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Rezumat. In order to forecast the solar radiation, two statistical models, namely 

Artificial Neural Network (ANN) and Autoregressive Integrated Moving Average 

(ARIMA), were analyzed. Considering these methods, an estimation of energy production 

for BIPV systems and PV parks as well was developed. The results obtained by ANN and 

ARIMA models for the analyzed case studies were compared between them. We analyzed 

the fluctuations of daily solar irradiation and defined a few synoptic situations to include 

the cloudiness changes. In this way it is possible to improve the forecasting quality. The 

solar radiation forecasting based on the two statistical models could be applied with 

good results on short term and long term as well. Based on complete data sets that 

include meteorological parameters, such as: 1) air temperature 2) cloudiness, 3) 

atmospheric pressure, 4) relative humidity and 5) sunshine duration as input data, we 

minimized the forecasting errors and achieved a more accurate estimation of the power 

output for the studied PV park. 

Taking into account this approach regarding the forecasting of the PV systems, we could 

introduce a short analysis of the PV market development using the worldwide PV market 

performances and features for 2014. The European PV market pointing on its prospects 

and forecasts until 2019 was characterized. 

Keywords: forecasting, solar radiation, statistical models, variability index, energy production, 

BIPV system, PV Park, PV market 

1.   INTRODUCTION 

 In the past few years, the percentage of energy obtained from renewable energy 

sources has increased considerably. This type of energy presents numerous 

advantages, leading to the sustainable development of the society but has a major 

disadvantage: it is very fluctuant. This disadvantage becomes more and more an 

issue, as the overall percentage of renewable energy increases, having a negative 

impact on the energy distribution equipments as well as on the energy quality. 

In order to obtain a high penetration rate of PV systems [1], two challenges have 

to be considered: 1) variability (the PV output has a variability at all timescales) 

and 2) uncertainty (the variability is difficult to be predicted). 

 The two main features characterising the strong dissemination of PV systems 

are represented by: 1) variability, and 2) uncertainty [2]. Due to its variability, PV 

output has fluctuations at all timescales (from seconds to years), while the 
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uncertainty determines difficulties for output forecasting. The forecast could be 

applied to one PV system or to several PV systems distributed on a specific 

geographical area. The forecasts could aim on output power of PV systems or on 

its rate of change (ramp rate), [3]. Forecasting methods could be based on 

different tools and databases, supplied by weather stations, satellites or outputs 

obtained from numerical weather prediction models (NWP), [4]. The main 

weather forecasting parameters are: global horizontal irradiance and ambient 

temperature. The main forecasting models could be defined as physical and 

statistical ones. Our article is focused on two statistical models, namely 

Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural 

Network (ANN), [5, 6, 7]. The statistical approach depends on past data to “train” 

models without dependence on PV models. 

 There are two classes of forecasting methods developed for different forecast 

horizons, [8]:  

• intra-day forecasts (PV forecasting from 0 to 6 hours). For instance, NWP 

models could be applied for intra-day forecasts. 

• PV forecasting from 6 hours to multiple days. 

 Specific point has to be addressed to forecast accuracy. There were several 

attempts to improve solar forecast standardizing [9]. Common metrics proposed 

include mean absolute error (MAE), mean bias error (MBE) and root mean 

quadratic error (rMSE) [10]. 

 Considering electric PV energy, obtained through small PV systems or large 

photovoltaic power plants, it varies not only on annual cycles (different incident 

angles of the solar radiation depending on the season) or daily cycle (day and 

night cycle) but also depend on spontaneous factors such as cloudiness, 

nebulosity, and aerosol content [11]. 

 The forecast precision is influenced by the following aspects: regional climate, 

meteorological conditions, forecast horizon and precision metrics. 

 The article tried to concentrate some of these ideas on specific case-studies: a 

BIPV system (located at Renewable Energy Lab, Faculty of Applied Sciences, 

Polytechnic University of Bucharest) [12] and a PV park, located in the southern 

part of Romania, [13]. The forecasting of energy production for PV systems/ 

Parks could contribute to their exploitations in the best conditions what could 

determine to an improvement/optimization of the operational efficiency of these 

units. The forecasting approach of PV systems is extremely useful to understand 

the PV market on local, European or worldwide level, [14]. Some features of the 

PV market development on European and world level are analyzed in this review 

article. 
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2.   SOLAR RADIATON FORECASTING BASED ON TWO 

STATISTICAL MODELS: ARIMA AND ANN  

 

 2.1 Preliminary 
  

 In the recent years, the energy quota production from Renewable Energy 

Sources (RES) has grown considerably. This renewable energy presents numerous 

advantages, which lead to the sustainable development of society, but it has a 

major disadvantage: it is very fluctuant. This disadvantage becomes more and 

more an issue, because an increase in the percentage of total energy production 

using renewable energy sources will have a negative impact on energy 

distribution equipment, as well as on the quality of energy. 

 There are significant research efforts around the world to develop a precise 

forecast models in order to meet the new requirements. Incoming solar radiation 

depends very much on the current state of the atmosphere, weather (e.g. clouds, 

aerosols, etc.). Because these parameters are determined by atmospheric processes 

at local level, solar radiation forecasts require methods able to include physics of 

these processes.  

 In the solar radiation forecasting on short-term different approaches have been 

introduced using: 1) time series empirical models by Reikard, [15], Behrang [16]; 

2) physical models by Lara-Fangeo, [17] et al. and Breitkreuz et al., [18];     3)  

satellite models by Perez et al., [19] Lorenz et al. [20] and Heinemann et al., [21], 

and  4) a combination of these models by Fernandez-Jimenez et al., [22] and 

Kratzenberg, et al., [23]              

 In the choosing of one of these models, usually are taken into account: the 

availability of meteorological data used as input data of the model and the 

precision of the model, as well. The results show that the accuracy of the forecast 

depends very much on the daily variability of solar irradiance. Thus, we will look 

at two methods that will be used in the forecast of solar radiation. 
 

2.2 Presentation and discussion of the ARIMA (Autoregressive Integrated 

Moving Average) model.  

 The statistical ARIMA model is characterized by three parameters: p, d and q. 

The identifying of the correct temporal series is a process to find the values of 

these parameters in a way that will establish the pattern found from used data. 

When the value of a parameter is null, it means that the model will not be 

necessary.                    

 The d item is identified before the p and q items. The aim is to identify if the 

process is stationary. Otherwise, it should be done stationary before the 

identifying of the p and q values. 
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 The three terms that will be identified in the ARIMA model are: 

• The autoregressive-term – p 

• The integration term (or tendency) – d 

• The mobile average-term – q 

 The autoregressive term determine dependences between consecutive 

observations. Every single term posesses an associated correlation coefficient 

which describes the dependency magnitude, i.e. in a model posessing two 

autoregressive terms (p=2), an observation depends (or is forecasted) on other two 

observations. The mobile average-term q describes the endurance of a random 

shock (or accidental deviation) from one observation to the consecutive one. For 

example, in a model having q=2, an observation is depending on two random 

shocks. The integration term is intended to transform a nonstationary temporal 

series, into a stationary one. A model with the integration term d=2 must be 

differentiated twice in order to make it stationary. Differentiation in statistics 

refers to a transformation applied to a data set to make it stationary. 

 This can be achieved if the average time series is constant (i.e. observations 

should fluctuate around the mean) and the variant of the series must be constant. 

A series is stationary if a shock is absorbed in time. If the series is not stationary, 

through differentiation it is necessary to reach to a stationary one; the integration 

order represents the number of successive required differentiations  for obtaining 

stationary series (in general, its value is 1 or 2). 

 The analysis of time series is generally performed using computing machines. 

The main reference for ARIMA models is the ARIMA Box Jenkins, that is non – 

season model.  In this model three stages are used to identify the process 

correctly: 

• Model selection is done by identifying if the model would be stationary 

• Estimation of parameters uses computational algorithms to determine the 

coefficients that describe the best model of ARIMA. The most used algorithm 

is represented by estimation of mean quadratic errors. 

• Checking of the model is performed by testing if the selected model is 

specified by a stationary univariate process. If this does not happen, the process  

must be replayed starting with the first stage to improve the model. 

An ARIMA model of type (p, q) can be described as follows, [24]:  

Yt = a0 + a1Yt-1 + … + apYt-p – b1 t-1 – b2 t-2 - … - bq t-q                              (2.1) 

where p represents the order of autoregressive, q is the order of mobile average 

and t  is a white noise.  

When q = 0 we obtain the autoregressive model of p order, noted AR (p): 

Yt = a0 + a1Yt-1 + … + apYt-p                                                                              (2.2) 
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For:  p = 0, we can get the mobile average model of order q: 

Yt = a0 – b1 t-1 – b2 t-2 - … - bq t-q + t                                                                (2.3) 
 

2.3 Presentation and discussion of the ANN (Artificial Neural Network) model  

 An artificial neural network represents a calculation method that trys to imitate 

the operation of a human brain. An artificial neuron is a computational model 

inspired by natural neurons. It is known that neurons receive signals through 

synapses located in dendrites or neuron membrane, as can be seen in Figure 2.1. 

When the received signal is enough strong (it has the power to pass a certain 

threshold), the neuron becomes active and sends a signal to the axon. The signal 

may also be sent to other synapses or can activate other neurons. 

 

Figure 2.1: Natural Neurons (artistic concept) 

 

 The neuronal network is made of input data (proper synapses) which are 

multiplied by the weights and then are calculated by a mathematical function that 

determines the neuron activation, [25]. A different function calculates the output 

of an artificial neuron that presents a dependence of certain threshold. Artificial 

neural networks, shown in Figure 2.2 combines artificial neurons to process 

information. 

 

Figure 2.2: An artificial neuron 
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 The more artificial neuron weigh is greater, the more the input multiplied by 

this will be stronger. By adjusting the weights, we can get the desired output for 

specific inputs. When in the neuronal network there are hundreds or thousands of 

neurons, algorithms that adjust the weights of the neural networks must be find; 

this process represents the training or learning of the neuronal network. The first 

model of neuronal network was developed by McCulloch and Pitts, [26] and 

represents a network of interconnected cells, each in functional connection with 

the following. Hundreds of different models of neuronal networks were 

developed; the major differences being are given by the used functions, learning 

algorithms, etc. The neuronal network model used was developed by Rumelhart 

and McClelland in 1986, [27].  

 The backpropagation of errors training algorithm is based of the model 

developed by Rumelhart and McClelland and implements a supervised training 

method of a multilayer network of continuous perceptrons.  This model is used in 

networks of feed-forward type that is the artificial neurons are organized into 

layers and are sending the signal forward, while errors are propagated back. The 

supervised training represents the fact that the network receives the algorithm 

with inputs and outputs would be achieved by the network and then, the errors 

(differences between the measured and the forecasted values) would be 

calculated. The goal of this algorithm is to minimize the errors so the network to 

learn from the data provided for training.  

 The activation function of artificial neurons from the neuronal network through 

the back-propagation algorithm is a sum of the inputs multiplied with the 

associated weights. 

                                                            (2.4) 

where,  xi represent the inputs and wji represent their weights. We can deduce that 

the activation of the neuron is influenced only by these inputs and their weights. If 

the output results in the neuron activation, then the neuron becomes linear. The 

most common output function is the sigmoidal: 

                                                           (2.5) 

 The value of the sigmoidal function is very close to 1 for high positive 

numbers, 0.5 for 0 and very close to 0 for negative high numbers. It provides a 

transition between the minimum and maximum of the neuron output (close to 0 or 

1). We can see that the output depends only on activation, which depends on 

inputs and their weights. The training process oriented to determine the best 

possible output for specific inputs. Because the errors represent the differences 
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between the present data and desired outputs, this weights have to be changed to 

reduce errors.  

 The error function for the output of each neuron can be defined by:  

                                                    (2.6) 

 It will take the quadratic of the difference between output and the target 

because it will always be positive and the difference will always be very big or 

very small. Neuronal network error will be then the sum of errors for all neurons 

in the output layer: 

                                                      (2.7) 

 The back-propagation algorithm calculates how the errors will depend on the 

outputs, inputs and their weights. After this is accomplished, the adjustment of the 

weights can be achived by the descending gradient method:   

                                                                               (2.8) 

 The magnitude of the adjustments will depend on  and the weights 

contribution in the error function. 

 If the weights have a hight impact on errors, the adjustments will be larger than 

if the weights have a smaller impact on errors. The evaluation of the derivative of 

E in relation with  is the aim of the backpropagation algorithm. To determine 

this derivative, firstly you should identifiy the dependence of the output error, 

what means to do the derivative of E in relation with : 

                                                                 (2.9) 

 We could do the derivative of in relation with  and will obtain:  

                                                                  (2.10) 

 At the end we will have by combining eqs. (2.9) and (2.10): 

                                                 (2.11) 

 Thus, the adjustments of each weight will be: 

                                        (2.12) 

 We can use the last equation to train a neuronal network with two layers.  If we 

would like to adapt the weights (called ) of a previous layer, we have to  

calculate the dependence of  errors on the inputs of this layer. For that, we could 

change xi with wji in the last three equations. At the same time, we have to 

identify the dependence of the error for the adjustment network : 

                                                                (2.13) 
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              where 

                                                               (2.14) 

 This type of method was used in identification, modelling, optimization and 

forecasting of complex systems. These systems use geographic coordinates and 

meteorological data such as humidity, air temperature, pressure, etc. as input data 

for estimation of global solar iradiance [28]. 

 

3.    ENERGY PRODUCTION FORECASTING FOR BIPV SYSTEM 

BASED ON ARIMA AND ANN MODELS.  

 

3.1    Presentation of the analysed BIPV system. 

          The structure of the BIPV system from Solar Energy Laboratory, Faculty of 

Applied Sciences, University Polytechnic of Bucharest (the selected system for 

our study) is presented in the Figure 3.1., [29]. 

 

 
Figure 3.1: BIPV system structure (six solar panels, inverter, fuses panel, 

 PV monitoring station and plug). 

                                                    
 

 There were collected data on brightness and system performance in terms of 

power (Pac) for a period of five days.  

 Three days were used for forecast and the other two days were used for the 

purpose of validating of the results. In the Figure 3.2 is presented the evolution of 

brightnesss and power for a period of one-day in. 
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Figure 3.2: The evolution of the power (Pac) and brightness parameters on time (14.06.2012) 

 

 3.2  Energy production forecasting for a BIPV system based on ARIMA model   

 The comparison provides detailed data from 15 in 15 minutes, allows getting 

important information regarding system performance. You can notice a decrease 

of power in the latter part of the day.   

 Explication could be: 1) The PV windows is oriented towards East, so the 

incident solar radiation is maximum in the first part of day, 2) The system is 

shadowed in the second part of day. 

 The solar radiation data obtained using the Laboratory meteorological station, 

were used for the solar radiation forecasting on short term, using various methods 

for the location of the BIPV system. In the first phase, the ARIMA model is used.  

 The operation of the ARIMA model is shown in Figure 3.3. The software used 

for making forecasts is called IBM SPSS – is a predictive analysis software 

developed by IBM; it offers a range of statistical procedures including the linear 

regressions, Monte Carlo simulations, geospatial analysis, etc. 

 If the forecasting process contain seasonal fluctuations, the process becomes 

ARIMA (p, d, q) (P, D, Q) s, where p is the AR process order, d is the term 

differentiation, q is the mobile average order, P is the AR seasonal process order, 

Q is the MA order, D is the seasonal differentiation order and s is the length of the  

seasonal period. 
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Figure 3.3: The operation of the ARIMA model  

for forecasting of energy production for PV system 

 

 

Figure 3.4: The results of ARIMA forecasting model: observed data (13-15.06.2012),  

fitted data and forecasting values (16-18.06.2012) 
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 The results of ARIMA model are represented by input data set for June   13 -

15.06, while the model is verified by data 16.06-18.06, see Figures 3.4 and 3.5. 

The selected model for solar radiation forecasts is of the type ARIMA (1,0,0) 

(1,1,0). This is due to the choice of the Akaike-Schwarz selection criterion, [30]. 
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Figure 3.5: The fitting of the forecasting data for ARIMA model and measured data. 

 

3.3   Energy production forecasting for a BIPV system based on ANN model  

 Two main classes of neural networks architecture can be identified, namely: 

the architecture based on the propagation of information from the input data to the 

output ones, and the architecture of feed-forward type; the second class is 

represented by the architecture of recurrent networks. The operation of a neural 

network is represented in Figure 3.6.  

 

Figure 3.6: The operation of ANN model for the energy output forecasting for a PV system 
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 Taking into account five meteorological variables, namely: air temperature, 

relative humidity, atmospheric pressure, wind speed and duration of sunlight 

brightness, was made to forecast data for 16.06.2012 using ANN model, see 

Figure 3.7. 
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Figure: 3.7: Fitting of forecasted data using ANN model and measured data (16.06.2012) 

           A statistical relationship between global solar radiation and energy 

production is defined, taking into account the technical characteristics of the PV 

system, system losses and its location. Pac forecasting values were compared with 

the measured ones, see Figure 3.8. 
 

 

Figura 3.8 Comparison between the forecasted values and measured ones for Pac on 17.06.2012 

 

 The error between the measured and calculated forecasting values for Pac 

using the ANN model is 8.89%. 
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3.4   The improvement of forecasting quality: index of variability for solar radiation 

 Solar radiation forecasting error depends on the daily variation of solar 

radiation. At the same time, the daily fluctuation of solar radiation shows an 

important correlation with cloudiness, so, the information concerning cloudiness 

will be necessary to increase the accuracy of the forecast. In the most cases the 

accepted results could not be obtained. 

 In order to take into account the influence of the cloudiness, but reducing the 

number of the input data, we could introduce empirical indicator, namely:  

                                                                                          (3.15) 

 In the eq. (3.15) we have:  – the variability index of solar radiation,   – 

the monthly average global solar radiation,  – the standard error of global solar 

radiation. 

 In fact, this variability index quantifies the variation of solar irradiance in a 

specific day, compared with the overall situation for solar irradiance in a month; 

the variation of solar irradiance in previous days is taken into account indirectly 

by the monthly average. This daily index offers more detailed information, as a 

classification based on a synoptic situation. 

 The four situations include changes in the cloudiness on the previous day and 

on the forcasted day and are the following, see Figure. 3.9: 

       1. Situation of overcast/fog on the forecasted day and situation with partly 

cloudy sky/clear sky on the previous day < 0.5 (on the previous day  > 0.5)  

       2. Situation of overcast/fog on the forecasted day and the situation with the 

sky overcast/fog on the previous day   < 0.5 (on the previous day  < 0.5) 

       3. Situation of the partly cloudy sky/clear sky on the forecasted day and 

situation with overcast/fog on the previous day > 0.5 (on the previous day   

< 0.5) 

       4. Situation of the partly cloudy sky / clear sky on the forecasted day and 

situation with partly cloudy sky/clear sky on the previous day > 0.5 (on the 

previous day   > 0.5) 

  The accuracy of the solar irradiance forecast of developed in the four situations 

has been achieved using temporal series of ARIMA and ANN models in order to 

quantify the meaning of the forecasting error [31, 32, 33, 34]. Considering the 

frequency of situations over the investigated period, the most common situation is 

the fourth that represents 64% of the cases. The less common situation is the 

second, with a frequency of 8-11% of cases, see Figure 3.10. By this method, the 

errors of forecasts for daily solar radiation can be quantified even during the 
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forecasting process, defining only three situations, namely: 1) the situation of 

cloudiness; 2) the situation of fog; 3) the situation of partly cloudy sky / clear sky 

 

 

Figure 3.9: The four situations of cloudiness changes quantified by VDR index, based on solar 

irradiance, for Bucharest/Afumati, Meteorological Station (kJ/m2/day). 

 

Figure 3.10: The relative frequency of the four situations of solar irradiation/cloudiness quantified 

by VDR index, at Bucharest/Afumati Meteorological Station. 
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 4.   SOLAR RADIATION FORECASTING ON SHORT TERM AND LONG TERM 

4.1   Solar  forecasting on short term 

 Using statistical ARIMA and ANN models, short-term forecast was done 

taking into account the synoptic situations of quantified days by VDR index [35, 

36]. For the both models the analysed temporal series is 10 days. The accuracy of 

forecasts is quantified by calculation of the relative average quadratic error, using 

the following:  

                                                                    (4.16) 

where:  represents forecasting value,  represents the actual (measured) value, 

 is the number of forecasting points, represents the actual (measured) average 

values daily. 

 Tables 4.1 and 4.2 include the results of the corresponding forecasts of the four 

situations. The best results are obtained in the case of situations of partly cloudy 

sky/clear sky on the forecasted day and the partly cloudy sky/ clear sky on the day 

previous, where monthly rRMSE varies between 6.2 and 53% while the annual 

one is less than 26.7%.  

 In the case of situations of overcast/fog on the forecasted day and overcast/fog 

on the previous day, as well as on in the case of situations the partly cloudy 

sky/clear sky on the forecast day and overcast/fog on the previous day, the 

accuracy of forecasts is relatively similar, ranging from 52.6% to 96.8%.  

 In the case of situations of overcast/fog on the forecasted day with partly 

cloudy sky/clear sky on the previous day forecasts show an enormous error of 

250%.                 

 Comparing the two models, ARIMA and ANN, it was noted that the magnitude 

of the errors is quite close in each case, but at the same time, the ARIMA model 

offers better results with 2,9% in the fourth case.  

 We believe that the accuracy of forecasts of depends closely on daily variation 

of solar radiation controlled by cloudiness, and the forecast of time series provides 

acceptable results in the case of situations with of the partly cloudy sky /clear sky 

on the forecasted day with partly cloudy sky/clear sky on the previous day, [37, 

38]. 
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Table 4.1: The rRMSE values (%) in the case of the four situations quantified by the VDR index. 

The data are processes for 2008, the forecast period is 10 days [39]. 

 
 

The rRMSE values (%) in the case of the four situations quantified by the VDR index.  

The data are processes for 2009, the forecast period is 10 days [39]. 

 

4.2   Solar  forecasting on long term 

 It was also evaluated the decade variation of solar radiation whereas the long-

term changes of solar energy have to be taken into account in applications [40, 

41].  The linear regression model was applied for trend analysis. The anual data 

are are obtained from the World Centre Radiation Data [42] database and 
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represent the data corresponding to the period 1975-2006 for Bucharest 

meteorological station. The linear trend is significant at a level of 95% 

probability, thus it is identified an increase in solar radiation. The magnitude of 

the absolute change is 36.5 (± 2.43) J/cm2 day-1 /decade, as in Figure 4.1. 

 

 
Figure 4.1 Multiannual variation of solar irradiation at Bucharest, the period of 1975-2006. 

 

 Using ARIMA and ANN forecasting models and setting the most common 

situation of the days in terms of weather, the solar radiation forecast has been 

made on January 20, 2009, as represented in Figure 4.2. 
 

 

 
 

Figure 4.2:  Forecast of solar irradiance for 20.01.2009 elaborated by ARIMA and ANN models. 

 

 Using this forecast, another forecast was elaborated, namely the power 

supplied by the BIPV system from Polytechnic University of Bucharest (PUB), 

shown in Figure 4.3. 
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Figure 4.3: Forecasted and actual power output of the BIPV System in 20.01.2009. 

 

 In this case the calculated error was of 26.9%, and in agreement with the 

calculated error for the forecast of solar radiation, i.e. 26.7%. This result is due to 

the improving of solar radiation forecast by integrating of the data referring to 

different meteorological parameters (temperature, cloudiness etc.), as well as 

through the separation of synoptic situations depending on the variability index. 

 Based on the analysis of multiannual changes of solar irradiance, the forecasted 

power of the BIPV system for the year 2013 was evaluated, see Figure. 4.4. 
 

 
 

Figure 4.4: The power output of the BIPV system for year of 2013 based on the estimation of 

multiannual solar irradiance 

 

 It is noted that the maximum energy production of the BIPV system is 

carried out in May. The total forecasted energy production for 2013 is 163 kW, 

a result which is in line with the power performed in the previous year, 

respectively 157 kW. 

 



 

Forecasting of Energy Production and Operational Optimization 

 or Photovoltaic Systems. 49 

 

5.   ENERGY PRODUCTION FORECASTING FOR A PHOTOVOLTAIC PARK 

 

 Using the ARIMA and ANN, models we have examined the solar radiation 

forecast at surface (SSR), using the acquired data from analysed PV Park (in the 

South of Romanie). The forecasts for 10 days were developed based on previous 

time-series.  

 The forecasts have been developed for clear sky or cloudy days; in these cases 

the variability index of solar radiation is VDR > 0.5. In the study period (1 July 

2013-20 October 2014), the frequency of these situations is of 46.9%. 

 The results of the forecast conclude that the ARIMA model is more efficient 

than the ANN model [43, 44, 45]. The statistics are significant in the case of 

ARIMA (1,0,14); this is the reason why this variant was chosen for analysis. Also, 

comparing the forecasted results with the measured ones,we could remark that  

the ARIMA (1,0,14)  model is more efficient than the ARIMA (1,0,7). 

 The ARIMA (1,0,7) and ARIMA (1,0,14) models were selected after 

performing several iterations. The statistical test used to identify the most 

significant model is Box Ljung Statistic. In ARIMA model this test applies to 

residues of a fitted model not on the original series, and chek if these residues 

present or not autocorrelation. 

 The measured and forcasted values expected for August and September 2013 

are presented in Figures 5.1 and 5.2. 
 

 

Figura 5.1 Measured and forecasted values for 10 days in August 2013,  

using ARIMA and ANN models 



 

 

50 Laurentiu Fara, Alexandru Diaconu, Dan Crăciunescu  

 

  

Figura 5.2 Measured and forecasted values for 10 days in September 2013,  

using ARIMA and ANN models 

 The accuracy of forecasts is quantified by the relative average absolute error 

(rMAE) and relative mean quadratic error (rRMSE), calculated as follows:  

                                                          (5.17) 

                                             (5.18) 

where: Ft represents the forecasted value, At reprented the measured value, n is the 

number of forecasted points and Gn represents the average daily irradiance of the 

measured values. In Tables 5.1: and 5.2: the measured and forecasted values for 

August and September 2013, respectively are given using ARIMA and ANN 

models.  
 

Table 5.1: Measured and forecasted values for 10 days in August 2013 using ARIMA and ANN models 

year month day 
ARIMA(1.0.14) 

(Wh/mp) 

ARIMA(1.0.7) 

(Wh/mp) 

ANN 

(Wh/mp) 

      Measured Forecasted Measured Forecasted Measured Forecasted 

2013 7 31 4451.3 6138.76 4451.3 6459.48 4451.3 7044 

2013 8 1 6103.6 6822.83 6103.6 7354.92 6103.6 6844 

2013 8 2 7240.3 6353.43 7240.3 6916.88 7240.3 6963 

2013 8 3 7416.6 6754.42 7416.6 6878.25 - - 

2013 8 4 6091 6878.99 6091 6894.17 6091 7024 

2013 8 5 7388.08 7598.88 7388.08 7393.5 7388.08 7019 

2013 8 6 7101.34 7006.33 7101.34 6974.19 7101.34 7002 

2013 8 7 7214.13 7512.72 7214.13 7200.2 7214.13 7101 

2013 8 8 7285.4 7055.09 7285.4 7069.23 7285.4 7098 

2013 8 9 7325.3 7109.01 7325.3 7210.03 - - 
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Table 5.2: Measured and forecasted values for 10 days in September 2013 using ARIMA and ANN models 

year month day 
ARIMA(1.0.14) 

(Wh/mp) 

ARIMA(1.0.7) 

(Wh/mp) 

ANN 

(Wh/mp) 

      Measured Forecasted Measured Forecasted Measured Forecasted 

2013 9 19 
  

    
  

2013 9 20 6624.2 6123.75 6624.2 5721.44 6624.2 5431 

2013 9 21 5078 6379.47 5078 5973.61 5078 5421 

2013 9 22 6997.1 5857.37 6997.1 5038.02 6997.1 5315 

2013 9 23 5907 6697.06 5907 6836.91 5907 5210 

2013 9 24 5595.3 5228.81 5595.3 5847.36 5595.3 5019 

2013 9 25 6976.2 6379.57 6976.2 5745.71 6976.2 4696 

2013 9 26 6661.8 5745.95 6661.8 5755.16 6661.8 5668 

2013 9 27 5983.8 5882.45 5983.8 5756.6 5983.8 5706 

2013 9 28 4089.2 5472.23 4089.2 5755.73 - - 

 

 Comparison between the forecasted energy and energy given to the grid is 

evaluated for the period 01.08.2013-09.08.2013 for the analysed PV Park/system. 

     Using the collected data within the PV Park, the exported monthly energy 

shwous that in the period chosen for testing, respectively 01-09.08.2013, an 

aomunt of 513.98 MWh was inserted in the grid. The amount of solar irradiance 

measured in this case was of 63165.75 Wh/m2. 

     We remark that: using ARIMA (1, 0, 14) model, the forecasted solar irradiance 

of 63091 Wh/m2 was estimated and using ARIMA (1,0,7) model, the forcasted 

solar irradiance of 63891 Wh/m2 was estimated. Taking into account the technical 

parameters of the PV Park/system and the forecast for solar radiation, the 

forecasted energy production based on the two ARIMA models will be 513.39 

MWh, respectively 519.90 MWh, see Figure 5.3. 

 

 

Figure 5.3: The difference between the measured values and forecasted values of solar radiation 

using ARIMA model 
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6.   PV MARKET PROGRESS  

6.1   Global PV Market  

 

A.  World market achievements in 2014: 

 On the global scale, in 2014 there were installed 40 GW of photovoltaic 

systems, in comparison to 38.4 GW in 2013 and 30 GW one year earlier, 

establishing a new record in the solar photovoltaic sector. PV, after hydroelectric 

power and wind energy, continues to be the third renewable energy source 

concerning installed capacity around the world [14, 45], thanks to PV market 

expansion, especially in Asia and North America. 

-  In Asia, the main actors are China (10.6 GW installed in 2014, feed-in tariffs 

measures), Japan (9.7 GW installed in 2014, feed-in tariffs measures), Korea 

(roughly 900 MW), Taiwan and Thailand (almost 500 MW each). 

-  In America, there are three countries with significant PV achievements: US 

(with 6.5 GW installed in 2014), Canada and Chile (with roughly 500 MW each 

isntalled in 2014). 

-  In Europe, the main installed capacities in 2014 were in the following three 

countries: UK (2.4 GW), Germany (1.9 GW) and France (a bit over 900 MW). 

-  Other world regions are represented especially by Australia and South Africa, 

with 900 MW installed each, in 2014. 

In short, it can be remarked a significant progress, especially in Asia. 

 

B.  The global PV market characteristics in 2014 are as follows:     

• The PV contribution in the electricity mix is major 

PV and wind are the main renewable energy sources that contributed significantly 

to the electrical power systems in Europe. This development is stressed by the PV 

contribution of 6% to the peak electricity demand. For the future prospects of PV, 

it has to be remarked that PV will contribute more and more to the electricity mix, 

highlighting its integration to the grid. 

 

•  The European PV market development speed is slowly decreasing 

Europe continues to be an important world actor in photovoltaics, based on the 

capacity of 88 GW installed in 2014. It is remarked an excellent balance between 

the utility and distribution installations in the PV market field. 
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•  PV systems become more and more competitive 

PV systems are characterized by two specific trends - higher performance and 

price decreasing - which leads to an increased competitiveness. This aspect 

determines the “dynamic socket parity”, characterized by an increasing long-term 

profit, due to savings and revenues being higher than long-term financing costs. 

 

6.2   PV market in Europe 

 Although the photovoltaic market on global level is characterized by a 

spectacular ascending trend, in Europe it is characterized by a slowing of this 

trend, due to reducing political support in some countries. 

•  The competitivity of PV systems depends not only on their technical and 

ecomomical performance to reduce electricity bills, but also to sell excess 

electricity on the markets. Several countries took retrospective measures that 

reduced the revenues of existing PV plants in the last few years (Spain, Czech 

Republic, Bulgaria and Greece), damaging the attractiveness of PV as a long-

term investment. 

•  The main actor in the field of PV systems in Europe, namely Germany, is 

confronting with a small decline of PV installations, down to 3.3 GW in 

2014. However, there is a total PV installed capacity in the country of 35.7 

GW, although, some regulatory changes pushed the PV market down.  

•   It is remarkable that the 2020 targets in photovoltaics defined in 2009 

have been reached by 9 countries in 2014 [46]. 

The evolution of European PV installed capacity in the period 2000-2014 is 

presented in Figure 6.1 [47]. Distribution per country of annual installed 

capacity, cumulative installed, as well as political support for PV, is 

emphasized in Table 6.1 [48]. 
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Figure 6.1 Evolution of European solar PV cumulative installed capacity 2000 – 2014 [48] 

 

Table 6.1 Solar Photovoltaic Market and Expectations across Europe [46] 

Country 
Total Capacity Installed 

 in 2014(MW DC) 

Governmental support 

expectations 

Austria 767 +++ 

Belgium 3.104 ++ 

Bulgaria 1.022 + 

Croatia 33 ++ 

Denmark 608 +++ 

Estonia 0.2 ++ 

Finland 11.2 +++ 

France 5.632 ++ 

Germany 38.235 ++ 

Greece 2.596 ++ 

Hungary 80 ++ 

Ireland 1.1 +++ 

Italy 18.313 ++ 

Latvia 1.5 ++ 

Lithuania 68 ++ 

Luxembourg 110 +++ 

Malta 23 ++ 

Netherlands 1.042 +++ 

Poland 34 + 

Portugal 414 ++ 
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Country 
Total Capacity Installed 

 in 2014(MW DC) 

Governmental support 

expectations 

Romania 1.223 ++ 

Slovakia 524 ++ 

Slovenia 256 +++ 

Spain 5.388 + 

Sweden 79 +++ 

Switzerland 1.046 +++ 

Turkey 58 +++ 

United Kingdom 5.230 +++ 

6.3   European PV market forecast until 2019 

 It is estimated that the solar PV market in Europe will firstly increase between 

7 GW (low-case scenario) and 11 GW (high-case scenario) in 2015 before rising 

again in a slower manner, with installations varying between 6 GW in 2015 and 

17 GW until 2019, as can be seen in Figure 6.2 [49]. 

 

Figure 6.2: Scenarios for European solar PV market until 2019 [46] 

• Considering the high-case scenario, there could be achieved a target of 158 

GW installed capacity by 2019, which would represent 180% of today’s 

PV market. The low-case scenario predicts a total installed capacity of 120 

GW, while the medium scenario gives a value of 140 GW. 
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7. CONCLUSIONS AND PROSPECTS 

7.1 Conclusions concerning forecasting of solar radiation and energy production 

 Solar radiation forecasts were developed in the short term using statistical 

models ARIMA and ANN. The efficiency of forecasted time-series is quantified 

by rRMSE and rMAE. 

     These models have been improved, separating the clear sky days and cloudy 

ones, using solar radiation variability index, VDR. The separation of synoptic 

situations was performed on time series, not on forecasted values. 

     It was established that the most common cases for using of VDR index are clear 

sky days in the forecasted day and in the day before, where "forecasted" day is 

represented by the day "tomorrow" and the day "before" is represented by "the 

present day" or the day when the forecast is achieved. 

     For the overcasted or cloudy days, these forecasting solutions offer very large 

errors. The forecast results have shown that the ARIMA model is more efficient 

than the ANN model.  

     The statistics are significant in the case of ARIMA (1,0,14), this is the reason  

why this variant was chosen for analysis. Also, comparing the forecasted results 

with measured values, we note that ARIMA model (1,0,14) is more efficient  than 

ARIMA (1,0,7) The ARIMA models (1,0,7) and ARIMA (1,0,14) were selected 

after performing several iterations. 

     The statistical test used to identify the most significant model is Box Ljung 

Statistic. The Box-Ljung, known as the modified Box-Pierce statistic model, gives 

indications if a model is correctly specified. 

7.2   Prospects concerning the PV Market 

     The PV industry is characterized now by a challenging period, with a market 

oriented mainly to Asia. However, Europe is the second actor in the world, 

although the political support decreased in many countries with great potential. 

The main aspects that determine the PV market trends are: 

•  PV is competitive in some countries with other renewable 

electricity sources, based on electricity cost flattening, while in other 

countries the PV cost comes closer to be competitive with coonventional 

sources, due to an important political support. 

•  In the majority of countries, the PV market is characterized by a 

great influence of policy that determines smart and sustainable financial 

support platforms. 
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•  Taking into account the huge potential of photovoltaics and its 

great advantages for society, the role of PV could be more and more 

remarkable for for the power system. 

•  The increasing role of photovoltaics as non-polluting, secure, cost-

convenient and decentralised electricity option in the energy mix is 

highlighted both in Europe and all over the world. 
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