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Abstract

We introduce a symplectic no-core configuration interaction (SpNCCI) frame-
work for ab initio nuclear structure calculations, in a correlated many-body
basis which encodes an approximate Sp(3,R) symmetry of the nucleus. Such
a scheme potentially provides a means of restricting the many-body space to
include only those highly-excited configurations which dominantly contribute
to the nuclear wave function. We examine the symplectic symmetry structure
arising in an illustrative ab initio SpNCCI calculation for 6Li. We observe both
the dominance of symplectic symmetry in individual wave functions and the
emergence of families of states related by symplectic symmetry.
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1 Introduction

A long-standing goal of nuclear physics is to quantitatively predict the structure
of nuclei and understand their excitation modes ab initio, i.e., directly from re-
alistic internucleon interactions. However, in a traditional oscillator-basis no-core
configuration interaction (NCCI) calculation [1,2], the dimension of the many-body
basis explodes as the number of nucleons and included single-particle excitations
is increased. The basis size which would be required in order to obtain quantita-
tively accurate predictions for nuclei with more than just a few nucleons becomes
prohibitively large [3, 4].

The symplectic no-core configuration interaction (SpNCCI) framework intro-
duces a correlated many-body basis, one which encodes an approximate Sp(3,R)
symmetry of the nucleus. Our aims in pursuing symplectic many-body symmetry
are twofold: (1) to use symmetries to accelerate convergence of ab initio results
and (2) to understand the symmetries underlying many-body correlations in nuclei,
including emergent rotation [5].

The symplectic group in three dimensions Sp(3,R) [6] enters into the nuclear
many-body problem both through its relation to kinematics (coordinates and mo-
menta) and through its connection to the harmonic oscillator. It is generated by
the bilinears in coordinates and momenta, i.e., operators of the form xixj , xipj ,
pixj , and pipj (i, j = 1, 2, 3). It thus arises naturally in problems involving the
coordinates and momenta. Symplectic symmetry has a close relation to collective
deformation and rotational degrees of freedom [7], through its Elliott SU(3) [8, 9]
(and rotor model [10]) subgroup, which is generated by the orbital angular momen-
tum and quadrupole operators. The group Sp(3,R) is also the dynamical group for
the harmonic oscillator, which defines the underlying basis for nuclear configuration
interaction (or interacting shell model) calculations.

These connections permit the construction of the symplectic shell model formal-
ism, originally proposed by Rosensteel and Rowe [11]. While the goal of “diago-
nalising a realistic many-nucleon Hamiltonian in a Sp(3,R) ⊃ SU(3) shell model
basis, to obtain a fully microscopic description of collective states from first princi-
ples” was envisioned early on [12], only recently has sufficient progress been made
in the computational framework for ab initio calculations to allow this goal to be
revisited [13–16].

From the viewpoint of accelerating convergence in NCCI calculations, it is per-
haps most important to note that the need for including highly excited configurations
in NCCI calculations exists, in large part, because the kinetic energy induces strong
coupling across shells. The kinetic energy operator, as a generator of Sp(3,R), con-
serves Sp(3,R) symmetry. Thus, by reorganizing the many-body space according
to irreducible representations (irreps) of Sp(3,R), it is broken into subspaces which
cannot be connected by the kinetic part of the Hamiltonian, as portrayed in Fig. 1.
Combining symplectic symmetry with the no-core configuration interaction frame-
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Figure 1: Reorganization of the NCCI many-body space into symplectic irreps:
(left) the kinetic energy connects many-body states related by 0 or ±2 oscillator
quanta (as indicated by arrows), but (right) only connects states within a symplectic
irrep (shaded cones). The detailed structure of an Sp(3,R) irrep in terms of U(3)
irreps N(λ, µ) is illustrated in the inset (bottom right).

work potentially provides a means of identifying and restricting the basis to include
only those highly excited configurations which dominantly contribute to the nuclear
wavefunction, thereby (it is hoped) reducing the size of the basis necessary to obtain
accurate results.

In this contribution, we briefly present a framework for ab initio calculations of
nuclear structure in a SpNCCI scheme (Sec. 2). We then examine the symmetries
arising in a SpNCCI calculation for 6Li (Sec. 3). We observe both the dominance of
symplectic symmetry in the individual wave functions and the emergence of families
of states related by symplectic symmetry. These results are from work described in
Ref. [17].

2 Symplectic NCCI framework

The SpNCCI basis for the nuclear many-body problem consists of states which
reduce an Sp(3,R) ⊃ U(3) ⊃ SO(3) subgroup chain, i.e., which are arranged into
nested irreps of all three of these groups. A symplectic irrep is built starting from
some U(3) irrep with some lowest number of oscillator quanta, the lowest grade irrep
(LGI). Laddering with the symplectic raising operator (A ∝ b†b†), which creates
pairs of oscillator quanta, generates the rest of the symplectic irrep, which is an
infinite tower of U(3) irreps of increasing oscillator number. In practice, for SpNCCI
calculations, this irrep must be truncated at some finite number of oscillator quanta.

To understand the quantum numbers for the SpNCCI basis, we first note that
the group U(3) = U(1)×SU(3) is the product of the U(1) generated by the harmonic
oscillator number operator, with quantum number N , and the Elliott SU(3) group,
which provides quantum numbers (λ, µ). Thus, a U(3) irrep is labeled by quantum
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numbers ω ≡ Nω(λω, µω). The structure of a symplectic irrep is uniquely defined
by the U(3) quantum numbers σ ≡ Nσ(λσ, µσ) of its LGI, which thus serve as the
Sp(3,R) quantum numbers of the symplectic irrep. The detailed structure of an
Sp(3,R) irrep in terms of U(3) irreps is illustrated in the inset of Fig. 1, specifically
for the 16(2, 1) irrep of 8Be.1

At the bottom of the group chain, SO(3) is the orbital angular momentum group,
which provides the quantum number L. While the Sp(3,R) subgroup chain describes
orbital (spatial) structure, there is also the complementary SU(2) spin group, with
quantum number S. Orbital and spin angular momenta couple to give total angular
momentum J . The SpNCCI basis is therefore classified according to symmetry labels
for the subgroup chain

[Sp(3,R)
Nσ(λσ ,µσ)

⊃ U(3)
Nω(λω ,µω)

⊃ SO(3)
L

]× SUS(2)
S

⊃ SUJ(2)
J

. (2.1)

Recall that here Nω(λω, µω) are the U(3) quantum number of the basis state itself —
so, if we are only interested in U(3) symmetry, we can simply designate theseN(λ, µ).
Then, Nσ(λσ, µσ) are the U(3) quantum numbers of the LGI from which the entire
symplectic irrep is built.

When defining an NCCI basis, it is more transparent and convenient to work
with the number of oscillator excitations Nex relative to the lowest Pauli-allowed os-
cillator configuration for the nucleus. Configurations with Nex = 0 are traditionally
known as “0~ω” configurations, those with Nex = 2 as “2~ω” configurations, etc.
Similarly, for a SpNCCI basis, we shall refer to the number Nω,ex (or simply Nex) of
excitation quanta for U(3) irreps and Nσ,ex for the LGIs of Sp(3,R) irreps. Thus, in
the symplectic decomposition of the many-body space shown schematically Fig. 1
(right), each disk (light shading) respresents states with a given Nex = 0, 2, or 4,
while each cone (dark shading) represents a symplectic irrep with LGI at Nσ,ex = 0,
2, or 4.

In our SpNCCI framework, matrix elements of the Hamiltonian (or other opera-
tors) in the symplectic many-body basis are determined from certain “seed” matrix
elements by use of symplectic laddering operations. The approach is based on ideas
initially proposed by Suzuki and Hecht [18, 19], but these have now been extended
to accommodate general, realistic internucleon interactions.

In order to evaluate the matrix elements of an operator in the SpNCCI basis, we
first decompose the operator in terms of SU(3)-coupled components, or unit tensors.
We then apply commutation relations of these unit tensors with the symplectic
laddering operators to recursively express all matrix elements in terms of matrix
elements among certain lowest states, specifically, the LGIs. We explicitly expand

1The U(1) label N appearing in the U(3) labels N(λ, µ) is actually not the number of oscillator
quanta, per se, but rather the dimensionless oscillator Hamiltonian, which also includes a zero-point
contribution of 3/2 for each nucleon [12]. Thus, in the lowest Pauli-allowed oscillator configuration
of 8Be, the four s-shell nucleons contribute 3/2 each, and the four p-shell nucleons contribute 5/2
each, giving N = 16, as in the 16(2, 1) irrep shown.
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Figure 2: Energy eigenvalues from an SpNCCI calculation for 6Li. Energies are plot-
ted vs. J(J + 1), as conventional for rotational analysis [5]. States below the dashed
line are predominantly 0~ω, while those above the line have predominantly 2~ω
(or higher) contributions. States having dominant U(3)× SU(2) contributions with
Nex(λ, µ)S quantum numbers 0(2, 0)1 and 2(4, 0)1 are highlighted (solid symbols,
as labeled).

these LGIs in terms of the SU(3) no-core shell model [SU(3)-NCSM] basis and use
the SU(3)-NCSM code LSU3shell [20] to evaluate the seed matrix elements. The
recurrence then involves coefficients obtained through vector coherent state (VCS)
methods [21–23].

3 Illustration: Symplectic symmetry in 6Li

Since SpNCCI calculations are carried out in an Sp(3,R) ⊃ U(3) basis, we can
immediately extract the decomposition of each eigenfunction into contributions with
different symmetry characters, for all the groups in the chain (2.1). That is, we
can decompose the wave function according to any combination of the quantum
numbers σ = Nσ(λσ, µσ) for Sp(3,R) and ω = Nω(λω, µω) for U(3), as well as the
more familiar orbital angular momentum L and spin S.

By examining such decompositions, we can start to answer some of the questions
we laid out above: Do the highly-excited oscillator-basis contributions to the nuclear
wave functions primarily come from low-lying symplectic irreps, suggesting that
symplectic truncation may be feasible? And can an Sp(3,R) ⊃ U(3) irrep structure
provide a useful classification scheme for understanding the nuclear eigenspectrum?
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Figure 3: Decompositions of calculated eigenstates by oscillator excitation quanta
Nex (left) and by the Nσ,ex of the contributing symplectic irrep (right). Decomposi-
tions are shown for the highlighted states from Fig. 2, with dominant contributions
from U(3) × SU(2) symmetry 0(2, 0)1 (bottom) or 2(4, 0)1 (top). Only oscillator
configurations with even values of Nex contribute to natural parity states.

Here we consider a SpNCCI calculation of 6Li, for which the low-lying energy
spectrum is shown in Fig. 2. This calculation is based on the JISP16 internucleon
interaction [24], with no Coulomb interaction (i.e., pure isoscalar). For initial exam-
ination and benchmarking purposes, we simply choose a space which is truncated
at 6 oscillator quanta, with oscillator basis parameter ~ω = 20 MeV. That is, we
take all symplectic irreps with LGIs having up to Nσ,max = 6 excitation quanta,
then truncate each symplectic irrep to basis states with up to Nmax = 6 excitation
quanta.2

Each of the states in Fig. 2 is found to have at most one or two dominant
U(3) × SU(2) contributions, that is, well-defined ω and spin quantum numbers.

2The resulting spectrum is identical to that for a traditional Nmax = 6 M -scheme NCCI calcu-
lation, since both spaces include all intrinsic excitations of up to 6 quanta (this equivalence permits
rigorous numerical validatation against traditional NCCI codes such as MFDn [25,26]). While the
traditional M -scheme NCCI basis consists of laboratory-frame Slater determinants (which include
center-of-mass excitations and which, while having definite M , are in general admixtures of all
J ≥ |M |), the SpNCCI basis is defined in the intrinsic frame (consisting of states which are free of
center-of-mass excitations and which are also naturally J-coupled). Compare the resulting dimen-
sion of 197 822 for the laboratory-frame M = 0 space [3] with 3484 for the intrinsic-frame J = 0
space [27], for 6Li at Nmax = 6.
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However, we focus on two specific U(3)×SU(2) “families” of states in this discussion,
identified by the filled symbols in Fig. 2. We shall see that these together form part
of a larger family of states with the same dominant symplectic symmetry.

Let us start by classifying the states in the spectrum of Fig. 2 according to
contributions from configurations with different numbers of oscillator quanta. The
calculated states below an excitation energy of ∼ 20 MeV, as demarcated by the
horizontal dashed line in Fig. 2, are dominated by Nex = 0 contributions. That is,
in traditional shell model parlance, they have predominantly 0~ω character. Above
this point in the spectrum, eigenstates dominated by Nex = 2 contributions, or 2~ω
states, begin to appear.

To provide a more quantitative picture of this situation, decompositions by Nex

are shown in Fig. 3 (left): specifically, decompositions for the 0~ω states highlighted
at the bottom of Fig. 2 are overlaid in the lower panel [Fig. 3(b)], and decompositions
for the 2~ω states highlighted at the top of Fig. 2 are overlaid in the upper panel
[Fig. 3(a)].3 Clearly the “0~ω” states are not described entirely in the valence shell,
but rather are heavily “dressed” with excited oscillator configurations, nor are the
“2~ω” states entirely orthogonal to the valence space. However, the 0~ω states are
dominated by Nex = 0 contributions at the 60%–80% level, while, for the 2~ω states,
the Nex = 0 contributions fall below the 15% level.

We now look at the full decomposition with respect to U(3)× SU(2) character,
labeled by the U(3)× SU(2) quantum numbers Nex(λ, µ)S, in Fig. 4. The states in
the 0~ω family highlighted at the bottom of Fig. 2 all have dominant U(3)× SU(2)
contribution 0(2, 0)1. [For the ground state of 6Li, the U(3) structure — and 0(2, 0)1
dominance — was explored by Dytrych et al. [28], on the basis of ab initio SU(3)-
NCSM calculations.] Contributions from the other 0~ω U(3)× SU(2) irreps appear
at the few percent level. This pattern of U(3)×SU(2) contributions is shown for the
1+1 ground state and 3+1 first excited state in Fig. 4(c,d). The states in the 2~ω family
highlighted at the top of Fig. 2 instead have dominant U(3) × SU(2) contribution
2(4, 0)1, as shown for the 1+ and 3+ states of that family in Fig. 4(a,b).

While the U(3) × SU(2) decomposition begins to tell us about the symmetry
properties of these states, it provides only partial information on the symplectic
structure. Any SpNCCI basis state with Nex excitation quanta comes from a sym-
plectic irrep with Nσ,ex ≤ Nex. That is, the basis state may itself be part of an
LGI (Nσ,ex = Nex), or it may be obtained by the action of the symplectic raising
operator from a lower LGI (Nσ,ex < Nex).

Each bar in the U(3) × SU(2) decomposition histograms in Fig. 4 represents
the total probability contribution of many basis states from several U(3) × SU(2)

3When interpreting these, and subsequent, decompositions in an oscillator basis, it is important
to keep in mind that they reflect a particular choice of oscillator length (here, corresponding to
~ω = 20 MeV) and are subject to change as the oscillator basis is dilated to other values of ~ω.
Therefore, one should be cautious in attaching undue physical significance, e.g., interpreting them
to mean that any given state has fundamentally a “0~ω” or “2~ω” nature with respect to some true
mean-field vacuum.
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Figure 4: Decompositions of calculated eigenstates by U(3) × SU(2) contributions
Nex(λ, µ)S: for the lowest 1+ and 3+ states (c–d) and for excited 1+ and 3+ states
of predominantly 2~ω character (a–b). The contributions are ordered, from left to
right in the figure, first by Nex, and then by SU(3) and spin quantum numbers.

irreps sharing the same quantum numbers. For instance, there are in fact 8 different
U(3) × SU(2) irreps with quantum numbers 2(4, 0)1, for 6Li. One of these comes
from the Nσ,ex = 0 symplectic irrep 0(2, 0)1, while the rest are themselves LGIs of
Nσ,ex = 2 symplectic irreps.

Before breaking each wave function down into contributions from specific Sp(3,R)
quantum numbers, it is informative to simply look at the decomposition of each wave
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Figure 5: Decompositions of calculated eigenstates by Sp(3,R)×SU(2) contributions
Nσ,ex(λσ, µσ)S: for the lowest 1+ and 3+ states (c–d) and for excited 1+ and 3+

states of predominantly 2~ω character (a–b).

function with respect to how “excited” the contributing symplectic irreps are. De-
compositions by Nσ,ex are shown in Fig. 3 (right).

Since the Nσ,ex = 0 contribution must be at least as large as the Nex = 0 con-
tribution, clearly the 0~ω states will have a significant Nσ,ex = 0 contribution. In
particular, for the highlighted family of states with U(3)× SU(2) character 0(2, 0)1
[Fig. 3(d)], the Nσ,ex = 0 contributions are in the 70%–90% range. Thus, a sub-
stantial portion of the excited oscillator contributions [Fig. 3(c)] actually comes
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from Nσ,ex = 0 sympletic irreps. This is encouraging for the viability of symplectic
truncation schemes.

But what about the 2~ω states? For the highlighted family of states with U(3)×
SU(2) character 2(4, 0)1 [Fig. 3(b)], recall that this 2(4, 0)1 contribution could come
either from the Nσ,ex = 0 symplectic irrep 0(2, 0)1 or from the 2(4, 0)1 LGIs of
Nσ,ex = 2 symplectic irreps. So, are these 2~ω states dominated by contributions
from Nσ,ex = 0 symplectic irreps or from Nσ,ex = 2 symplectic LGIs? From the Nσ,ex

decompositions [Fig. 3(b)], it is immediately apparent that they are dominated by
contributions from Nσ,ex = 0, at the > 70% level.

The full decompositions with respect to Sp(3,R) × SU(2) character, labeled by
the Sp(3,R) × SU(2) quantum numbers Nσ,ex(λσ, µσ)S, are shown in Fig. 5. The
most notable feature apparent in Fig. 5 is the dominance of the contribution from
the 0(2, 0)1 symplectic irrep, for all these states. In fact, all the highlighted states in
Fig. 2 — both the low-lying 0~ω states with 0(2, 0)1 U(3)×SU(2) character and the
high-lying 2~ω states with 2(4, 0)1 U(3)×SU(2) character — receive their dominant
contribution from this single Nσ,ex = 0 symplectic irrep, the 0(2, 0)1 symplectic
irrep.

Thus, states with very different oscillator excitation content [Fig. 3 (left)], and
consequently very different U(3) content (Fig. 4), nonetheless form a larger family
of states sharing the same symplectic symmetry. This is fundamentally the idea
of the classification scheme for the SpNCCI basis states in an Sp(3,R) ⊃ U(3)
scheme (2.1): many U(3) irreps form a single Sp(3,R) irrep, as illustrated in Fig. 1
(inset). However, here we find the same Sp(3,R) ⊃ U(3) organizational scheme
holding for the physical spectrum of energy eigenstates obtained from an ab initio
calculation.

4 Conclusions

In conclusion, a framework for ab initio no-core configuration interaction calculations
in an Sp(3,R) ⊃ U(3) symplectic basis is now in place. This scheme builds on an
existing SU(3)-coupled framework for the nuclear problem and combines it with the
group-theoretical machinery for Sp(3,R).

In initial calculations, illustrated here with 6Li, we confirm Sp(3,R) as an ap-
proximate symmetry of states throughout the low-energy spectrum. These states
are characterized by mixing of a few dominant symplectic irreps. Then, families of
states arise with similar symplectic structure, despite their differing U(3) content.

To take full advantage of approximate symplectic symmetry in nuclei, as a means
of accelerating convergence of NCCI calculations, it will be necessary to go beyond
the simple benchmark Nmax truncation scheme for the SpNCCI space illustrated
here. While some gains can likely be made by truncating the space to dominant
Nσ(λσ, µσ)S symplectic subspaces, these subspaces are highly degenerate, especially
as we go to higher Nσ,ex.
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The most effective truncation will therefore likely come by identifying the few
dominant symplectic irreps from within these subspaces (e.g., by some variant of
importance truncation [29]). Once these “Hamiltonian preferred” symplectic irreps
are identified, a more stringent truncation can be carried out to a relatively small
number of symplectic irreps within each subspace.
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