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Abstract

Gamow-Teller (GT) excitation is one of the most important spin-isospin
modes in nuclei. The commonly used quasiparticle random phase approxima-
tion (QRPA) model cannot describe the width and detailed fragmentation of
GT strength distribution. In order to overcome this limit, the quasiparticle
vibration coupling (QPVC) is included on top of the QRPA model. The sub-
traction method is applied in the QPVC calculation to avoid double counting
problem. The QPVC effects on GT excitation in 120Sn are discussed. With
the inclusion of QPVC, a width is developed and the experimental data of GT
response in the giant resonance region is well reproduced.
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1 Introduction

Gamow-Teller (GT) excitation is one of the most important spin-isospin excitation
modes in nuclei [1]. It involves two basic degrees of freedom in nuclei, spin and
isospin, therefore it can provide useful information on the spin-isopin channel of
the nuclear effective interaction. It is also the dominant transition in nuclear weak
interaction processes [2, 3], like β decay [4], electron capture [5, 6] and neutrino-
nucleus scattering [7, 8], which play important roles in astrophysical processes such
as rapid neutron capture process, supernova explosion and so on.

The GT resonances (GTR) have been studied both experimentally and theoret-
ically. In experiment, one can use (p,n) or (3He,t) reaction to excite GTR modes
[9, 10]. From the cross section of these reactions, the strength function of GT can
be extracted. In theory, the shell model and random phase approximation (RPA)
are the most commonly used microscopic models. Compared to shell model, which
can only be limited to calculate nuclei up to mass number 60 or around magic ones,
the RPA model could be applied to the calculations of the whole nuclear chart. The
basic idea of the RPA model is that giant resonances are considered as the super-
position of many 1 particle-1 hole (1p-1h) excitations. This consideration of 1p-1h
configuration space simplifies the calculation and makes it possible to include the
configuration space up to a high energy. RPA could give a good description of the
centroid energy of GTR [11, 12]. However, the width and detailed fragmentation
of giant resonances cannot be described. The width of giant resonances is caused
by the coupling of 1p-1h configurations with more complicated configurations like
2p-2h etc. So, in order to describe the width, one needs to go beyond RPA and
include more complicated configurations. A direct way is to include both 1p-1h and
2p-2h configurations in the model space, which is called the second RPA (SRPA)
[13]. An alternative way is to include the 1p-1h and 1p-1h coupled with phonons
(1p-1h ⊗ 1 phonon) in the model space, which is called RPA + particle-vibration
coupling (PVC) model [14]. The advantage of this method is that the calculation
is simplified compared to the SRPA approach, yet it still keeps the main feature of
SRPA.

In recent years, the self-consistent RPA+PVC model has been developed based
on both relativistic and Skyrme density functionals. It has been successfully ap-
plied to the calculations of giant and pygmy resonances [15, 16, 17], spin-isospin
excitations[18, 19, 20], and even β-decay processes [21]. In the RPA+PVC approach,
the pairing correlations were not considered. In order to describe the superfluid nu-
clei, the pairing correlations were further included, and therefore the quasiparticle
RPA (QRPA) + quasiparticle vibration coupling (QPVC) model has also been de-
veloped with relativistic and Skyrme density functionals [22]. In this work, we will
briefly review the quasiparticle vibration coupling effects on the GT excitations in
superfluid nuclei based on the Skyrme density functional.
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2 Formulas

The QRPA+QPVC equation reads

(
D +A1(E) A2(E)
−A3(E) −D −A4(E)

)(
F (ν)

F̄ (ν)

)
= (Ων − i

Γν

2
)

(
F (ν)

F̄ (ν)

)
. (2.1)

D is a diagonal matrix containing the physical QRPA eigenvalues. The Ai matrices
are complex and energy dependent, associated with the coupling to the doorway
states. The expressions of Ai in the QRPA basis |n〉 are given by
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X
(n)
ab and Y

(n)
ab are the forward-going and backward-going amplitudes associated

with the QRPA eigenstates |n〉, respectively. The detailed QRPA calculation can be
found in Ref. [23]. Here and in what follows, the indices a, b label the so-called BCS
quasi-particle states in the canonical bases, that are those defined by the operators
α and α† at p. 248 of Ref. [24].

The spreading matrixW ↓
ab,a′b′(E) is the most important quantity in the QRPA+QPVC

model,

W ↓
ab,a′b′ = 〈ab|V 1

E − Ĥ
V |a′b′〉 =

∑

NN ′
〈ab|V |N〉〈N | 1

E − Ĥ
|N ′〉〈N ′|V |a′b′〉, (2.6)

where |N〉 = |a′′b′′〉 ⊗ |nL〉 represents a doorway state and a′′, b′′ are BCS quasi-
particle states, as recalled above. The doorway states are made of a two BCS quasi-
particle excitation |ab〉 coupled to a collective vibration |nL〉 of angular momentum L
and energy ωnL. The properties of these collective vibrations, i.e., phonons |nL〉, are
obtained by computing the QRPA response with the same Skyrme interaction, for
states of natural parity Lπ = 0+, 1−, 2+, 3−, 4+, 5−, and 6+. We have retained the
phonons with energy less than 20 MeV and absorbing a fraction of the non-energy
weighted isoscalar or isovector sum rule (NEWSR) strength larger than 5%.

The final expression for spreading matrix in angular momentum coupled form
W ↓J

ab,a′b′ reads
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ã′′a′′′C

†
b̃′′b′

〈a′||V ||a′′′, nL〉
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In the above formulas, ĵ2i is a shorthand notation for 2ji+1. C represents the unitary
transformation matrix between HFB quasi-particle states and BCS quasi-particle
states, as defined at p. 248 of Ref. [24]. The chemical potential difference λn − λp

is included in the energy denominator so that it can reproduce the RPA+PVC
limit for magic nuclei, where the sign ‘+’ is for T− excitations and and ‘−’ for
T+ excitations. The smearing parameter ∆ is introduced to avoid singularities in
the denominator, and a convenient practical value is ∆ = 200 keV. The detailed
expression for 〈a||V ||a′′, nL〉 can be found in Ref. [22].

For nuclei not far from the stability line, like the nucleus 120Sn studied in this
work, the BCS quasi-particle states represent a convenient and accurate approxi-
mation to the HFB states. The corresponding expression for the spreading matrix
elements is obtained by approximating the C−transformation with the identity,
that is, putting Caã′′ = δaã′′ in Eqs. (16-19). We checked this approximation in
Fig. 1. We could see that this approximation is good for 120Sn. More details of
QRPA+QPVC formulas can be found in Ref. [22].

3 Results and Discussions

In this section, we will discuss the QPVC effects on GT response in 120Sn. First
of all, let’s check the QPVC effects on Ikeda sum rule. The Ikeda sum rule tells us
that the difference of total GT transition strength between T− and T+ channels is
3(N − Z). We use the Skyrme interaction SGII [25] in our calculation to check the
Ikeda sum rule. In the QRPA calculation, 99.8% of the Ikeda sum rule is satisfied. In
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Figure 1: Gamow-Teller strength distribution in 120Sn calculated by Skyrme
QRPA+QPVC model with and without approximation in the spreading matrix el-
ements, using Skyrme interaction SkM*.
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Figure 2: Ikeda sum rule fulfillment as a function of the number of QRPA basis
states used for the QPVC calculation, in the case of the Gamow-Teller response of
120Sn calculated with the interaction SGII. Taken from Ref. [22].
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Figure 3: The Gamow-Teller strength distributions for 120Sn calculated by means
of QRPA, and QRPA+QPVC models without and with subtraction method, using
the Skyrme interaction SGII [panel (a)] and SkM* [26] [panel (b)].

the QRPA+QPVC case, we plot in Fig. 2 the fulfillment of the Ikeda sum rule as a
function of the number of QRPA basis states used for the QPVC calculation. In the
QPVC calculation, Eq. (2.1) is solved in the QRPA basis. In order to simplify the
calculation, we usually neglect QRPA states with very small GT strength, reducing
significantly the dimension of the QRPA+QPVC matrix. The cutoff on the relative
strength of the QRPA states is denoted as bcut, namely only the QRPA states with
a fraction of NEWSR strength larger than bcut are included in the calculation. We
check the sum rule as a function of the number of QRPA basis states obtained by
setting bcut = 10−1, 10−2, 10−3 and 10−4, in Fig. 2. We consider the integrated
strength up to the excitation energy of 80 MeV. For bcut = 10−3, we obtain 97% of
the Ikeda sum rule.

Another important issue in the QPVC calculation is the use of the so-called
“subtraction” method. The subtraction method is introduced in order to avoid the
double counting problem in the QPVC calculation, i.e., to make sure that the static
effects beyond mean field absorbed in the parameters of the energy density functional
are not considered again in the QPVC calculation [27, 28, 29, 30, 17].

Using the subtraction method, we correspondingly modify the QRPA + QPVC
equation (2.1), by writing

(
D +A1(E) −A1(0) A2(E)−A2(0)
−A3(E) +A3(0) −D −A4(E) +A4(0)

) (
F (ν)

F̄ (ν)

)
=

= (Ων − i
Γν

2
)

(
F (ν)

F̄ (ν)

)
(3.1)

so that the above equation reduces to the QRPA equation when E = 0.
In Fig. 3, we plot the Gamow-Teller strength distributions for 120Sn calculated by
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Figure 4: The Gamow-Teller strength distributions for 120Sn calculated by QRPA
and QRPA+QPVC models, using the Skyrme interaction SGII [panel (a)] and SkM*
[panel (b)]. The smearing parameter ∆ = 0.5 MeV is used instead of ∆ = 0.2
MeV used for Fig. 3. The experimental results from (p,n) reactions are shown for
comparison. The cross section from the (p,n) reaction is normalized by the unit
cross section [31].

means of QRPA, and QRPA+QPVC models without and with subtraction method,
using the Skyrme interaction SGII and SkM*. The effects of subtraction are quite
similar for both interactions. With subtraction, the energies of GT excitations are
shifted upwards as expected, going back to the QRPA results. The energy shift is
more apparent at low energy regions, which is around 1 MeV, and becomes smaller
with increasing excitation energy, which is around 0.5 MeV at the giant resonance
region, until it almost vanishes at E = 25 MeV. With subtraction, the detailed
fragmentations in both the low-energy region and the giant resonance region are
modified. The centroid energies in the energy region E = 0 − 25 MeV are 14.6,
13.3, and 14.5 MeV for QRPA, QRPA+QPVC and QRPA+QPVC with subtraction
calculation respectively for SGII interaction, while they are 13.9, 12.6, and 13.8 MeV
for SkM* interaction. We could see that for both interactions, the centroid energy of
QPVC result becomes almost the same as the QRPA result by using the subtraction
method.

We compare our calculated Gamow-Teller strength distributions using the Skyrme
interactions SGII and SkM* with experimental data in Fig. 4. We use a smearing
parameter ∆ = 0.5 MeV in the QRPA and QRPA+QPVC calculation, instead of
the value ∆ = 0.2 previously used in Fig. 3. This value corresponds to the en-
ergy resolution of the (p,n) experiment [31]. In Ref. [31], besides the cross section
σ(0o), the unit cross section σ̂ = 2.78 ± 0.16 mb/sr was also determined. We can
then obtain an approximate value for the B(GT) strength by using the relation
σ(0o) = σ̂F (q, ω)B(GT ), and assuming that the factor F (q, ω), giving the depen-
dence on momentum and energy transfer of the cross section, is constant and equal
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to 1. From QRPA to QRPA+QPVC, a much bigger width is developed for both
interactions, and hence it gives a much better agreement with experimental data.
In the giant resonance region, the experimental strength distribution is well repro-
duced, especially for SkM*. However, in the low energy region, the GT strength is
overestimated by both interactions.

4 Conclusions

In this paper, the quasiparticle vibration coupling effects on GT response in 120Sn are
briefly discussed. In the QRPA+QPVC model, the Ikeda sum rule is still satisfied.
The subtraction method is applied, and it shifts the excitation energy upwards,
bringing the centroid energy of the QRPA+QPVC calculation, initially in the energy
region E = 0−25 MeV, back to that of the QRPA model. Finally with the inclusion
of QPVC, we can see that the data of GT response in the giant resonance region is
well reproduced.
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