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On a direct solver for linear least squares

problems∗

Constantin Popa†

Abstract

The Null Space (NS) algorithm is a direct solver for linear systems
of equations. It was initially designed and theoretically analyzed by
M. Benzi in 1993 for square nonsingular systems, and its main idea
consists on projections of an initial set of vectors onto the hyperplanes
associated to the system equations, by using projections parallel with
some specific directions which are constructed during the development
of the algorithm. In this paper we extend and theoretically analyze
the NS algorithm to linear least squares problems.
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1 Introduction

For A : m×n and b ∈ IRm we will consider the system of linear equations

Ax = b. (1)

If b is in the range of A, i.e. at least one z ∈ IRn exists such that Az = b, we
say that (1) is consistent and denote by S(A; b) the set of all its solutions
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and by xLS the minimal norm one. If Az 6= b, ∀z ∈ IRn we say that (1)
is inconsistent and reformulate it as a linear least-squares problem: find
x∗ ∈ IRn such that

‖ Ax∗ − b ‖= inf{‖ Ax− b ‖, x ∈ IRn}. (2)

Let LSS(A; b) be the set of all its solutions and xLS the (unique) solution
of minimal norm. A first equivalent consistent formulation of the problem
(2) is given by the associated normal equation (see e.g. [8]).

ATAx∗ = AT b. (3)

Unfortunately, in order to use this equation, the computation of the product
ATA is required, and this is a very expensive procedure for both computa-
tional time and memory aspects. Fortunately, it exists a more convenient
consistent equivalent formulation of (3) through the augmented system, i.e.[

I A
AT 0

] [
r
x

]
=

[
b
0

]
. (4)

The equivalence of the problems (2) and (4) is shown in Proposition 1.2
from [7]. In [2] (see also [3]) the authors introduce and theoretically analyze
the Null Space (NS) algorithm, as a direct method for numerical solution of
square nonsingular systems of linear equations. According to these aspects,
the paper is organized as follows: in section 2 we briefly describe the orig-
inal NS algorithm from [2] - [3]. In section 3 we extend and theoretically
analyze the algorithm NS to general rectangular, but consistent systems of
linear equations and we point out how this extension can solve also inconsis-
tent linear systems (linear least squares problems), through the equivalent
formulations (3) - (4).

2 The Null Space algorithm

In this section we will briefly describe the original Null Space (NS) al-
gorithm, introduced in [2] (see also [3]) for square nonsingular systems of
linear equations of the form

Ax∗ = b, (5)

with x∗ = A−1b its unique solution, where A : n× n and b ∈ IRn. We shall
denote by 〈·, ·〉, ‖ · ‖ the Euclidean scalar product and norm, and by

Si = {x ∈ IRn, 〈Ai, x〉 = 0}, Hi = {x ∈ IRn, 〈Ai, x〉 = bi} = Si +
bi

‖ Ai ‖2
Ai,

(6)
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the vector subspace and hyperplane, respectively associated to the i-th equa-
tion of the system (5), where Ai, i = 1, . . . , n are the rows of A. For d ∈ IRn
such that 〈d,Ai〉 6= 0 and any x ∈ IRn there exists the projections of x par-
allel with d onto Si and Hi (also called “directional projections”), defined
by

P dSi(x) = x− 〈x,Ai〉
〈d,Ai〉

d, P dHi(x) = x− 〈x,Ai〉 − bi
〈d,Ai〉

d. (7)

For any 1 ≤ k ≤ n, let A(k) : k × n be the submatrix of A formed with its
first k rows, i.e.

A(k) =


AT1
AT2
. . .
ATk

 , (8)

and Nk the null space of A(k). The following relations are obvious

Nk = S1 ∩ · · · ∩ Sk, {0} = Nn ⊂ Nn−1 ⊂ · · · ⊂ N2 ⊂ N1 (9)

and

dim(Nk) = n− k, k = 1, . . . , n. (10)

In [2] (see also [3]) the authors consider a set of null vectors

N = {z2, z3, . . . , zn} ⊂ IRn (11)

such that

zk 6= 0, zk ∈ Nk−1, zk /∈ Nk,∀k = 2, . . . , n, (12)

i.e.

〈zk, Aj〉 = 0,∀j = 1, . . . , k − 1 and 〈zk, Ak〉 6= 0. (13)

If such a set of null vectors (11)-(13) is available, we can compute x∗ from
(5) by the following direct solver (DS).
Algorithm DS.

Step 0 (Initialization): any vector x ∈ H1

Step 1 (Successive projections):
for i = 2 : n

x = P z
i

Hi(x) = x− 〈x,Ai〉 − bi
〈zi, Ai〉

zi

end
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Remark 1. We shall denote by e1, e2, . . . , en the canonical basis in IRn.
Then, a possible choice for x in the above Step 0 can be (see [3])

x =
b1
A1k0

ek0 , where A1k0 6= 0. (14)

We reobtain the following result from [2].

Proposition 1. The algorithm DS gives us the unique solution x∗ from (5).

Proof. We first observe that from (12)-(13) it results that

zk ∈ S1 ∩ S2 ∩ · · · ∩ Sk−1, (15)

∀k = 2, . . . , n. The statement of the proposition is equivalent with the
following property

xk ∈ H1 ∩H2 ∩ · · · ∩Hk, (16)

∀1 ≤ k ≤ n, which we will prove by a recursive argument following k. For
k = 1 we get that x1 ∈ H1 according to the construction in Step 0 of the
algorithm DS. Then, let n − 1 ≥ k ≥ 2 be such that (16) holds for it. By
using Step 1 of DS we get

xk+1 = P z
k+1

Hk+1
(xk) = xk − 〈x

k, Ak+1〉 − bk+1

〈zk+1, Ak+1〉
zk+1 ∈ Hk+1. (17)

From (16) (i.e xk ∈ Hj , j = 1, . . . , k), (15) (i.e. zk+1 ∈ Sj , j = 1, . . . , k),
the last equality in (6) and (17) (i.e. xk+1 = xk + αkz

k+1 (αk ∈ IR is the
scalar from (17)) we get xk+1 ∈ Hj , j = 1, . . . , k, which together with (17)
completes the recursion argument and the proof.

In order to construct the above set of null vectors, the authors proposed
in [3] the following Null Vectors (NV) algorithm.
Algorithm NV.

Step 1 (Initialization): any basis Z1 = {z(1)2 , . . . , z
(1)
n } in N1

Step 2 Because dim(N2) = n − 2 we must have 〈A2, z
(1)
i 〉 6= 0, for some

i ∈ {2, 3, . . . , n−1, n}, so we can permute the elements of Z1 such that

〈A2, z
(1)
2 〉 6= 0. Moreover, for the numerical stability of the algorithm

we may choose

0 < |〈A2, z
(1)
2 〉| = max

2≤i≤n
|〈A2, z

(1)
i 〉|. (18)
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Then, we produce the new set Z2 = {z(2)3 , . . . , z
(2)
n } by using directional

projections

z
(2)
j = P

z
(1)
2
H2

(z
(1)
j ) = z

(1)
j −

〈z(1)j , A2〉

〈z(1)2 , A2〉
z
(1)
2 , j = 3, . . . , n. (19)

...

Step n Because dim(Nn−1) = 1 we must have 〈An−1, z(n−2)i 〉 6= 0, for some i ∈
{n− 1, n}, so we can permute the elements of Zn−2 = {z(n−2)n−1 , z

(n−2)
n }

such that 〈An−1, z(n−2)n−1 〉 6= 0. Moreover, for the numerical stability of
the algorithm we may choose

0 < |〈An−1, z(n−2)n−1 〉| = max
n−1≤i≤n

|〈An−1, z(n−2)i 〉|. (20)

Then, we produce the last set Zn−1 = {z(n−1)n } by

z(n−1)n = P
z
(n−2)
n−1

Hn−1
(z(n−2)n ) = z(n−2)n − 〈

(n−2)
n , An−1〉
〈z(n−2)n−1 , An−1〉

z
(n−2)
n−1 . (21)

Step n+1 The set Z of null vectors is given by a last directional projection

Z = {z(1)2 , z
(2)
3 , . . . , z(n−1)n }. (22)

Remark 2. Because we start with a basis Z1 in N1, it can be proved that
the vectors from Z2, . . . ,Zn−1 are also basis in N2, . . . ,Nn−1, respectively
(for the proof see [3]).

Remark 3. Following the ideas from [3], a basis Z1 = {z(1)2 , . . . , z
(1)
n } in

N1 can be constructed as indicated in the following Matlab code.

Given A: n x n;

I=eye(n);z=zeros(n);

[A1k,k]=max(abs(A(1,:)));z(:,1)=I(:,k);

if (k==1)

for i=1:n-1

z(:,i+1)=I(:,i+1)-(A(1,i+1)/A(1,k))*I(:,k);

end

else
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for i=1:k-1

z(:,i+1)=I(:,i)-(A(1,i)/A(1,k))*I(:,k);

end

for i=k:n-1

z(:,i+1)=I(:,i+1)-(A(1,i+1)/A(1,k))*I(:,k);

end

end

We shall call the above NV algorithm together with the solution part DS
the Null Space algorithm (NS). It can be written as follows.
Algorithm NS.

Step 1 (Initialization): any basis Z1 = {z2, . . . , zn} in N1

Step 2 for i=2:n-1

maxim = maxi≤j≤n |〈Ai, zj〉| = |〈Ai, zj
∗〉|.

p(i) = 〈Ai, zj
∗〉

if (j∗ > i) interchange the vectors zi and zj
∗

for j=i+1:n

zj = P z
i

Hi
(zj) = zj − 〈z

j ,Ai〉
p(i) zi

end

end

Step 3 (Initialization): any vector x ∈ H1

Step 4 (Successive projections):
for i = 2 : n

x = P z
i

Hi(x) = x− 〈x,Ai〉 − bi
p(i)

zi

end

3 The generalized Null Space algorithm

For A a general m× n matrix and b ∈ R(A) ⊂ IRm we will consider the
consistent linear system of equations

Ax = b. (23)
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Without restricting the generality of (23) we will suppose that the rows Ai
and columns Aj of A satisfy the assumptions

Ai 6= 0, i = 1, . . . ,m, Aj 6= 0, j = 1, . . . , n. (24)

We propose for the numerical solution of the system (23) the following ex-
tension of the algorithm Null Space from the previous section.
Algorithm General Null Space (GNS)

Step 1 (Initialization): any basis Z1 = {z2, . . . , zn} in N1; τ = 2

Step 2 for i=2:m

if (maxim 6= 0)

maxim = maxτ≤j≤n |〈Ai, zj〉| = |〈Ai, zj
∗〉|.

p(i) = 〈Ai, zj
∗〉

if (j∗ > τ) interchange the vectors zτ and zj
∗

for j=τ+1:n

zj = P z
τ

Hi
(zj) = zj − 〈z

j ,Ai〉
p(i) zτ

end

τ = τ + 1

else p(i) = 0

end

Step 3 (Initialization): any vector x ∈ H1; set τ = 2

Step 4 for i=2:m

if (p(i) 6= 0)

x = P z
τ

Hi
(x) = x− 〈x,Ai〉−bip(i) zτ

τ = τ + 1

end

end

We shall analyse in what follows the properties of the algorithm GDPM. Let

r = rank(A) ≥ 1 and 1 = i1 < i2 < . . . ir ≤ m (25)

indices of a set of linearly independent rows Ai1 , . . . , Air , i.e.
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for i ∈ [i1 + 1, i2 − 1], Ai depends linearly on Ai1

for i ∈ [i2 + 1, i3 − 1], Ai depends linearly on Ai1 , Ai2

. . . . . . . . . . . . . . . . . . . . . . . . . . .

for i ∈ [ir−1 + 1, ir − 1], Ai depends linearly on Ai1 , . . . Air−1

for i ∈ [ir + 1,m], Ai depends linearly on Ai1 , . . . Air

We shall use in what follows the notation z
(k)
q for the vectors generated

during the algorithm GNS (as in NS, section 2). The ”evolution” of these
vectors during the algorithm is as follows.

for i ∈ [i1 + 1, i2 − 1], {z(1)2 , . . . , z
(1)
n } ⊥ Ai1 = A1

for i ∈ [i2, i3 − 1], {z(2)3 , . . . , z
(2)
n } ⊥ Ai1 , Ai2

. . . . . . . . . . . . . . . . . . . . . . . . . . .

for i ∈ [ir−1, ir − 1], {z(r−1)r , . . . , z
(r−1)
n } ⊥ Ai1 , Ai2 , . . . , Air−1

for i ∈ [ir,m], {z(r)r+1, . . . , z
(r)
n } ⊥ Ai1 , Ai2 , . . . , Air ⇔

{z(r)r+1, . . . , z
(r)
n } ⊥ A1, A2, . . . , Am ⇔ {z(r)r+1, . . . , z

(r)
n } ⊂ N (A) (26)

Moreover, it is clear from the algorithm GNS that

p(i) 6= 0 ⇔ i ∈ {i1, i2, . . . , ir} (27)

and
z
(k)
k+1 ⊥ Ai1 , . . . , Aik , k = 1, . . . , r − 1. (28)

From all the above considerations we derive the following result for GNS.

Proposition 2. (i) The vectors {z(r)r+1, . . . , z
(r)
n } form a basis in N (A).

(ii) In the steps 3 and 4 of GNS we obtain a solution of (23) (which generally
differs from xLS.)

Proof. (i) From (25) we get that dim(N (A)) = n − r. As in [3] we ob-
tain that, during the construction from the algorithm GNS, the vectors
zkk+1, . . . , z

k
n are linearly independent, ∀k = 1, . . . , r. In particular, the n− r

vectors in the last obtained set {z(r)r+1, . . . , z
(r)
n } will form a basis N (A).

(ii) According to (25) the consistent problem (23) is equivalent with

〈Aik , x〉 = bik , ∀k = 1, . . . , r. (29)
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Moreover, from all the above notations and considerations, it results that
Steps 3 and 4 in the algorithm GNS can be (formally) written as

Step 3-1 (Initialization): any vector x ∈ H1

Step 4-1 for k=2:r

i = ik

x = P
zk−1
k
Hi

(x) = x− 〈x,Ai〉−bip(i) zk−1k

end

end

By using (29), the definition of Hi in (6), and the arguments in [3] page
1162, we obtain that the resulting vector x in the Step 4-1 will satisfy

x ∈ Hik , ∀k = 1, . . . , r, (30)

i.e., according to (29) x ∈ S(A; b).

Remark 4. According to the equivalent consistent formulations (3)-(4), we
can directly apply the GNS algorithm to them. But, an unpleasant aspect re-
lated to the application of the GNS algorithm to (3) consists on the presence
of the product ATA as the system matrix. A row in this matrix is of the
form ATi A which determines a (too) big computational effort in the steps 2
- 4 of the algorithm GNS.
According to the second equivalent formulation, if we denote by B the system
matrix from (4), its row Bi is given by

Bi =


[
eTi , A

T
i

]
, 1 ≤ i ≤ m[

(Ai−m)T , 0
]
, m+ 1 ≤ i ≤ m+ n

(31)

This tell us that the computational effort in steps 2-4 of GNS are comparable
to NS.

A detailed analysis of these aspects, together with an efficient implemen-
tation of GNS, and systematic numerical experiments and comparisons with
other algorithms, will be the subject of a future paper.

Final comments. Other considerations essentially related to the com-
putation of a basis for the null space of a given matrix A can be found in
papers [1, 5, 6, 9, 10]. They use in this respect QR or SVD decompositions of
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the matrix A, but they are not concerned with a solution of a given system
or least squares problem.
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