ALPHA-RESONANCES IN MEDIUM AND HEAVY NUCLEI II. Review of microscopic models

D.S. Delion^{*}, V.V. Baran[†], and A. Dumitrescu[‡]

Abstract

We review microscopic approaches describing α -like resonances in nuclei with $Z \geq 50$. We give a microscopic explanation of α -like rotational bands in the ${}^{40}\text{Ca}+\alpha$ system in terms of single particle Gamow resonances. On the other hand, we show that for α -decaying nuclei the decay width can be described only in terms of a preformed α -cluster, existing on the nuclear surface in addition to the standard mean field cluster. Thus, we use a semi-microscopic hybrid model combining the mean field formation with a preformed α -cluster in order to explain the order of magnitude of the experimental decay width. Finally, we analyze proton-neutron versus α -like correlations.

keywords: alpha decay, resonant state, decay width

https://doi.org/10.56082/annalsarsciphyschem.2020.1.70

^{*}delion@theory.nipne.ro¹ Horia Hulubei National Institute for Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, RO-077125, Bucharest-Măgurele, România; ² Academy of Romanian Scientists, 3 Ilfov RO-050044, Bucharest, România; ³ Bioterra University, 81 Gârlei RO-013724, Bucharest, România; Acknowledgment for financial support: Grant of the Romanian Ministry of Research and Innovation, CNCS - UEFISCDI, PN-19060101/2019-2022;

^{†1} Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Str. Reactorului no. 30, P.O. Box MG-6, RO-077125, Bucharest-Măgurele, România; ⁴ Department of Physics, University of Bucharest, 405 Atomiștilor, POB MG-11, RO-077125, Bucharest-Măgurele, România;

^{‡1} Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Str. Reactorului no. 30, P.O. Box MG-6, RO-077125, Bucharest-Măgurele, România;