 29 

- 1.8±0.4 

(1350 oC) 

- 150±8 

(1350 oC) 

- 77 

2.3±0.1 

(1450 oC) 

181±9 

(1450 oC) 

1.6±0.2 

(1550 oC) 

145±8 

(1550 oC) 

800±55  -  

1102±25 

1.86±0.21-  

4.3±0.19 

- - - 78 

HAP  - 1.87-2.21 0.69-0.84 

(1100 oC) 

- 4.28-6.20 [GPa] 

(1100 oC) 

79 

- - 308±46 

(1150 oC) 

- 42.2±3.8  [GPa] 

(1150 oC) 

 

 

80 415±46 

(1200 oC) 

74.6±4.1 [GPa] 

(1200 oC) 

465±58 

(1250 oC) 

79.0±4.8 [GPa] 

(1250 oC) 

  509±57 

(1300 oC) 

 81.4±4.6 [GPa] 

(1100 oC) 

- - - 45.6±4.6 

(1150 oC) 

-  

 

81 88.6±3.2 

(1200 oC) 

55.5±2.8 

(1250 oC) 

36.4±3.6 

(1250 oC) 

 

Nevertheless, mechanical features resembling those of human bone are 

particularly desired especially regarding load-bearing applications. 

Also, it was reported that a Young elastic modulus, 43.84 ± 3.29 GPa [30] 

measured by nanoindentation on forsterite ceramics obtained by thermal treatment 

at 1400 ºC, is higher than that found for natural cortical bone [82].  

Certainly, the synthesis of a pure phase forsterite is crucial for the mechanical 

properties of forsterite ceramics, especially when it comes to having enstatite as 

an impurity. Due to its polymorphism: orthoenstatite is stable at low temperature, 

and protoenstatite is stable at high temperatures, and clinoenstatite is a metastable 

form. A change in the structure of enstatite can lead to a volume change and 

intrinsic stress, thus lowering mechanical values.  

For ceramics, compactness is a very important characteristic as it tends to 

greatly influence a variety of properties such as permeability to liquids, 

mechanical resistance, thermal stability, deformation under a load at high 
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temperatures. In order for forsterite-based ceramics to be used as bioceramics, in 

addition to the fact that they must be biocompatible, they must have a certain 

porosity, depending on the intended application. The size and distribution of pores 

assist in degradation rate, implant integration and decrease any chances of 

rejection [83, 84]. 

 

 
Figure 1. Apparent density, apparent porosity and linear shrinkage determined for 

forsterite ceramics in function of sintering temperature [30]. 

 

This can be better explained by means of Figure 1, looking at the porosity 

variation for ceramic scaffolds sintered at different temperatures. The porosity for 

the ceramic sintered at 1200 oC is higher and tends to decrease with the increase 

in temperature, a normal part of the sintering process.  Of course, the decrease in 

porosity means an increase in compactness and better mechanical properties. The 

uniformity in size and shape of nanoparticles might also play an important factor 

in the compactness of forsterite ceramics, with smaller nanoparticles being able to 

be packed together more tightly leading to more compact ceramics. A 

heterogeneous powder with differently shaped and sized nanoparticles might 

cause defects in the ceramic which would lead to a future implant failure.  

Given that natural bones have higher porosity on the inside and are more 

compact on the outside, a possible alternative would be a bioceramic material 

with bone-like porosity, thus mimicking its structure. By making porous materials 
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on the inside and more compact on the outside, products with better mechanical 

properties would be obtained, which would promote a better regeneration of bone 

tissue. A good porosity would improve the degradation rate and thus reduce the 

possibility of implant rejection [83, 85].  

Additionally, the shrinkage parameter of a scaffold is also important for 

future processing as a potential orthopedic implant. It is crucial to know how a 

certain temperature influences the material to better optimize the fabrication of a 

future implant.   

5. Bioactivity studies in SBF 

Many studies focus on the biocompatibility and bioactivity of forsterite as a 

candidate for bone regeneration applications. This is due to Mg and silicate ions in 

its structure (both essential for bone tissue mineralization) that are easily released 

in biological environments [86-88]. For a proposed biodegradable ceramic 

implant to be viable for clinical applications, its degradation rate has to be 

comparable to the formation rate of new bone. This property is studied first in 

vitro by immersion in simulated body fluid (SBF) for various amounts of time, 

followed by an analysis of the amount of hydroxyapatite formed on the surface of 

the immersed sample. Such studies can be carried out in either a static (the SBF 

remains unchanged) or dynamic regime (the SBF is periodically changed). 

Obviously, the dynamic SBF study is better in mimicking the natural process in 

the human body where bodily fluids are renewed periodically.  

  

 
Figure 2. X-ray diffraction pattern for forsterite ceramic, FC-1200, sintered at 1200 ºC  

before and after immersion in SBF, for various time periods [89].  
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Figure 2 better presents the hydroxyapatite formation on forsterite ceramic 

scaffolds thermally treated at 1200 oC. In this case, the scaffolds were prepared 

from forsterite powder synthesized through a sol-gel method. The progression of 

hydroxyapatite formation on the surface of the Mg2SiO4 ceramic is clearly seen 

from 1 to 3 months of SBF immersion. Once hydroxyapatite starts forming on the 

scaffold surface, a difference in morphology can be observed between the 

forsterite ceramic and the newly formed HAP phase. This can be better observed 

in the SEM image in Figure 3. 

 

 

Figure 3. SEM image (a) and EDS spectrum (b) for forsterite ceramic, FC-1400, fired at 

1400 ºC, after 3 months of immersion in SBF [89]. 

 

Another method for analyzing hydroxyapatite formation of forsterite would 

be Fourier-transform infrared spectroscopy (FTIR). As an example, a solid state 

forsterite synthesized from talc and magnesium carbonate [33] presents new bands 

on the FTIR spectra after a 28 day immersion in SBF (OH-bond absorption bands 

at 1660 cm-1, 3450 cm-1, 3690 cm-1; and bands specific to the PO4 group - 496 cm-

1, 1074 cm-1). Also, Tavangarian and Emadi [90] reported that after a 14-day 

period of SBF immersion, small particles of around 7 µm, composed of calcium 

and phosphorous as confirmed by Energy Dispersive X-Ray Analysis (EDX), 

appeared on the surface of forsterite ceramics. After an additional 14 days more 

such particles appeared and their size increased to around 10 µm. Notably, 

regardless of the synthesis method all research reporting on the bioactivity of FS 

have confirmed its ability to lead to hydroxyapatite formation by SBF immersion. 

6. Antimicrobial activity 

One complication that might arise with orthopedic implants are surgical 

infections, most of which are caused by Staphylococcus aureus (S. aureus) strains 

which are Gram positive. However, it is reported that more than 20% of infections 

related to orthopedic implants are due to Gram negative bacteria, with Escherichia 

coli (E. coli) being the dominant microorganism [91]. This is of particular 
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importance when using metallic devices, as bacteria has a tendency to form a 

biofilm on the metallic surface [92] as it can be observed from the simplified 

diagram in Figure 4 A. Combined with potential antibiotic resistance and tissue 

contamination; this is making treatment very difficult, leading to chronic 

inflammation [93].   

 

 
       A 

 

 
      B 

Figure 4. Biofilm formation model (A) and lack thereof (B) in the presence  

of a forsterite coating on metallic medical implants 

 

To minimize such problems, arrays of inorganic materials that are 

biocompatible and/or bioactive have been researched as coatings on metallic 

substrates most of which have added silver nanoparticles (AgNPs). Nonetheless, 

there are certain materials that can possess a natural intrinsic antibacterial property 

due to some ions present in their composition. In addition, materials without such 

a property can be tailored to develop this characteristic through ionic substitution. 

Substituted hydroxyapatite would fall in the latter category if the ions involved are 

known to exhibit antibacterial effects such as Sr2+ [94], Mg2+ [95] or Zn2+ [96-98].  

In regards to forsterite, there are some studies that examine its potential 

intrinsic antibacterial properties both as a standalone material [40, 41] and as a 

composite [42, 99]. However, there is a discrepancy in the amount of forsterite 

needed to produce an effect for antibacterial purposes, which might be explained 

by the influence of the synthesis method. For example, an agar diffusion study on 

a forsterite synthesized through a sol-gel-combustion method using glycine (FG) 

reveals an effect on S. aureus starting at 100 mg while that using urea (FU) shows 

an effect at 300 mg [40]. A later study with the same materials reveals an 

inhibitory effect at 0.5 mg/ml broth dilution with the antibacterial effect being 

slightly higher for FU (58.3±0.1 %) than that for FG (52.8±0.2 %) [41]. On the 
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other hand, a forsterite synthesized through mechanical activation does not 

present any effect at all concentrations used in that study (25-200 mg/ml broth) 

[99]. A 3D-printed porous forsterite scaffold is also reported to not present an 

effect if not coupled with NIR [100]. However, in this case it is revealed that NIR 

has no bactericidal effect on S. aureus on its own, a synergistic effect being 

implied.   

Certainly, more studies are needed to better understand the mechanism by 

which forsterite acts like an antibacterial agent. However, an integral part of this 

mechanism is the small size of the nanoparticles which might cluster on the 

membrane of bacteria, that is on the micrometer scale, leading to mechanical 

damage and leakage of proteins, minerals and genetic materials [101]. This 

clustering around the bacteria was confirmed by Scanning Electron Microscopy 

(SEM) micrographs on both E. coli and S. aureus, before and after antibacterial 

studies with forsterite and diopsite composites [41]. Antibacterial studies showed 

the better effect of forsterite against S. aureus. This can be explained by presence 

of Mg2+ ions that have been proven to exhibit a binding affinity to cardiolipin, a 

major component in the S. aureus membrane [102], forming complexes [103-105] 

causing further disruption in the membrane. The change in the culture pH has also 

been discussed as a part of any antibacterial study. In the case of forsterite this can 

be explained by taking into account all of the above. Smaller nanoparticles have a 

larger specific surface leading to more magnesium ions being released, thus 

causing a higher pH. 

While more work is indeed needed, the few existing literature studies show a 

promise in using Mg2SiO4 as an antibacterial agent. And, taking into account all 

of the results related to forsterite bioactivity this material would be quite adequate 

as a coating on metallic orthopedic implants, leading to a better osseointegration 

and minimizing any potential surgical infections. Forsterite would also be 

appropriate for dental applications considering the severity of oral cavity 

infections (e.g. periodontal disease) and the need for tissue regeneration [106-

108].  

7. Future trends 

Research on forsterite has been mainly focused on its further use as a 

potential bone substitute, taking into account its biocompatibility, bioactivity or 

antibacterial properties.  A future focus would be on a better tailoring of forsterite 

ceramic scaffolds. This could also mean improving upon the natural properties of 

forsterite by ionic substitutions following the trend found in hydroxyapatite [109-

111]. To our knowledge, there is not much information in regards to this. 

However, one study synthesizing a Sr-forsterite (0, 0.05, 0.1, 0.2 and 0.4 at% Sr) 

found it to present an improved bioactivity and a promotion of MG63 

proliferation in comparison to simple forsterite [84]. Of course, due to the larger 
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ionic radius of Sr compared to Mg, the structure is not as stable and other phases 

were also present in Sr-forsterite. Zampiva et al. [112] reported on an erbium 

doped (0 to 20% mol) forsterite (Mg2SiO4:Er3+). Here, the XRD showed a 

saturation of the host structure through the beginning of MgO formation at 

maximum erbium addition. However up to 10% erbium, a single phase forsterite 

is observed. These upconverting nanoparticles (UCNPs) show promise for 

applications in biomedicine as their tunable properties would allow for both 

diagnosis and treatment. 

Another study niche could be the functionalization of forsterite with different 

metallic nanoparticles [113-131] and biologically active molecules, [132-163] 

which improve upon forsterite properties.  

Conclusions 

Similar in terms of biocompatibility / bioactivity with hydroxyapatite (HAP), 

forsterite has in its favor the fact that it causes the human body to produce HAP in 

situ, this HAP being much closer to the bone than the synthetic one. This 

promotes a better osseointegration of an implant. Also, its higher mechanical 

properties ensure a better use for load bearing applications. Coupled with its 

bioactivity, the potential antibacterial properties of forsterite would make it a good 

candidate for the coating of orthopedic metallic implants minimizing any possible 

post operatory infection.  
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