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Abstract

The analytical solutions for various realizations of the Bohr model Hamil-
tonian with energy-dependent Kratzer and Davidson potentials are presented.
The domain of applicability for the associated solutions are determined from
the analysis of the parameter dependence of selected spectral characteristics.
Special cases of hyperbolic and harmonic oscillator potentials are considered to
ascertain the isolated effect of the energy dependence on the energy spectrum.
The theoretical formalism is validated by offering suitable experimental realiza-
tions. A systemized model description of nuclear collective spectra revealed a
correlation between energy dependence of the potential and critical phenomena
associated with shape phase transitions.
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1 Introduction

Quantum models, whose associated Schrödinger equations can be solved in a fully
algebraical manner are referred to as exactly solvable. Exactly solvable models
play a very important role in quantum physics, due to their underlying symmetries.
The direct relation between the analytical structure of the exactly solvable models
and the symmetry properties of the modeled systems allows an algebraic group
theoretical description of the problem in terms of associated quantum numbers.
This useful feature of quantum systems can be extended by considering quasi-exactly
solvable potentials [1], or inducing an energy dependence into the usually exactly
solvable potentials [2, 3, 4]. Both these approaches were successfully used in various
instances of the Bohr-Mottelson model [5, 6] to describe the collective energy levels in
even-even nuclei [7, 8, 9, 10, 11, 12]. Here one will focus on the Bohr model solutions
with energy-dependent potentials. The energy dependence will be considered only
for the β shape variable, whose differential equations is a priori separated from
the γ-angular degrees of freedom. The analytic structure of an exactly solvable
differential Schrödinger equation is partially retained when an energy-dependence
is introduced. Although the proceedings for finding the eigenvalues are similar to
the energy-independent case, the final result is not a formula for the energy but
an algebraic equation for determining the energy. The later has in general many
solutions, which must be screened for a correct physical behavior.

A BohrMottelson Hamiltonian with an energy-dependent potential was first con-
sidered in Ref.[8], where a stiffening spherical vibrator model was simulated by spher-
ical harmonic potential with an energy-dependent string constant. This application
opened a new chapter in the geometrical description of nuclear collective excitation,
offering new varieties of spectral features. To make use of the analytical properties
of the exactly solvable models and to have a reasonable degree of generality, one will
consider here Bohr model solutions for energy-dependent Kratzer [13] and Davidson
[14] potentials, whose associated local (with energy-independent potentials) differ-
ential equations have a well known algebraic group structure.

This study will commence by the following plan: First of all, one will present
the quantum theoretical implications of the energy-dependent potentials in Section
2. Before applying this formalism for the description of collective excitations in
nuclei, one will survey in Section 3, some reference collective conditions and their
exactly separable realization of the Bohr Hamiltonian. Section 3 is devoted to the
analytical formalism associated to the selected collective Hamiltonians with energy-
dependent Kratzer and Davidson potentials. Numerical applications for general
model characteristics as well as its experimental realizations will be presented in
Section 4. Finally, the last section contains a summary of the theoretical formalism
and the performed calculations.
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2 Properties of quantum systems with energy-dependent

potentials

For the sake of simplicity, the discussion in this section will be made on a one
dimensional problem. The conclusions’ extension to a space of any dimension is
straightforward. Lets start with a time independent wave equation

Hψ(x) =

[

1

2
p2 + V (x,E)

]

ψ(x) = Eψ(x), (2.1)

where p = −i∂/∂x. One of the most obvious modification of the usual quantum
problem is that now the Hamiltonian contains its eigenvalue. This has an immediate
effect on the commutation relations, where the eigenvalue must be replaced with the
corresponding operator. For example

[H,x] = −ip+ [V (x,H), x]. (2.2)

In this situation, p no longer necessarily represents a momentum operator for the
system modeled by H, because it is no longer a canonically conjugate variable for
x.

A major change in the usual rules of quantum mechanics, noted also by the early
studies on the energy-dependent potentials [2, 3], is the amendment of the density
probability, or the scalar product, necessary for satisfying the continuity equation.
To illustrate this, let us consider the time-dependent wave equation

i~
∂

∂t
Ψ(x, t) = HΨ(x, t), (2.3)

and two solutions for energies E and E′:

Ψ(x, t) = e−iEtψ(x), Ψ′(x, t) = e−iE′tψ′(x). (2.4)

Combining Eqs.(2.1) and (2.3), one obtains the following equation:

∂

∂t
(P + Pa) = − ∂

∂x
j, (2.5)

where

P = Ψ′∗(x, t)Ψ(x, t), j = − i

2

[

Ψ′∗(x, t)
∂Ψ(x, t)

∂x
− ∂Ψ′∗(x, t)

∂x
Ψ(x, t)

]

, (2.6)

and the additional term in respect to the usual continuity equation ∂P/∂t = −∂j/∂x
is

Pa = −Ψ′∗(x, t)

[

V (x,E′)− V (x,E)

E′ − E

]

Ψ(x, t). (2.7)
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Then scalar product is redefined as

(Ψ′|Ψ) =

∫

∞

−∞

ψ′∗(x)

[

1− V (x,E′)− V (x,E)

E′ − E

]

ψ(x)dx, (2.8)

where ”(|)” denotes the modified scalar product which is to be distinguished from
the regular one ”〈|〉”. When E′ → E, one obtains the norm of the wave-function Ψ
as:

N =

∫

∞

−∞

ψ∗(x)

[

1− ∂V

∂E

]

ψ(x)dx. (2.9)

Considering now that the stationary states are normalized to unity and specified by
a global quantum number n, one can write down the orthogonality condition in the
following form:

∫

∞

−∞

ψ∗

n′(x) [1− φn′n]ψn(x)dx = δn′n, (2.10)

where

φn′n =











∂V
∂E , n = n′,

V (x,En′)−V (x,En)
En′−En

, n 6= n′.

(2.11)

It must be emphasized here that the stationary functions ψn(x) and ψn′(x) are
eigenstates of distinct self-adjoint operators, i.e. they span different Hilbert spaces.
As a consequence, the usual completeness relation no longer holds,

∑

n

ψn(x
′)ψ∗

n(x) 6= δ(x− x′). (2.12)

Using a similar recipe as in the case of the scalar product
∑

n

ψn(x)(1 − φnn)ψ
∗

n(x
′) = δ(x − x′), (2.13)

one obtains

ψn′(x′) =

∫

ψn′(x)δ(x − x′)dx

=

∫

ψn′(x)
∑

n

ψn(x
′)(1− φnn)ψ

∗

n(x)dx

= ψn′(x′)−
∑

n

ψn(x
′)

∫

ψn′(x)ψ∗

n(x)(φnn − φnn′)dx. (2.14)

The last term vanishes only when φnn(x) = φnn′(x), that is when both of them are
state-independent. This is true only for the linear energy dependence. Moreover, for
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this special case of linear energy dependence, the problem can be reformulated in
the usual quantum mechanics with a standard scalar product [4, 15]. To show this,
one considers a potential of the form V (x,E) = V0(x) + EV1(x). The Hamiltonian
operator for this potential can be written as:

H = H0 + V1(x)H =
1

1− V1(x)
H0 = ζ(x)2H0, (2.15)

where H0 is its energy-independent part, that is involving only V0. With this, the
time-dependent Schrödinger equation (2.3) can be expressed as:

i
∂

∂t

1

ζ(x)2
Ψ(x, t) = H0Ψ(x, t), (2.16)

which can be brought to the usual form of the time-dependent wave equation

i
∂

∂t
Ψ̃(x, t) = H̃Ψ̃(x, t) (2.17)

for the wave-function Ψ̃(x, t) = Ψ(x, t)/ζ(x) with the associated modified Hamilto-
nian operator:

H̃ =
1

ζ(x)
Hζ(x) = ζ(x)H0ζ(x) (2.18)

=
1

1− V1(x)

{

− ∂2

∂x2
− 1

1− V1(x)

∂V1(x)

∂x

∂

∂x
+ V0(x)

− 1

2[1 − V1(x)]

∂2V1(x)

∂x2
− 3

4[1− V1(x)]

[

∂V1(x)

∂x

]2
}

.

This change is similar to the Darboux transformation [16, 17]. It is worth to mention,
that although H̃ and H have the same eigenvalue E, they act within the constraints
of distinct scalar products. This comes however with a price, which is the emergence
of a non-local term expressed as a first order derivative (linear in momentum).

3 Varieties of the Bohr model Hamiltonian

The Bohr Hamiltonian [5, 6] for the quadrupole degrees of freedom acts in a five-
dimensional space spanned by three Euler angles describing the rotational motion
and two shape variables β and γ characterizing the deviation of the nuclear shape
from spherical symmetry and respectively from axial symmetry. For a constant
mass, the usual Bohr Hamiltonian has the following expression:

H = − ~
2

2B

[

1

β4
∂

∂β
β4

∂

∂β
− Λ2

β2

]

+ U(β, γ), (3.1)
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where B is a constant mass parameter, while

Λ2 = − 1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
+

3
∑

k=1

Q2
k

4 sin2
(

γ − 2
3πk

) (3.2)

with Qk(k = 1, 2, 3) being the operators of the angular momentum projections on
the axes of the body-fixed reference frame. The scaling property of the Hamiltonian,
allows a simplified analytical formalism in terms of a reduced energy and potential:

ǫ =
2B

~2
E, u(β, γ) =

2B

~2
U(β, γ). (3.3)

The collective conditions described by the Hamiltonian (3.1) are usually referred
to as γ-soft, which basically means that γ shape variable is active. The numerical
applications are further greater simplified if the β variable and the γ-rotational
ones are separated. This is usually done by emplyong a potential u(β, γ) = v(β) +
w(γ)/β2 [18, 19]. Then, considering a factorized total wave-function Ψ(β, γ,Ω) =
R(β)Φ(γ,Ω), one obtains the following decoupled equations:

[

− 1

β4
∂

∂β
β4

∂

∂β
+
W

β2
+ v(β)

]

R(β) = ǫR(β), (3.4)

[

− 1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
+

1

4

3
∑

k=1

Q2
k

sin2
(

γ − 2
3πk

)

+w(γ)−W ] Φ(γ,Ω) = 0. (3.5)

The solution of the γ-angular coupled equation for a general w(γ) potential usually
involves a diagonalization procedure in a fairly complicated basis [20, 21]. There
are however some solvable limiting cases. One such case, referred as γ-unstable, is
when w(γ) = 0. In this situation, the γ-angular wave-function is a SO(5) spheri-
cal harmonic |ταLM〉 = YταLM (γ,Ω) [22] indexed by the seniority τ [23], α order
distinguishing multiple occurrences of the same angular momentum within a mul-
tiplet of fixed seniority, and by angular momentum and its projection on the third
intrinsic axis. The kinetic operator Λ2 is actually the Casimir operator of the SO(5)
symmetry group, such that its eigenvalue problem can be represented as [24]:

Λ̂2|ταLM〉 = τ(τ + 3)|ταLM〉. (3.6)

Consequently, for the γ-unstable regime, the separation constant is

Wγu = τ(τ + 3). (3.7)

The other extreme limit, called γ-stable, corresponds to a w(γ) potential with a very
sharp minimum in γ = 0◦, which is suitable for highly stabilized prolate shapes [25].
In the small γ limit, a further separation of the γ variable from the Euler angles is
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possible. It’s starting point is the following approximation of the rotational term
[26]

3
∑

k=1

Q2
k

sin2
(

γ − 2
3πk

) ≈ 4

3
Q2 +Q2

3

(

1

sin2 γ
− 4

3

)

. (3.8)

A harmonic-like γ potential then leads to a separation constant

Wγs =
L(L+ 1)

3
, (3.9)

defined up to a constant for the Kπ = 0+ states. This result can be achieved in
two alternative ways. One is the somewhat old fashion adiabatic separation of the β
and γ fluctuations [26], while the other follows a suitable adjustment of a zero point
energy of the γ excitations corresponding to the separated w(γ) potential [11].

Imposing a fixed value for γ, changes the classical under-structure of the Bohr
Model, leading after quantization to distinct Hamiltonian operators. This is the so
called γ-rigid case of the collective motion. For example, a fixed value of γ in the
interval (0, π/3) will end up generating the Davydov-Chaban Hamiltonian [27]:

H = − ~
2

2B

[

1

β3
∂

∂β
β3

∂

∂β
−

3
∑

k=1

Q2
k

4 sin2
(

γ − 2
3πk

)

]

+ U(β). (3.10)

Similarly, for an axially symmetric γ-rigid nuclear surface, the number of indepen-
dent degrees of freedom is even further reduced, because the rotational motion can
now be described by only two rotation angles instead of three. Consequently the
quantum Hamiltonian will be [28]:

H = − ~
2

2B

[

1

β2
∂

∂β
β2

∂

∂β
+

∆θ,ϕ

3β2

]

+ U(β), (3.11)

where

∆θ,ϕ =
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
. (3.12)

The resulting reduced β equation for all presented cases, that is γ-unstable,
stable, triaxial rigid and prolate rigid, can be written as

− ∂2

∂β2
+

1

β2

[

(d− 1)(d− 3)

4
+W

]

+ u(β), (3.13)

where d is the number of dimensions (active variables). This one-dimensional-like

equation is obtained by changing the original β wave-function as R(β) = β−
d−1
2 f(β).

The separation constant W for the Davydov-Chaban Hamiltonian is actually
the eigenvalue of a triaxial rigid rotor Hamiltonian with hydrodynamical moments
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of inertia. The hydrodynamic nature of the moments of inertia facilitates a situation
when two of them are equal when the triaixiality is γ = 30◦. The separation constant
then can be analytically expressed through the simple formula [29]:

Wγt = L(L+ 1)− 4

3
R2, (3.14)

where R is the angular momentum projection on the body fixed first principal axis.
For ground and β excited bands R = L, while for the γ band R = L− 2 for even L
and R = L− 1 for odd L.

For the γ-rigid prolate case, the separation constant is readily obtained by aver-
aging Eq.(3.11) with angular momentum spherical harmonics:

Wγp =
L(L+ 1)

3
. (3.15)

It is up to a constant term the same as for the γ-stable case. It is not surprising,
because there are obvious similarities between the two collective conditions. One
must however remember that their associated β variable kinetic operator act in
different space dimensions.

4 Bohr Hamiltonian solutions for energy-dependent po-

tentials

In this section, one will discuss the solution of the effective β equation (3.13) in con-
nection to different collective conditions and for two families of energy-dependent
potentials, namely Kratzer [13, 30] and Davidson [14]. Both potentials have a cen-
trifugal term and therefore can in general account for possible contribution from
the γ-rotational degrees of freedom. The distinctive term in the Kratzer potential
corresponds to a Coulomb-like interaction and is therefore singular, whereas the
non-centrifugal term of the Davidson potential is a confining harmonic oscillator
potential.

4.1 Kratzer potential

Let us first solve Eq.(3.13) for the Kratzer potential with a coupling constant of the
hyperbolic (Coulomb-like) term depending linearly on the energy of the system:

u(β) =
a1
β2

− 1 + a2ǫ

β
. (4.1)

This is done by following up to a certain point the procedure for a state-independent
Coulomb potential. First of all, Eq.(3.13) is rewritten into a Whittaker differential
equation [31]:

f ′′(x) +

[

k

x
− 1

4
+

(

1
4 − µ2

)

x2

]

f(x) = 0, (4.2)
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by making the change of variable x = 2
√
εβ and where

ε = −ǫ, k =
1− a2ε

2
√
ε
, µ =

√

(d− 2)2

4
+Wλ + a1. (4.3)

Here, λ denotes the set of quantum numbers describing the γ-angular excitations
associated to different collective conditions, including those presented in the previous
section. A regular solution in both origin and the asymptotic limit is possible if:

µ+
1

2
− k = −n, (4.4)

where n is a positive integer. This condition leads to a quadratic equation for ǫ

(1 + a2ǫ)
2 + 4ǫ

(

n+
1

2
+

√

(d− 2)2

4
+W + a1

)2

= 0, (4.5)

and the reduction of the wave-function in terms of Laguerre polynomials [32]. The
physical solution of the quadratic equation for the energy is

ǫnλ =
1

a22

[

2

(

n+
1

2
+

√

(d− 2)2

4
+Wλ + a1

)

√

√

√

√

(

n+
1

2
+

√

(d− 2)2

4
+Wλ + a1

)2

+ a2

−2

(

n+
1

2
+

√

(d− 2)2

4
+Wλ + a1

)2

− a2



 . (4.6)

From this, one can deduce that the integer number n plays the role of the β excitation
quantum number.

Making the following notation:

ηnλ =
√
−ǫ = 1 + a2ǫnλ

2

(

n+ 1
2 +

√

(d−2)2

4 +Wλ + a1

) , (4.7)

the total β wave-function can then be written in the following analytical closed form
[9]:

Rnλ(β) = Nnλβ
µλ+1− d

2 e−ηnλβL2µλ
n (2ηnλβ). (4.8)

The normalization constant is determined from the condition
∫

∞

0
[Rnλ(β)]

2 βd−1

(

1 +
a2
β

)

dβ = 1. (4.9)
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Using the integration properties of the associated Laguerre polynomials [32], the
normalization constant is readily obtained as:

Nnλ =

√

n!

Γ(n+ 2µλ + 1) (2a2ηnλ + 2n+ 2µλ + 1)
(2ηnλ)

µλ+1 . (4.10)

The dependence of the energy function (4.6) on parameter a2 allows for a spe-
cial case in its asymptotic limit. For very large values of a2 the energy can be
approximated by:

ǫ
(asymp)
nλ = − 1

a2
+

2

a
3/2
2

(

n+
1

2
+ µλ

)

. (4.11)

The peculiarity of this case resides in the fact that a2 becomes a simple scaling
factor for the excitation energies. The scaling property of a2 is also reflected on the
wave-function, which becomes energy-independent

R
(asymp)
n,λ (β) = N (asymp)

nλ βµλ+1− d
2 e

−
β

√
a2L2µλ

n (2β/
√
a2) , (4.12)

because

η
(asymp)
nλ =

1√
a2
. (4.13)

The norm of the asymptotic function is obtained either from making the large a2
limit of (4.10), or by integrating the square of the above wave-function within the
the integration metric (a2/β)dβ. Either way, the result is:

N (asymp)
nλ =

(

2√
a2

)µλ+
1
2

√

n!

a2Γ(n+ 2µλ + 1)
. (4.14)

It is worth to mention here that if µλ is given only in terms of γ-rotational quantum
numbers, then in the asymptotic limit of energy dependence of the Kratzer potential
(4.1) the total excitation spectrum is also parameter-free. Such a solution was for
example given in Ref.[9]. A parameter-free energy spectrum imply the existence
of a symmetry in the system. Constructing an effective Hamiltonian (2.19) for the
asymptotic regime of the linear energy dependence, one found in Ref.[33] that the
SU(1; 1) is its spectrum generating algebra. Although the same dynamical symmetry
is associated also to the bound spectrum of the state-independent Coulomb potential,
in the present case the same algebra closes on the actual wave-functions and not
Sturmian contractions.
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4.2 Davidson potential

Considering a Davidson (pseudo-harmonic) potential [14] with a coupling constant
depending linearly on the energy:

u(β) =
a1
β2

+ (1 + a2ǫ)β
2, (4.15)

one arrives to the following equation for determining the energy:

ǫ = 2
√
1 + a2ǫ (2n + pλ + 1) , (4.16)

where

pλ =

√

(d− 2)2

4
+Wλ + a1. (4.17)

The physical solution of this quadratic equation is

ǫnλ = 2a2 (2n+ pλ + 1)2 + 2 (2n+ pλ + 1)

√

1 + a22 (2n + pλ + 1)2, (4.18)

while the corresponding wave-function reads

Rnλ(β) = Nnλβ
pλ+1− d

2 e−
(1+a2ǫnλ)β2

2 Lpλ
n

[

(1 + a2ǫnλ)β
2
]

, (4.19)

where Nnλ is a normalization factor which can be analytically determined from the
properties of integrals involving associated Laguerre polynomials [32]:

(Nnλ)
−2 =

Γ(n+ pλ + 1)

2n!(1 + a2ǫnλ)p+1

[

1− a2(2n+ p+ 1)

1 + a2ǫnλ

]

. (4.20)

The above formula was obtained by considering the modified integration metric

βd−1dβ −→
(

1− ∂u(β)

∂ǫ

)

βd−1dβ = (1− a2β
2)βd−1dβ. (4.21)

In order to have a fully coherent quantum theory, the deformation probability dis-
tribution associated to this integration metric

ρnλ(β) =
∣

∣RLnβ
(β)
∣

∣

2 (
1− a2β

2
)

βd−1, (4.22)

must be positive definite. This condition is exactly realized only for a2 ≤ 0. Check-
ing Eq.(4.18), one can see that the a2 > 0 case has the practical value of providing
monotonously increasing excitation energies with quantum numbers. As it happens,
all norms (4.20) are positive definite for any a2, pλ and n. The same is true for
averages for small powers of β, up to certain critical quantum numbers which are
usually very high and not relevant for the purpose of studying collective excitations
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in nuclei. It is then possible to have a working quantum theory in a limited but
exhaustive framework of the model for a2 > 0. Moreover, the mathematical restric-
tion of a2 ≤ 0 can be safely disregarded because the negative contribution to the
total probability distribution is easily negligible for any a2 > 0. Indeed, the negative
apport of ρ for the ground state was found [10] to be under 1% and decreasing with
the state.

Another argument for the extension of the energy dependence to the a2 > 0 case,
is the fact that despite its controversial interpretation, the negative probability is
considered a solid mathematical concept in quantum theory [34] when dealing with
intermediate quantities and not physical observables. Then the origin of negative
probabilities lies in the fact that the quantum hypotheses and initial conditions are
not always directly relatable with measurable physical quantities. This generates an
acceptable interpretation for negative probability, which is ascribed to states whose
assumed conditions of preparation or verification are experimentally unattainable
[35]. As a matter of fact, negative probabilities were a constant issue even from
the foundation days of quantum mechanics [36, 37]. The Wigner quasi-probability
function [38] is a famous example of negative probability in quantum mechanics.
The probability distribution (4.22) is also an intermediate quantity which is not
directly observed or measured, and therefore is not strictly limited only to positive
values.

Similarly to the energy-dependent Kratzer potential, the asymptotic regime of
parameter a2 have special properties. More precisely, the energy (4.18) becomes
scalable with parameter a2 in its large value limit [8]:

ε
(asymp)
nλ = 2a2(2n + 2pλ + 1)2. (4.23)

The saturation of the energy spectrum is quite rapid with the increase of the a2
parameter. Thus, comparing to the Kratzer potential case, the energy becomes
scalable with a2 at relatively low values of a2. The scaling of the wave-function is
demonstrated numerically [8]. An analytical confirmation is problematic due to the
fact that the wave-function is mostly confined to small values of the variable, where
the correction term of metric (4.21) becomes indeterminate for high values of a2.
The numerical analysis also revealed that the negative probability distribution have
contribution to the norm tending to zero in the asymptotic limit of a2 [8].

The model with a negative a2 can also have some practical value. For example it
can hinder the rapid increase of energy with rotational quantum numbers, keeping
however a monotonically increasing energy function. From phenomenological point
of view, the a2 > 0 and a2 < 0 model realizations correspond to a stiffening and
respectively a softening of the β vibrations.

The model was employed in Refs.[10, 11] for the description of many transitional
nuclei, with a different normalization convention for the eigenfunctions. The expres-
sions for the energy are related to the present formalism through a factor 2 for the
reduced energy and parameter a2.
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4.3 Bohr model with deformation-dependent mass term versus energy-

dependent potentials

The present formalism of energy-dependent potentials (EDP) have some common
aspects with the Bohr Hamiltonian solutions involving a deformation dependent
mass (DDM) term [39, 40]. In order to show the distinction between the two ap-
proaches, let us start by presenting a general form for a kinetic operator with a
position dependent mass m(x) = m0/[g(x)]

2 [41]:

Tkin = − ~
2

2m0

[

gδ(x)∇gk(x)∇gσ(x) + gσ(x)∇gk(x)∇gδ(x)
]

, (4.24)

where the powers δ, σ and k are real and must satisfy δ + σ + k = 2. The final
scale-free eigenvalues were found to be independent of the choice for δ, σ and k.

Implementing now this generalization into the five-dimensional Bohr Hamilto-
nian for a deformation-dependent mass B = B0/ξ

2(β), one obtains

HDDM = −
√

ξ(β)

β4
∂

∂β
β4ξ(β)

∂

∂β

√

ξ(β)− ξ2(β)
Wλ

β2
+ v(β)

+
1

2
(1− δ − σ)ξ(β)ξ′′(β) +

(

1

2
− δ

)(

1

2
− σ

)

[

ξ′(β)
]2
. (4.25)

This differential operator must be now compared with the modified Hamiltonian
obtained as in Eq.(2.19):

HEDP = H̃ = ζ(β)Hζ(β) = −ζ(β)
β4

∂

∂β
β4

∂

∂β
ζ(β)− ζ2(β)

Λ̂γΩ

β2
+ v(β), (4.26)

by a transformation involving the function ζ(β) = 1/
√

1− av(β). H denotes here
the five-dimensional Bohr Hamiltonian with a linear energy dependence of the po-
tential. In both Hamiltonians, the constant mass factor B0 or B is dropped and Wλ

denotes the γ-angular part of the kinetic operator including a possible separated γ
interaction. An effective comparison between the two Hamiltonians can be made
by considering ζ(β) ≡ ξ(β) and δ = σ = 1, and making the derivatives in both
equations. Doing so, one observes that the two differential operators are identical
except a free term −2ζ(β)ζ ′(β)/β. Thus, even if there are some similarities between
the two concepts, they are not equivalent.

4.4 Electromagnetic transitions

Along with energy spectra, the associated quadrupole transition probabilities are
another important observables for the description of the collective states in nuclei.
Having the analytical structure of the total wave-function, the E2 transition prob-
abilities can be then calculated as

B(E2, nλ→ n′λ′) = 〈Ψn′λ′ ||T (E2)||Ψnλ〉2 , (4.27)
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with the help of the quadrupole transition operator:

Tµ(E2) = tβ

[

D2
µ0 cos γ +

1√
2

(

D2
µ2 +D2

µ−2

)

sin γ

]

, (4.28)

where t is a scaling factor. Exploiting the separation of the β variable from the
γ-angular ones, the reduced matrix element involved in (4.27) acquires a factorized
form. One factor is an integral over the β variable with a modified integration metric.
The remaining quantity deals with γ-rotational part of the wave-functions. It has
closed analytical forms which depend on the specifics of the collective conditions.
For the γ unstable case, the γ-rotational wave-function is SO(5) spherical harmonic
[22], while for the γ-stable case it is a product of rotational Wigner functions with
γ-vibrational wave-functions [26]. Similarly, in the γ-rigid case, the rotational part
is given by usual spherical harmonics for the prolate case [28], and Wigner rotation
functions for the rigid triaxial deformation [27].

5 Numerical applications

In what follows, one will make an overview analysis of the model characteristics re-
lated to the energy levels. For simplicity, one will not mention the energy-dependence
of the discussed potentials. Only the state-independent solutions will be identified
explicitly when discussed.

5.1 Model characteristics

The focus here is on the energy spectra. Due to the scaling properties of the Bohr
Hamiltonian solutions, the energy spectra are usually described in terms of excitation
energies normalized to the excitation energy of the first excited 2+g state. In this
way, the spectra are scale-free and depend only on linearly independent parameters
and quantum numbers. Additionally, such a representation offers some spectral
observables with major insight on the nuclear shape and the behavior of its collective
excitations. These are the ratios

R4/2 =
E(4+g )

E(2+g )
, R0/2 =

E(0+β )

E(2+g )
, R2/2 =

E(2+γ )

E(2+g )
, (5.1)

where E(i) = (ǫi − ǫg.s.)~
2/2B are excitation energies in respect to the ground

state. The first one describes the rotational properties of the system, ranging from
a vibrational value of 2, to the axially symmetric limit of 3.33. The other two
denote the β and γ band-head energy positions relative to the rotational excitation.
The evolution of the first two observables with parameters a1 and a2 in the γ-
unstable, γ-stable, and prolate γ-rigid cases is depicted in Fig. 1 for the Kratzer
potential and in Fig. 2 for the Davidson potential. The γ band states in the γ-
unstable case are degenerated with the ground band states, while in the axially
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Figure 1: Constant lines of spectral observables R4/2 and R0/2 as a function of
parameters a1 and a2 defining an energy-dependent Kratzer potential for γ-unstable
(a,b), γ-stable (c,d) and prolate γ-rigid (e,f) cases.
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Figure 2: Constant lines of spectral observables R4/2 and R0/2 as a function of pa-
rameters a1 and a2 defining an energy-dependent Davidson potential for γ-unstable
(a,b), γ-stable (c,d) and prolate γ-rigid (e,f) cases.
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symmetric γ-stable situation, it requires an additional parameter and are therefore
not considered in this analysis. In the prolate γ-rigid case, there is no γ excited states
whatsoever. As can been seen, there is a predictable similarity between prolate γ-
stable and γ-rigid spectra. The first striking difference between the Kratzer and
Davidson energy-dependent solutions, is the variation rates of the spectra with the
two parameters. In the Kratzer case, the domain of values for both a1 and a2, which
show a similar evolution of spectral observables as in the Davidson case, are few
orders of magnitude higher. Another distinguishing aspect related to this disparity
in the scale of parameters, is the fact that the spectra generated by the Davidson
potential are more sensitive in the small regime of a2. This fact is reflected in more
abrupt curves of Fig.2. Comparing to the Davidson potential results, the constant
energy curves of the Kratzer potential are more equidistant when a1 is varied. The
spectral ratios corresponding to Davidson potential have a more restricted domain
of values, than in the case of the Kratzer potential. Both potentials are found to
offer R0/2 ratios with a slow variation as a function of a2 parameter. This invariance
is strengthened in the large value regime of both parameters a1 and a2, where the
corresponding β potentials have very sharp and deep minima consistent with β-
rigidity.

The same conclusions can be drawn for the spectral ratios (5.1) in the triaxial
γ-rigid case with γ = π/6, whose dependence on a1 and a2 is shown in Fig.3 for the
Kratzer potential and in Fig.4 for the Davidson potential. This is valid aslo for the
γ band head ratio R2/2 which in this particular case does not need an additional
parameter. The γ band evolution with spin can be better traced through the measure
of the γ band staggering pattern proposed in Ref.[42] and defined as:

S(L) =
E(L)− 2E(L − 1) + E(L− 2)

E(2+g )
. (5.2)

This is an important quantity especially when dealing with triaxiality, be it rigid or
dynamical as in the case of the γ-unstable conditions. For the low-lying states, the
S(4) value is a good indicative for the effect of triaxiality on the rotationally excited
states. This quantity is represented in the same manner in Figs. 3 and 4, along the
spectral observables (5.1). In case of the Kratzer potential, the range of values for
S(4) is more extended in the lower part, having the same upper bound as the results
obtained for the Davidson potential. The highest value of S(4) in both cases is close
to the value provided by the rigid trixial rotor model of Davydov and Filipov [43].

When a1 = 0, Davidson potential transforms to a simple harmonic oscillator po-
tential, while the Kratzer potential retains just the hyperbolic term, similar to the
attractive Coulomb interaction. These simpler models represent a perfect opportu-
nity to show the saturation of the energy levels at high values of parameter a2. This
is done for all considered collective conditions in Fig.5 for the hyperbolic potential
and in Fig.6 for the harmonic oscillator potential. As was mentioned previously,
the saturation of the whole spectra is achieved earlier for the harmonic oscillator
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Figure 3: Constant lines of spectral observables R4/2 (a), R0/2 (b), R2/2 (c) and S(4)
(d), as a function of parameters a1 and a2 defining an energy-dependent Kratzer
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(d), as a function of parameters a1 and a2 defining an energy-dependent Davidson
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Figure 5: The energy spectrum in the (a) γ-unstable, (b) γ-stable, (c) prolate γ-
rigid and (d) triaxial γ-rigid cases of energy-dependent hyperbolic potential (a1 = 0)
shown as a function of parameter a2. The excitation energies are in respect to the
ground state and are normalized to the energy of the first excited state.
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Figure 6: The energy spectrum in the (a) γ-unstable, (b) γ-stable, (c) prolate γ-
rigid and (d) triaxial γ-rigid cases of energy-dependent harmonic oscillator potential
(a1 = 0) shown as a function of parameter a2. The excitation energies are in respect
to the ground state and are normalized to the energy of the first excited state.
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at quite low values of a2, whereas for the hyperbolic potential, values of a2 in the
order of thousands assures the convergence just for the few low-lying states. This
property is obviously state-dependent. Therefore, to have an extended spectrum of
the hyperbolic potential which is independent of the a2 variation, its value must be
considered much higher.

For the Davidson potential curves of Fig.6, one represented also a small interval
of negative a2 values. The collective excitations are usually associated with a ratio
R4/2 > 2. In the usual Bohr Model with simple potentials, the limiting value R4/2 =
2 corresponds to the five-dimensional γ-unstable spherical vibrator model. This
value is recovered by the asymptotic hyperbolic potential, but can also be obtained
in the a2 < 0 regime of the prolate conditions. The negative value of a2 suppresses
the excitation spectrum, bunching the states together at a finite upper threshold. If
the spectrum for the energy-independent case is sufficiently rapidly increasing, as in
the case of prolate γ-stable and γ-rigid cases of Davidson potential, small negative
a2 values still provide spectra with monotonically increasing excitation energies.
Decreasing excitation energy is not a disqualifying rule for nuclear spectra. There
are plenty examples of such spectra, whose interpretation is however regarded as non-
collective, mostly based on the incompatibility with the simple cornerstone solutions
of the collective models.

The actual asymptotic spectra are not evident from Figs. 3 and 4, whose purpose
is just to exemplify the tendency of the spectra to saturate. The actual numerical
values of the energy levels for the asymptotic models in the γ-unstable regime are
shown in Fig.7 for the hyperbolic potential, and in Fig.8 for the Harmonic oscillator
potential. These spectra are also complemented by the relevant quadrupole tran-
sition probabilities. The other collective conditions associated to the asymptotic
models are listed in Table 1 for the prolate γ-stable and γ-rigid cases and in Table
2 for the γ-rigid triaxial shape with γ = π/6. The numbers in these tables were
obtained for a2 parameter values which assures that all considered energy ratios do
not change its second decimal when a2 is further increased. Having thus a common
rule for establishing this minimal value of a2, one finds, that in both hyperbolic and
oscillator cases, this limiting value decreases from the γ-stable results, to the γ-rigid
ones, with the triaxial γ-rigid case having the smallest a2 asymptotic values.

There is a peculiar similarity of the energy level sequence for the asymptotic
hyperbolic model with the spectrum associated to the energy-independent harmonic
oscillator in the γ-unstable and the γ-rigid (γ = π/6) cases. The only difference is
for the β excited states. These are shifted down in the asymptotic energy-dependent
model, but still follow the same level sequence as the ground band states. This hap-
pens because a particular relation between the vibrational quantum number n and
the rotational quantum numbers is realized for these models. Checking the analytical
formulas, one finds that in the asymptotic regime, the γ-unstable and triaxial γ-rigid
energy levels are given by n + τ and respectively n + L/2, while the corresponding
state-independent harmonic oscillator energies are defined by 2n+ τ and 2n+ L/2.
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Table 1: Asymptotic spectra corresponding to the γ-stable and prolate γ-rigid real-
izations of the hyperbolic (Hyper) and harmonic oscillator (HO) potentials. Energies
are given in terms of the first excited state energy. The last row denotes the approx-
imate value of the a2 parameter for which the sufficiently precise realization of the
asymptotic spectrum is achieved.

L+
i γ-stable γ-rigid

Hyper HO Hyper HO

4+g 2.65 3.09 2.13 2.73

6+g 4.51 6.10 3.27 5.14

8+g 6.45 10.00 4.42 8.21

10+g 8.44 14.77 5.58 11.95

12+g 10.44 20.41 6.73 16.36

14+g 12.46 26.90 7.88 21.44

16+g 14.49 34.24 9.03 27.18

0+β 1.78 4.48 1.00 2.50

2+β 2.78 6.20 2.00 4.50

4+β 4.43 9.47 3.13 7.36

6+β 6.29 13.83 4.27 10.91

8+β 8.23 19.13 5.42 15.13

10+β 10.22 25.33 6.58 20.03

12+β 12.23 32.40 7.73 25.59

a2 1010 3 109 3

The particular combination of the quantum numbers in the energy-dependent case
induces a different degeneracy of the energy levels which consequently leads to a
higher density of energy degenerated states. The distinct role played by the rota-
tional quantum numbers and n have a more profound effect on the wave-functions.
The most important aspect is related to the quadrupole transition probabilities with
∆n = 1, which are essentially forbidden due to the restriction imposed on the selec-
tion rules for the rotational quantum numbers. As a result, consecutive β excited
bands are fully decoupled.

From the phenomenological point of view, it is quite obvious that the energy-
dependent pseudo-harmonic (Davidson) potential with a2 > 0 simulates a stiffening
of the nuclear surface against axially-symmetric vibrations. The picture is not so
clear with the Kratzer potential. The energy dependence, deepens the minimum
of the Kratzer potential, but also spreads its outer wall. Having the exact energy
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Table 2: Asymptotic spectra corresponding to the triaxial γ-rigid realizations of
the hyperbolic and harmonic oscillator potentials for γ = π/6. Energies are given in
terms of the first excited state energy. The asymptotic spectra in the listed numerical
format, are obtained for the minimal values a2 = 109 for the hyperbolic potential
(Hyper) and a2 = 2 for the harmonic oscillator (HO) potential.

ground band β-band γ-band
L+
i Hyper HO L+

i Hyper HO L+
i Hyper HO

4+g 2.00 2.40 0+β 1.00 2.40 2+γ 1.65 1.86

6+g 3.00 4.20 2+β 2.00 4.20 3+γ 2.16 2.66

8+g 4.00 6.40 4+β 3.00 6.40 4+γ 3.24 4.70

10+g 5.00 9.00 6+β 4.00 9.00 5+γ 3.36 4.94

12+g 6.00 12.00 8+β 5.00 12.00 6+γ 4.57 7.83

14+g 7.00 15.40 10+β 6.00 15.40 7+γ 4.48 7.59

16+g 8.00 19.20 12+β 7.00 19.20 8+γ 5.78 11.31

spectrum of a Schrödinger equation with an energy-dependent potential, one can in
general construct an equivalent local (energy-independent) potential associated to
an energy-dependent one [44]. Specifically the energy-dependent Coulomb potential,
was found to be very well approximated by a state-independent Wood-Saxon form.
The final clues are provided by the associated wave-functions, which suggests a
softening of the β excitations with energy.

The energy-dependence in both cases of Davidson and Kratzer potentials, dimin-
ishes the difference between the equilibrium deformations of the ground state and
the β excited state. In the state-independent situation, the average deformation in
the β excited states is higher than the ground state expectation value. By increas-
ing the slope of the energy-dependence, the β excited state equilibrium deformation
decreases, becoming at some point equal and even smaller than the ground state
value.

As a final conclusion, one must emphases the versatility of the presented models
represented by the wide range of R4/2 values combined with even a wider range of
R0/2 values for the β excited band-head state, including even very low ones. The
utility of this characteristic will be shown in the next section, where some uncommon
collective spectra are successfully described.

5.2 Experimental realization

The novel spectral characteristics induced by the energy-dependence of the poten-
tial extend the applicability of the phenomenological Bohr model to nuclei never
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described before in this manner. Additionally, the effect of the energy dependence
improves the agreement with experiment in comparison with traditional algebraic
solutions of the Bohr Hamiltonian, especially for nuclei where the later is deficient.
In what follows, one presents examples of both these model contributions to the
description of collective excitations in even-even nuclei.

Model calculations for actual nuclei and comparison to experimental data were
performed in Refs.[9, 12] with hyperbolic and Kratzer potentials, and in Refs.[8, 10,
11] for the Davidson potential. Here one will briefly discuss these applications with
few additional examples.

The simplicity and the interesting properties of the asymptotic hyperbolic γ-
unstable case were used to describe nuclei with a vibrational-like ground band spec-
trum, but for which the 2+g and 0+β states are nearly degenerated. A low-lying excited

0+ state is one of the telltales associated with shape coexistence. Consequently, the
search was directed to regions in the nuclide chart where the shape coexistence
phenomenon is encountered, that is in the vicinity of mass numbers A ∼ 70 and
A ∼ 100. A good experimental realization of the model was found for the 72Se,
74Se, 72Kr, 98Mo and 100Mo nuclei. In Fig.7 one compared the theoretical spectrum
with the experimental data for the most promising candidates. Although the energy
levels of 72Se and 72Kr are sparse and deviate at higher spins from the vibrational
sequence, there is a very good agreement in what concerns the quadrupole transition
probabilities. Indeed, the asymptotic hyperbolic model predicts very large E2 rates
which are consistent with experimental data for these nuclei. In contradistinction,
the 100Mo nucleus exhibit very suppressed transitions far from the theoretical predic-
tions, but has an impressive agreement with theory when comparing the distribution
and position of the energy levels.

Alternatively, another modification of the spherical vibrator model is brought
by the γ-unstable energy-dependent harmonic oscillator solution in its asymptotic
limit. Here the distribution and degeneracy of the states are the same as in the
spherical vibrator model, but the spectrum is overall expanded, while the quadrupole
transition probabilities are smaller. A very good candidate for this asymptotic
model was found to be the 116Cd nucleus [8]. Other possible candidates include
the 104,106Pd nuclei. As can be seen from Fig.8, where one compared the theoretical
predictions with experimental data, the energy states are very well reproduced, while
the transition probabilities are substantially underestimated.

Full Davidson potential calculations were performed in the γ-stable regime, which
is a more common situation for deformed nuclei. Applications made on Pt and Os
isotopes [10] showed that an increased dependence on energy of the potential is
expected for transitional nuclei near the critical point of the shape phase transition
between deformed and near spherical deformation. This feature was later supported
by calculations made in Ref.[11] on N = 90 rare-earth nuclei 148Ce, 150Nd, 152Sm,
154Gd and 156Dy, which represent the best examples of such critical behaviour, in
comparison to their neighbouring isotopes 146Ce, 148Nd, 154Sm, 156Gd and 158Dy.
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Figure 7: Predictions of the γ-unstable hyperbolic potential with an asymptotically
increasing coupling for the lowest portion of the spectrum are compared to the ex-
perimental level scheme of 98Mo [45], 72Kr [46], and 72Se [46]. Energies are given
in terms of the first excited state energy, while the corresponding B(E2) transi-
tion probabilities are normalized to B(E2, 2+g → 0+g ) = 100 in order to lose the
corresponding scaling constants.
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asymptotically increasing frequency for the lowest portion of the spectrum are com-
pared to the experimental level scheme of 116Cd [47], 104Pd [48] and 106Pd [49]. The
same scaling as in Fig.7 is applied.
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High slopes of energy dependence was also determined for two nuclei which are
considered as endpoints of a similar shape phase transition but in the N = 60
region, namely 102Zr, 106Mo.

The energy-dependent Kratzer potential is suitable for describing nuclear col-
lective spectra with a relatively low β band-head. Such a potential was recently
used to describe the evolution of the deformation properties for an extended set
of Xe isotopes [12]. This was done by high quality model fits on energy levels for
118−128Xe nuclei. Once again, the highest energy dependence was found to occur
near the neutron mid-shell N = 66, where the collective behavior suffers a change.

A special feature of the model descriptions with Davidson and Kratzer energy-
dependent potentials is the superior reproduction of the β band states in comparison
to traditional Bohr model solutions with local potentials.

6 Summary

Energy-dependent potentials are an accessible tool for the generalization of the sta-
tionary Schrödinger equation. However, the induced non-linear effects have impor-
tant consequences on the fundamental quantum structure of the model. The issues
were discussed in detail for a general energy dependence, pointing out that only for
a linear energy dependence, a coherent quantum theory can be realized. The formal-
ism is applied to exactly solvable Kratzer and Davidson potentials in the frame of
the Bohr-Mottelson model subjected to particular conditions which are associated
with specific deformation properties of the nuclear shape. The selected collective
conditions assure a separation of the equation for the β shape variable from the γ-
angular degrees of freedom. As a consequence of this separation, a sizable part of the
energy spectrum is determined by just two parameters defining the potential: one
factorizing the centrifugal-like term and the other one giving the slope of the energy
dependence for the coupling constant of the remaining term. The eigenvalue prob-
lem for the β part of the Bohr Hamiltonian leads then to a quadratic equation for
the system’s energy. The physically meaning energy solution is chosen by imposing
a good origin and asymptotic behavior of the associated wave-functions. For all con-
sidered cases, energy-related spectral observables are calculated as a function of the
two parameters for the purpose of determining the model’s domain of applicability
to nuclear spectra. Special cases of the hyperbolic and harmonic oscillator potentials
are used to ascertain the effect of the slope parameter on the model characteristics.
It is observed that the energy spectrum is in general expanded in reference to the
energy-independent case. This analysis is especially insightful in what concerns the
saturation property of the model at large values of the slope parameter. In this
asymptotic regime, the slope parameter acquires just a scaling role, leading thus to
parameter-free collective solutions. This feature has an interesting consequence for
the hyperbolic potential. Its corresponding energy spectrum is no longer bounded
by the energy threshold corresponding to an infinite quantum number as in the un-
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perturbed problem. Moreover, in the γ-unstable and triaxial γ-rigid situations, the
energy levels in the asymptotic regime of the hyperbolic potential are arranged in
a sequence specific to the states described by a corresponding energy-independent
model with harmonic oscillator potential. Due to the changes to the quantum theory,
the similarity between the two results stops at the energy level scheme.

The success of the formalism in describing nuclei with uncommon spectral char-
acteristics is shown through selected numerical applications. Parameter-free models
of the hyperbolic and harmonic oscillator potentials are especially interesting, and
an effort was made for finding an experimental realization of them. The energy levels
of the most suitable candidate nuclei are very well described, while the theoretical
selection rules for the electromagnetic transitions are rarely in a good agreement.

Model calculations with full Kratzer and Davidson potentials were also briefly
discussed in connection to high fidelity description of collective excitations in many
transitional nuclei. Analyzing the effect of the slope parameter from the phenomeno-
logical point of view, a specific behaviour was identified for critical point nuclei. More
specifically, nuclei near the critical point of a shape phase transition exhibit a height-
ened energy dependence. This can be understood by remembering that such nuclei
are usually in the vicinity of a mid-shell, such that their valence space is larger than
their neighboring nuclei. This in turn allows more substantial microscopic changes
between collective states as a function of energy excitation.

Despite being restricted only to a linear energy dependence, Bohr model solutions
are greatly improved by the introduction of the energy-dependent potentials. The
exact solvability of a local potential is transposed also to the energy-dependent case.
This leads to fully analytical Bohr model solutions with a wide range of novel spectral
characteristics used to describe collective excitations for even-even nuclei.
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