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QUANTUM COMPUTING IN GRAPHENE 

Daniela DRAGOMAN1 

Abstract. Quantum computing, based on different principles than classical computing, 

has raised high expectations regarding the increase of computational speed in nano-sized 

quantum systems. Therefore, the search for implementations of quantum logic gates in 

photons, spin states, atom/ion traps or superconducting materials, for example, is a very 

active research area. Graphene has demonstrated already the possibility of implementing 

reversible logic gates, therefore becoming a compelling candidate for quantum 

computing applications. The paper presents several proposals of quantum logic gates 

implementation in graphene, which could work at room temperature and require only 

current measurements as readout procedures; examples of such quantum gates are 

Hadamard, C-NOT, C-phase and Toffoli gates.  Besides these gates, it is shown that 

quantum algorithms, such as the modified Deutsch-Jozsa algorithm, can be implemented 

also in graphene. 
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1. Introduction 

The motivation of searching for new computing methods is based on the fact that 

the impressive technological achievements in present-day computing architectures 

reach their limits. In particular, in order to cope with the demand of size scaling 

described by Moore’s law, the complexity of integrated circuits must double every 

18 months. Therefore, it is not possible to increase the number of transistors per 

processor chip beyond 2 billion MOSFET transistors without decreasing their gate 

length up to few tens of nanometers. As a result, MOSFETs with gate lengths of 

30 nm are already in mass production, and the target of the International 

Technology Roadmap for Semiconductors is the fabrication of transistors with 

gate lengths of 7.4 nm in 2025 [1]. At such dimensions quantum effects cannot be 

ignored, and the alternative of quantum computation becomes enticing as well as 

unavoidable. The interest in quantum computers is also motivated by their 

predicted ability to solve in polynomial time at least some problems that have no 

polynomial time solution/cannot be solved in a reasonable amount of time by any 

classical algorithm [2]. For instance, the problem of finding the prime factors of 

an integer number benefits from a (sub)exponential speed-up if solved by the 

quantum Shor algorithm, the speed of searching of an item in an unordered list is 

quadratically increased by the quantum Grover algorithm, whereas simulations of 
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the dynamics of quantum systems are expected to be performed with an 

exponential speed-up by quantum computers. It is therefore no wonder that an 

intense pursuit for physical systems that can implement quantum logic gates and 

algorithms is taking place nowadays. It has become clear from the beginning, 

however, that quantum computing can be performed only in physical systems with 

a small number of degrees of freedom. Among the physical systems able to 

implement quantum gates we mention photons, spin states, atom/ion traps and 

superconducting materials [3]. Because reversible logic gates have been proposed 

to work at room temperature in graphene [4], it is believed that this material could 

be employed also in quantum computing. The paper presents several proposals of 

quantum logic gates implementation in graphene, such as the Hadamard, C-NOT, 

C-phase and Toffoli gates, as well as a proposed configuration able to realize a 

modified Deutsch-Jozsa algorithm. Unlike other computing systems, all these 

graphene-based quantum gates and algorithms could work at room temperature 

and require only current measurements as readout procedures. 

2. Physical principles of quantum computing  

Classical computing is based on a succession of Boolean logic gates that operate 

on a bit, which can take two values: 0 and 1. In the classical quantum computer 

architecture based on integrated circuits, these two logic values are usually 

encoded in the voltage state of field-effect transistors, 0 corresponding to a low 

voltage state and 1 to a high voltage, as shown in Figure 1, a.  When the voltage 

has an intermediary value between those associated to the 0 and 1 logic states, an 

error occurs in classical computing. 
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Fig. 1. a. Classical bits encoded in voltage values of a transistor, and b. quantum qubits  

encoded in spin orientation. 
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On the other hand, a quantum bit, or qubit, can be encoded in any two-state 

quantum systems. For example, as illustrated in Figure 1, b, the logical 0|  and 

1| states (the basis states) can be encoded in the spin-up and spin-down 

eigenstates of a spin-1/2 particle. However, the intermediary state + 1|0| ba  is 

no longer interpreted as an error, but as a linear superposition of spin-up and spin-

down eigenstates with generally complex coefficients a and b, the square of the 

absolute values of which represent the probability of realizing the respective 

eigenstate. As such, the following relation must be satisfied: 1|||| 22 =+ ba . 

The possibility of implementing superposition states in quantum physical systems 

changes the way in which computation is performed. More precisely, whereas an 

n-bit classical register (string of bits) can store only one of the possible n2  

encoded states, which is then subjected to a sequence of logic gates before it 

delivers the result of a computation, an n-qubit register stores a superposition of 

the n2  possible states, which are subjected to various interactions in parallel, and 

evolves into a final state, which can itself be a superposition. Although parallel 

computation can be performed also with classical computers, it implies 

synchronized operation of multiple computing machines, whereas parallel 

computing is an inherent feature of any quantum computer. 

The intrinsic quantum parallelism is responsible for the computational speed-up, 

but it also implies that any inquiring of the state of a qubit, i.e. any measurement, 

can be performed without disturbing the result only after the algorithm is 

completed. Even then, a single read-out of the result is possible only if the output 

state of the qubit is in one of the basis states 0|  and 1| . This consequence of 

quantum mechanics makes the design of quantum algorithms more involved than 

classical algorithms, where no such precautions are necessary because the voltage 

state of a transistor can be measured at any time (even during computation) 

without interfering with the outcome. 

Quantum superposition is responsible also for other important differences 

between classical and quantum computing. For instance, unknown qubits cannot 

be cloned [5] while classical bits can be easily copied, whereas qubit 

entanglement, with no classical analog, can be used in designing efficient 

algorithms. This suggests that classical and quantum logic operations/gates are 

also different, and that there are quantum gates with no classical counterpart. 

Indeed, while classical logic gates are Boolean operators and algorithms usually 

employ irreversible fan-out gates and disposable ancilla (work bits), quantum 

gates are implemented with unitary and reversible operators. 
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Quantum gates can be represented by matrices acting on qubits that can be 

expressed as vectors. If the superposition state is written as: 









=+

b

a
ba 1|0|   (1) 

the action of a NOT gate (also denoted as X gate in quantum computing), for 

example, which interchanges the to logic states can be expressed as 





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
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XU NOT .  (2) 

Whether the NOT operator is also encountered in classical computing, and can be 

represented by the same matrix, the Hamadard gate, the matrix of which is 
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has no classical counterpart because it transforms a basis state 0|  and 1|  into a 

superposition. The Z operator, which changes the sign (phase) of the 1|  state, has 

also no classical analog, since classical bits have no sign. The corresponding 

matrix of the Z operator is 





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



−
=

10

01
Z .  (4) 

Quantum computing cannot be implemented without conditional gates, i.e. gates 

in which the state of one qubit, the target qubit, is change in a prescribed manner 

only if another quantum state has a definite value. The simplest conditional gates 

act on a 2-qubit state/register, which can be written as 
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a

dcba 11|10|01|00|   (5) 

where = yxxy ||| , x, y = 0, 1, represent the state in which the first qubit has 

the logical value x|  and the second one the logical value y| . For instance, the 

CNOT (controlled NOT) gate, which performs a NOT operation on the second, 

target qubit, when the first, control qubit is in the state 1| , can be represented by 
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while the matrix of the C-phase (controlled phase) gate, which changes the phase 

of the second/target qubit when it has the logic value 1|  if the first/control qubit 

is 1| , is 
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In addition, 3-qubit gates, such as CCNOT, or Toffoli gate, can be defined, which 

apply the NOT operation on a target qubit only if the logic states of two control 

qubits are 1| . The CNOT gate, together with one-qubit gates form the set of 

universal logic gates in quantum computing, whereas the corresponding set in 

classical computing contains only one gate: NAND or NOR. 

3. Physical systems for quantum computing implementation   

As already mentioned, any quantum system with exactly two states, which can be 

associated to the logic states 0|  and 1| , can implement a qubit. To build a 

quantum computer, a scalable physical system with well defined qubits is 

required, it should be possible to initialize the qubits to a desired state and to 

control the interaction between qubits in order to implement conditional quantum 

logic gates, and qubit-specific measurement capabilities are compulsory. In 

addition, long decoherence times are needed, since loss of coherence of a quantum 

state due to interaction with the environment leads to errors. These requirements 

are not easily satisfied. In particular, the decoherence time is generally below 0.1 

s, which implies that the number of quantum operations that can be performed 

before decoherence sets in is about 1013 at most, whereas a classical computer 

performs 51010 operations/s with no decoherence-related limitations of the 

operating time. Moreover, there are still technical difficulties regarding the 

implementation and control of many-qubit states. In fact, present-day classical 

computers are so performant that they could be surpassed only by quantum 

computers operating on about 40-qubit registers. 

Despite these considerations, there are attempts to implement qubits and quantum 

logic gates in many physical systems, including ensembles of molecules, photons, 

spin states, trapped atoms or ions, superconducting materials, etc. Ensemble of 
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molecules, usually in solution, can implement qubits by encoding them in the spin 

state of component atoms, for instance in the spin of 13C in -D-methylglucose 

and of 19F in 4-bromo-1,1,2-trifluoro-1-butene in solution [6]. Then, the 

dimension of the quantum register consisting of such NMR qubits is limited to the 

number of spin states in the molecule. Each qubit can be individually addressed 

since their resonance frequencies are slightly different due to different 

neighborhoods, and the interaction between qubits, necessary for implementing 

conditional gates, is governed by nuclear spin-spin coupling in NMR. Despite the 

virtual impossibility of preparing a pure state of spins at thermal equilibrium (only 

pseudo-pure states can be obtained above 1 mK by spin alignment in magnetic 

fields), several 2-qubit and 3-qubit logic gates have been demonstrated [6], and 

even a quantum Fourier transform algorithm was shown to successfully work on a 

periodic 3-qubit system, the qubits being encoded in 13C spins of alanine [7]. 

However, the computing accuracy of NMR qubits is not high enough for a reliable 

computer, the quantum Fourier transform algorithm, for example, being 

implemented with an accuracy of 80%. 

Photon qubits have received particular attention due to the extremely long 

decoherence time. The qubits are generally encoded in the polarization states 

(horizontal or vertical) of photons, and simple optical elements such as polarizing 

beam splitters and half-wave plates can be used to initialize quantum states and to 

implement quantum gates. Moreover, photon qubits can be transported at large 

distances using optical fibers. The configurations used for implementing several 

quantum gates with this type of qubits, as well as their accuracies, are reviewed in 

[8]. Presently, photonic qubits are mainly used in quantum cryptography, 

especially in quantum key distributions over large distances. Successful 

experiments on long-distance (over 100 km) high-rate (up to 27.6 bps) quantum 

key distribution have been reported in [9], while teleportation experiments over 

100 km of optical fiber with an average fidelity of about 84%, and over free-space 

channels between the 143-km-separated Canary islands of La Palma and Tenerife 

have been demonstrated in [10] and [11], respectively. There are currently several 

quantum key distribution networks in use by institutions (for example, DARPA) 

and metropolitan areas (Geneva and Tokyo). Moreover, companies such as 

SeCureNet (Paris), MagiQ Technologies (New York), ID Quantique (Geneva) and 

QuintessenceLabs (Australia) are offering commercial systems for quantum key 

distribution [12]. 

Implementations of quantum gates in solid state systems constitute an active area 

of research due to an increased possibility of control and manipulation compared 

to NMR qubits. Several configurations have been proposed and realized, all of 

them working at low temperatures. For instance, qubits could be encoded in the 

nuclear spins of donor impurities, such as 31P atoms in Si [13], several quantum 
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gates at 50 mK being demonstrated in [14]; the decoherence time, of 8 s, limited 

the operation to a number of 100 2-qubit gates. Qubits can be encoded also in the 

charge of coupled quantum dots, the initialization of the quantum state being 

controlled by voltages applied on gate electrodes [15]; the decoherence and gate 

times in this case were found to be about 4 ns and 50 ps, respectively. 

Large decoherence times and quantum registers are expected in trapped atoms or 

ions. Indeed, it was shown that different logic gates, with an average fidelity of 

95%, can be simultaneously performed at adjacent sites of an optical lattice with a 

period of 426 nm that traps Cs atoms with a density of 1 atom/100 sites [16]. The 

experimental set-up, technical difficulties and sources of errors in the 

implementation of quantum logic gates using trapped ions are briefly discussed in 

[17], where results of several quantum gates, including the quantum Fourier 

transform, on trapped 40Ca+ ions are also presented. The decoherence time is in 

this case 15 ms, but the gate duration is comparable, of about 2 ms, and the 

fidelity of logic gates varies between 72% and 81%. Recently, nitrogen vacancies 

in diamond nanocavities showed promising preliminary results for spin-based 

quantum computing [18]. 

By far, the most successful quantum system for implementing logic operations is 

the superconducting circuit. In this macroscopic system, qubits can be encoded in 

several variables and can be manipulated by electromagnetic pulses and/or applied 

voltages. Flux qubits, charge qubits or phase qubits can be encoded in the 

direction of the flux/superconducting current around a loop interrupted by one or 

three Josephson junctions, the number of Cooper pairs in a small superconducting 

island connected to a voltage source via a capacitor and a Josephson junction and, 

respectively, the energy levels in an anharmonic potential well that forms in a 

single current-biased Josephson junction [19]. A recent review of the 

performances of superconducting qubit operations can be found in [20]. Despite 

the technological challenges imposed by the necessity of operating below the 

critical temperature, of up to some tens of mK, a number of over 100,000 

operations can be performed on such quantum computers until decoherence sets 

in. In fact, superconductive qubits have led to the development of the first 

commercial quantum computer, called D-Wave. The D-Wave Systems company, 

launched the first 128-qubit computer, D-Wave One, in 2011, the 512-qubit D-

Wave Two system in 2013 and the 1000+ qubit D-Wave 2X computer in 2015, in 

collaboration with NASA and Google [21]. Superconducting qubits caught also 

the attention of IBM, which reported the fabrication of a 4-qubit chip able to 

detect and correct quantum computing errors [22], while quantum supremacy has 

been claimed by the Sycamore programmable superconducting processor [23]. 

In summary, there is a forceful on-going race for the development of quantum 

computing strategies that will be able to compete with and overcome the present-
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day classical computers. Whether quantum computers are much faster in solving 

at least some problems, no quantum architecture can compare in price and 

widespread use with our laptops. As such, any solution for a cheaper and room-

temperature technology for implementing quantum logic gates and algorithms are 

of great interest. In this respect, nanomaterials could be a viable alternative. 

4. Quantum computing implementation in graphene    

Graphene demonstrated already the possibility to miniaturize reversible logic 

gates by using new configurations [4]. Reversible logic gates have, ideally, no 

power loss. By associating logical irreversibility, i.e. the non-uniqueness relation 

between input and output, with physical irreversibility, a minimum heat of 

ln(2kBT) per erased bit/information loss is expected to be dissipated during 

operation [24]. Although this is not the only source of heat dissipation, it is a 

source that cannot be avoided in irreversible computing. Therefore, reversible 

logic could be a solution to minimize the heat problem. Implementing reversible 

logic gates, such as the 3-bit Toffoli gate, is not easy in the MOSFET technology, 

as can be seen from the layout of this gate in [25]. 

By using common nanomaterials, reversible logic gates could be miniaturized. 

However, a dramatic simplification of these gates can be achieved only via a 

drastic change in their architecture. Graphene offered the possibility to modify the 

layout of a Toffoli gate because of its unique electronic bandstructure [26]. Its 

specific periodic arrangement of carbon atoms in a one-atom thick hexagonal 

lattice leads to a particular linear dispersion relation in the neighborhood of the 

unequivalent corners K and K’ of the hexagonal first Brillouin zone, denoted as 

Dirac points. This property, together with the fact that charge carriers in graphene 

obey a massless Dirac-like equation, the two components of the spinors 

corresponding to the contributions of the two triangular sub-lattices of the 

crystalline structure of graphene, renders graphene different from common 

semiconductor, described by the Schrödinger equation and a parabolic dispersion 

relation. As such, specific phenomena are expected to occur in graphene. In 

particular, it was shown both theoretically [27] and experimentally [28] that 

electrostatic potentials cannot modulate the transmission of normally incident 

electrons or holes, unless these are applied on oblique gates. Then, a succession of 

two or three individually biased oblique gates can implement reversible logic 

operations, such as CNOT and CCNOT, respectively [4]. An implementation of a 

CCNOT (Toffoli) gate by just three oblique gates is indeed a dramatic 

simplification of the layout of this gate compared to that in [25]. 

However, oblique gates cannot implement qubits, at least not when the logic gates 

are encoded by gate voltages, as in [4]. The reason is that superposition states 

cannot be created in this way. Therefore, another solution is needed. As 
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demonstrated theoretically in [29] and experimentally in [30], a Y-junction can 

implement a controllable superposition state, the logical states 0|  and 1|  being 

encoded in the wavefunctions propagating along the two emerging arms of the 

junction. In a symmetric Y-junction, the generated state is 2/)1|0(| + , but 

transverse electric fields in the splitting region can tune the superposition [29, 30]. 

By encoding the 0|  and 1|  states of the input qubit in the wavefunctions 

propagating along the two arms of a symmetrical Y junction in graphene (see 

Figure 2, a), it is possible to implement a one-qubit operation, such as a Hadamard 

gate, if the two arms interfere in a wider region [31]. The output qubit out can be 

seen also as a symmetrical Y-junction, the outgoing arms being denoted by out1 

and out2.  
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Fig. 2. Evolution of the probability distribution (top) in the interference region and the 

corresponding configuration in graphene (bottom) of a. a Hadamard gate and 

b. a CNOT gate 
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The probability distribution function evolution of electrons in the interference 

region when = 1|in  is shown in Figure 2, a, the simulations being performed for 

widths of the Y-junction arms, denoted by w, small enough such that only one 

mode, with propagation constant 2/122 ])/()/[( wvEk F −=   is allowed, whereas 

in the wider interference region, of width W, two modes with propagation constant 
2/122 ])/()/[( WmvEk Fm −=  , m = 1, 2 can exist. The number of modes in a 

waveguide with width d is given by the integer part of )/( FvEd  . Here E is the 

electron energy, and Fv = 106 m/s is the Fermi velocity. In particular, the 

simulations were made for W = 80 nm, 2/Ww=  = 40 nm, E = 0E = 65 meV, the 

propagation length being normalized to 0L = 50 nm. 

As seen from Figure 2, a, where (as in the rest of the paper) darker colors 

correspond to smaller probability values, when L = HL = 1.03 0L , the transmission 

probability/electrical currents in out1 and out2 are equal, as in a Hadamard gate. 

On the other hand, when 006.22 LLL H = , the input logic state 1|  transforms 

into 0| , i.e. a NOT gate is implemented if the output states are identified with 

out2 = 0|  and out1 = 1| . Similarly, when 012.44 LLL H =  the probability 

distribution/input state remains unchanged, as in the Identity operation [31]. 

Conditional/controlled logic gates can also be implemented in graphene [31]. For 

instance, the two-qubit CNOT gate can be implemented in graphene by the 

configuration represented in Figure 2, b, the control qubit C influencing the result 

of interference in the wider region only when it is equal to 1| . As this 

interference pattern is determined by the phase difference between the two 

propagating modes in the wider region of length L and wide W, given by 





 −−−= 2222 )/()/()/2()/(),( WvEWvELLE FF   ,  (8) 

it follows that the control-target qubits’ Coulomb interaction, modeled as a 

potential energy V applied on the entire length of the interference region, modifies 

the interference pattern in this region by affecting the Fermi energy level of 

charge carriers. In particular, a CNOT gate is implemented for a potential energy 

V for which ),()2,( LVELE −=  . In this case, choosing L such that in the 

absence of the interaction the gate implements the Identity operation, when the 

interaction is present, it implements the NOT operation. Actually, the length of 

the gate can be halved if the logical values of the outputs out1 and out2 are 

identified with 0|  and 1| , respectively, case in which the gate implements the 

Identity operation for 006.22 LLL H =  only. For the same values of the 

simulation parameters as above, CNOT is obtained for a potential V = 13.2 meV. 
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The evolution of the probability distribution in the interference region for this 

value of V is represented in Figure 2, b. 

In an analogous way, the graphene-based configuration in Figure 3, a is a two-

qubit C-phase gate provided that the nanoribbons associated to the 1|  states of 

the input in and controlled qubits C interact/are in close proximity over a length L. 

The Coulomb interaction between charge carriers in the two nanoribbons can be 

modeled as a potential energy V, which influences the interference pattern in the 

region of width W. More precisely, V increase the phase of the 1|  state of the in 

qubit with respect to the 0|  state of the same qubit with an additional amount 





 −−−−= 22222 )/()/()/()/()( wvEwvVEL FF   ,  (9) 

only when the control qubit has the logical value 1| . When the state of C is 0| , 

the input/target and control qubits do not interact, so that the state of the first one 

is unchanged. If the interaction length is 0LL =  and the electron energy equals 

0E ,   varies between 1.13 rad and -1.55 rad as V changes from -10 meV to 10 

meV, and vanishes for V = 0. 
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                                            a.                                                              b. 

Fig. 3. Schematic representations of configurations implementing a. a qubit C-phase and 

b. a Toffoli gate in graphene. 

Based on the previous results, the proposed graphene-based configuration for 

implementing the universal three-qubit Toffoli logical gate looks like that in 

Figure 3, b. In this case, the nanoribbons out1 and out2 must exchange their 

logical values only when both C1 and C2 are 1| , i.e. when ballistic electrons in 

the arm of C1 associated to 1|  interact with C2 = 1|  such that the electrons 

emerge from the control interference region of width WC through the bottom 
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nanoribbon, Cout,2. Assuming that WWC = , and the values of all other parameters 

are the same as above, the previous condition is fulfilled when 021 06.2 LLL = . 

5. Graphene-based implementation of a modified Deutsch-Jozsa algorithm     

Quantum algorithms can be implemented as succession of quantum gates, in 

particular as successions of universal Toffoli gates. However, it would be 

desirable if simplified configurations would be found for solving particular 

problems. In this section we show that a modified Deutsch-Jozsa (DJ) algorithm 

can be implemented in graphene. 

The original quantum DJ algorithm [32] determines if a Boolean function, which 

can be defined on one or few qubit states, is constant or balanced, without 

knowing the values of the function on the input states. By definition, a balanced 

function takes the output value 0|  on exactly one half of the basis input states 

and the output value 1|  on the other half. In practical applications, a modified 

version of the DJ algorithm, which determines whether an arbitrary function (not 

necessarily Boolean) defined on one or few qubit states is constant or not, would 

be of greater interest [33]. The reason is that the function referred to in this 

context can represent an interaction described by a Hamiltonian. As in the original 

DJ algorithm, the answer to the question whether the interaction is constant or not 

is found without estimating/measuring the interaction results; only the overall 

symmetry properties of the interaction potential matter. 

 

in 
|1> 

|0> 

V(r) 

out1 

out2 

W w y 

x 

     

                                  a.                                                                                     b. 

Fig. 4. a. Graphene-based configuration implementing the 1-qubit modified DJ algorithm, and 

b. the quantum probability distribution evolution in the interference region 

for identical incoming wavefunctions in the lower and upper arms 
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The modified DJ algorithm described above with a 1-qubit input state can be 

implemented with the graphene-based configuration in Figure 4, a [33]; the 

generalization of this configuration for 2-qubit states is discussed in detail in [33]. 

As in all quantum gates presented in the previous section, the input qubit in is a 

symmetric graphene-based Y junction with output arms of width w that support 

only one mode, the 0|  and 1|  quantum logic states interacting then with a 

potential )(rV  along a certain length. The device in Figure 4, a, determines 

whether )(rV  is constant or not, i.e. has a uniform or non-uniform spatial 

distribution, by allowing the quantum wavefunctions after interaction to interfere 

in a wider region of width W. If, as a result of the interaction, both wavefunctions 

are affected in the same (unknown) way, the outgoing wavefunctions, propagating 

in the symmetrically placed nanoribbons out1 and out2 are identical/symmetric, 

and the currents measured in the out1 and out2 leads have the same value. 

Otherwise, the output currents will be different. In fact, in order to definitely 

decide between a constant potential energy distribution and a symmetric one with 

respect to the y axis, the nanoribbons in the interacting region should have the 

form suggested by the dark blue lines in Figure 4, a. 

For a better understanding of the working principle of the device above, Figure 4, 

b shows the evolution of the quantum probability distribution in the interference 

region when the wavefunction entering this region by the lower arm is identical to 

that in the upper arm; the interference pattern is in this case symmetric with 

respect to the y = 0 axis, as are the wavefunctions collected by symmetric 

outgoing nanoribbons, such that the currents in out1 and out2 are identical. On the 

contrary, if the wavefunction entering the interference region by the lower arm 

differs from that in the upper arm by an amplitude factor a = 1.5 or a phase 

difference of  = /6, the corresponding interference patterns/evolutions of the 

quantum probability distribution, displayed in Figures 5, a and b, respectively, are 

no longer symmetric with respect to the y = 0 axis, and the out1 and out2 are 

different. Similar differences are found for any difference in amplitude or phase 

between the wavefunctions entering the interference region. The simulations were 

performed for w = 40 nm, W = 120 nm, E0 = 60 meV, the propagating length 

being normalized to L0 = 50 nm; for these parameters the arms of the Y-junction 

support only one mode, whereas the interference region supports 3 modes. 

Because the ratio of two currents can be measured with a typical error of 2%, the 

decision whether )(rV  is a constant function is in fact taken if the ratio of the 

out1 and out2 currents is between 0.98 and 1.02. This error, which limits the 

sensitivity of the device, can lead to incorrect decisions about the spatial 

symmetry of )(rV . However, for poperly designed devices, measurements of out1 

and out2 currents can determine the spatial symmetry of the potential energy for a 
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considerable range of a and  values. This range can be further narrowed by using 

advanced equipments that reduce significantly the current measurements errors. 

a.        b. 

Fig. 5. Probability distribution evolution in the interference region of the device in Figure 4, a 

when the incoming wavefunction in the lower arm a. has an amplitude 1.5 times larger than in the 

upper arm, and b. has a phase difference of /6 with respect to the upper-arm wavefunction. 

Conclusions      

After a brief description of quantum computing principles and a short overview of 

physical systems that can implement quantum logic gates, graphene-based 

configurations were shown to realize Hadamard, C-phase, CNOT, and Toffoli 

quantum logic gates, as well as a modified quantum DJ algorithm. Other 

algorithms could be implemented as successions of the above-mentioned quantum 

gates, the total length of such configurations being required to be smaller than the 

phase-coherence length in order to avoid decoherence. Besides being 

miniaturized, the main advantage of quantum computing in graphene nanoribbons 

is that the phase-coherent transport regime of charge carriers, indispensable for 

quantum computing, is maintained over large distances even at room temperature. 

Indeed, the measured mean-free path, i.e. the average distance between collisions, 

of graphene deposited on SiO2 is about 400 nm at room temperature, increases up 

to 1 m if graphene is encapsulated in boron nitride monolayers [34], and is 

longer than 10 m for graphene nanoribbons of similar widths as those considered 

in this paper, epitaxially grown on SiC [35]. Phase-coherence lengths are longer 

than mean-free paths since coherence is lost due to scattering, therefore the 

maximum lengths of graphene-based computing devices could be several times 

longer than the mean-free path values given above [36, 37]. 

The large room-temperature phase-coherence length of graphene is the foremost 

advantage of this material, no other known materials being characterized by 
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comparable mean-free path values, except at very low temperatures. In addition, 

the quantum gates and the proposed modified DJ algorithm can be patterned 

currently on CVD grown graphene flakes at 4-inch and 6-inch wafer scale with 

the existing nanotechnologies of a standard clean room. Thus, graphene-based 

quantum computers could be commercially available in the near future. 

Recently, graphene-based configurations similar to those studied above have been 

fabricated at the wafer scale and showed (quasi-)ballistic transport at room 

temperature [38]. Preliminary studies show that these configurations could be 

used to implement one-qubit quantum gates or the one-qubit modified DJ 

algorithm. 
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