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Coefficient Bounds For Certain Subclasses
of Analytic and Bi-Univalent Functions *

Ahmad Zireh' Saideh Hajiparvaneh?

Abstract

In this paper, we introduce and investigate an interesting subclass
of analytic and bi-univalent functions in the open unit disk U. Further-
more, we find upper bounds for the second and third coefficients for
functions in this subclass. The results presented in this paper would
generalize and improve some recent works.
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1 Introduction

Let A be a class of functions of the form
f(2) :z—f—Zanz", (1)
n=2

which are analytic in the open unit disk U = {z € C : |2| < 1}. Also §
denote the class of functions f € A which are univalent in U.
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The Koebe one-quarter theorem [5] ensures that the image of U under
every univalent function f € S contains a disk of radius i. So every function
f € S has an inverse f~!, which is defined by

FHf(2) == (z€ ),

and

st =w (el <m0 = 7).

where
g(w)::f_l(w):w — asw® + (2a§ - ag)w3 — (5a§ — basaz + a4)w4 +--- (2)

A function f € A is said to be bi-univalent in U if both f and f~! are
univalent in U. Let 3 denote the class of bi-univalent functions in U given
by (1). Examples of functions in the class ¥ are

z 1 1+ =2

— log(1 — =
T og(1l — 2), 5 log(

1 _ Z)?
and so on. However, the familiar Koebe function is not a member of X.
Other common examples of functions in S such as

z z
i- g and T2
are also not members of 3.

Determination of the bounds for the coefficients a,, is an important prob-
lem in geometric function theory as they give information about the geo-
metric properties of these functions. For example, the bound for the second
coefficient as of functions f € S gives the growth and distortion bounds as
well as covering theorems.

Lewin [11] investigated the class X of bi-univalent functions and showed that
laa| < 1.51 for the functions belonging to 3. Subsequently, Brannan and
Clunie [3] conjectured that |as| < v/2. Kedzierawski [10] proved this conjec-
ture for a special case when the function f and f~! are starlike functions.
Tan [14] obtained the bound for |az| namely |az| < 1.485 which is the best
known estimate for functions in the class ¥. Recently there interest to study
the bi-univalent functions class ¥ (see [6, 8, 15, 16]) and obtain estimates on
the first two Taylor-Maclaurin coefficients |az| and |az|. The coefficient esti-
mate problem i.e. bound of |a,| (n € N—{2,3}) for each f € ¥ formulated
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by [1] is still an open problem. In fact there is no direct way to get bound for
coeflicients greater than three. In special casesif ap =0 for k =2,--- ,n—1,
there are some papers [2, 9, 17] which founded the bound for |a,|, but in
general case there is no direct way to get bound for coefficients |a,,| for all
n.

Recently Srivastava [12] introduced the following two subclasses of the
bi-univalent function class ¥ and obtained the following estimates on the
first two Taylor-Maclaurin coefficients |ag| and |as| of functions in each of
these subclasses.

Definition 1.1. ([12]) A function f(z) given by (1) is said to be in the class
Hg, (0 < o < 1) if the following conditions are satisfied:

fex and larg(f(2)| <5 (z€U), larg(g(w) <5 (wel),

where the function g is given by (2).

Theorem 1.2. ([12]) Let f(2) given by (1) be in the class Hy, (0 < a < 1).

Then
2 al3a + 2
Jaal < oy ——, lag| < 230+
o+ 2 3

Definition 1.3. ([12]) A function f(z) given by (1) is said to be in the class
Hx(B), (0 < B < 1) if the following conditions are satisfied:

fexr and Re(f'(z)) >4 (2€U), Re(d(w)>p (wel),
where the function g is given by (2).

Theorem 1.4. ([12]) Let f(z) given by (1) be in the class Hx(B),(0 < 8 <
1). Then

2(1-5)
5

(1-B)G-38)

|az| < 3

las| <

As a generalization of above classes, Frasin [7] introduced the following
two subclasses of the bi-univalent function class ¥ and obtained the follow-
ing estimates on the first two Taylor-Maclaurin coefficients |as| and |as| of
functions in each of these subclasses.
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Definition 1.5. ([7]) Let 0 < o<1 and 0 <75 < 1. A function f(z) € &
given by (1) is said to be in the class Hx(«,n) if the following conditions
are satisfied:

|arg(f'(2) +nzf"(2))| <

jarg(g/(w) +muwg’ ()| < - (we),

5 (e,
where the function g is given by (2).

Theorem 1.6. ([7]) Let f(z) given by (1) be in the class Hx(a,n). Then

2c lag| < a? n 2
) as| > .
\/2(a+2)+477(a—|—77—|—2—a77) (L+mn)?  3(1+2n)

las| <

Definition 1.7. ([7]) Let 0 < g <1 and 0 <n < 1. A function f(z) € &
given by (1) is said to be in the class Hx(/,7) if the following conditions
are satisfied:

where the function g is given by (2).

Theorem 1.8 ( [7]). Let f(z) given by (1) be in the class Hx.(8,n). Then

1-8)°  201-8)

2(1 - ) N
(1+n)2  3(1+2n)

ag| < 4| 220
jaz] < 3(1+ 2n)

las| <

Motivated and stimulated especially by the work of Frasin [7], we pro-
pose to investigate the bi-univalent function class R%’p (n,7) introduced here
in Definition 2.1 and derive coefficient estimates on the first two Taylor-
Maclaurin coefficient |ag| and |as| for a function f € Rg’p (n,7) given by (1).
Our results would generalize and improve the related works of Frasin [7] and
Srivastava [12].

2 The subclass Rg’p(n,v)

In this section, we introduce and investigate the general subclass Rg’p (n,7).
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Definition 2.1. Let h,p: U — C be analytic functions and
min{MRe(h(2)),Re(p(2))} >0 (2€U) and h(0)=p(0)=1.
Let 0 <n <1and~ye€ C\{0}. A function f € A given by (1) is said to be
in the class Rg’p (n,7) if the following conditions are satisfied:
1+ 2[7/() + 02"(2) ~ 1] € h(D) (=€) g
and

1+iWWHnwﬂMHEMW (w e U), (4)

where the function g is defined by (2).
Remark 2.2. This class introduced in this paper is motivated by the cor-
responding class investigated in [13].

Remark 2.3. There are many choices of h and p which would provide
interesting subclasses of class Rg’p (n,7). For example,

(0%
1. For h(z) = p(z) = (%fi) , where 0 < o < 1, it is easy to verify that
the functions h(z) and p(z) satisfy the hypotheses of Definition 2.1.
Now if f € Rg’p(n,v), then

fex and

g1+ 217+ 02f"2) - 1] < e V)

and

arg(1+ () 4 g (0) - 1) < G (wew),

where the function g is given by (2).
Therefore in this case, if we take v = 1 it reduce to class in Definition
1.5 and if we take v = 1 and 1 = 0 it reduce to class in Definition 1.1.

2. For h(z) = p(z) = w, 0 < B < 1 the functions h(z) and p(z)
satisfy the hypotheses of Definition 2.1. Now if f € Rg’p (n,7), then

fex and %e<1+f1y[f’(z)+nzf”(z)—1])>6 (z €U),
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and
e (1 + L1 )+ g () - 1]) >8 (weU),

where the function g is given by (2).
Therefore in this case, if we take v = 1 it reduce to class in Definition
1.7 and if we take v = 1 and n = 0 it reduce to class in Definition 1.3.

2.1 Coeflicient Estimates

Now, we obtain the estimates on the coefficients |az| and |as| for subclass
h‘7
Ry’ (0, 7).

Theorem 2.4. Let f(z) given by (1) be in the class R ’p(n,y). Then

v |h' |2+|P IR (0)] + [ (0)])
lag| < mln{\/ \/ 12(1+ 21) }7 (5)

and

HEIROF + P (O)F) | hI(A"(0)] + 1p"(0)]) vllh”(O)l}. (©)

as| < min ,
jas| < { 8(1+ n)? 12(1 + 27) 6(1+ 2n)

Proof. First of all, we write the argument inequalities in (3) and (4) in their
equivalent forms as follows:

1+ i[f’(@ tnf"(z) 1 =h(z)  (z€U), (7)
and
1+ i[g%w) Lwg"(w) — 1] = plw)  (w e ), (8)

respectively, where functions h and p satisfy the conditions of Definition
2.1. Also, the functions h and p have the following Taylor-Maclaurin series
expansions:

h(z) =1+ hiz + hoz?® + haz® + - -, (9)
and

p(w) = 1+ prw + pow? + psw?® + - - -. (10)
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Now, upon substituting from (9) and (10) into (7) and (8), respectively, and
equating the coefficients, we get

2(1 4+ n)az = vha, (11)
3(1 4+ 2n)as = yha, (12)
—2(1 +mn)az = vp1, (13)
and
6(1+ 20)a3 — 3(1 + 2n)as = 1ps. (14)
From (11) and (13), we get
hi = —p1, (15)
and
8(1 +n)*a3 = 7*(hi + pi). (16)

Adding (12) and (14), we get
6(1 + 2n)a3 = y(p2 + ha). (17)
Therefore, from (16) and (17), we have

A +p))

P vl B 8 74 18
as 8(1 +7])2 ) ( )
and
5 V(P2 + ho)
SR L 19
Qg 6(1 + 277) ) ( )

respectively. Therefore, we find from the equations (18) and (19), that

las? < VR O)F + 11 (0)]%)
2= 8(1+n)? ’

and

lasf? < Y [(R"(0)] + [P (0)])
2= 12(142p)

respectively. So we get the desired estimate on the coefficient |as| as asserted
in (5).
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Next, in order to find the bound on the coefficient |ag|, by subtracting
(14) from (12), we get

6(1 +2n)as — 6(1 + 2n)a3 = ~(hz — p2). (20)
Upon substituting the value of a2 from (18) into (20), it follows that

(i +p3) | v(ha —p2)
CL3 - 2 9
8(1+n) 6(1+ 2n)

Therefore, we get
HEIROF + P (O)F) | hI(A"(0)] + [p"(0)])
8(1+mn)? 12(1 + 2n) '

On the other hand, upon substituting the value of a2 from (19) into (20),
it follows that

|as| < (21)

gy = Y2t ha)  Aha—pa) R
6(1+2n)  6(1+2n) 3(1+2n)

Therefore, we get

Y [[A"(0)]

as| < . 22
93] < 50 T 2n) (22)
So we obtain from (21) and (22) the desired estimate on the coefficient |ag|
as asserted in (6). This completes the proof. O

3 Conclusions

If we take

h(z) = p(z) = (ii)a O<a<l, z€T),

in Theorem 2.4, we conclude the following result.

Corollary 3.1. Let the function f(z) given by (1) be in the class Rg’p(n, v).

Then
ol < min{ D12 V2D
B L4+n" /30 +2n) [’
and

2[y|a?

a2 < ——mM8M8—.
| 3|—3(1+2n)
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By setting v = 1 in Corollary 3.1, we obtain the following result which
is an improvement of the Theorem 1.6.

Corollary 3.2. Let the function f given by (1) be in the class Hx(a,n).
Then

V2a
|az| < ——,
V/3(1+2n)
and
lag| < 20/
a _—
3= 3(1+21)
Remark 3.3. It is easy to see that
V2« < 2
V31 +2n) T \2(a+2) +an(a+n+2—an)
and
20/ a? 2c
< + ,
3(1+2n) — (14+n)2  3(1+2n)

which, in conjunction with Corollary 3.2, would obviously yield an improve-
ment of Theorem 1.6.

If we take n = 0 in Corollary 3.2, then we get the following result which
is an refinement of Theorem 1.2.

Corollary 3.4. Let the function f given by (1) be in the class Hg. Then

2
ool <y 20

and
‘ ’ < 202
a —_.
=73
Remark 3.5. Since
2 2
—a< - 2
3a =@ a+2’ (23)

and
ga2 < a(3a + 2)7
3 - 3

Corollary 3.4 is an refinement of Theorem 1.2.

(24)
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By setting

:1+(1—2ﬁ)z

h(z) = p(z) T (0<pB<1, z€U),

in Theorem 2.4, we deduce the following result.

Corollary 3.6. Let the function f given by (1) be in the class R%’p(n,v).

Then
@ =8) 21 -8)
and
2|1 = B)
‘a3‘ < m

If we take v = 1 in Corollary 3.6, we obtain the following result which
is an improvement of the estimates obtained by Frasin in Theorem 1.8.

Corollary 3.7. Let the function f given by (1) be in the class Hx(53,7).
Then

|as| Smin{(l_ﬂ), 2= 5) }7

1+7n 3(1+2n)
and
2(1 —
‘agf < M
3(1+ 2n)

Remark 3.8. Corollary 3.7 is an improvement of the following estimates
obtained by Frasin in Theorem 1.8. Because, for the coefficient |as|, if

n > PEVBID g2 5 < 8 where 6=1— 8. Then

1-p < 2(1-0)
1+7n 3(1+2n)

Also for the coefficient |as|, we have

20-6) _(1=p*  201-5)
3(1+2n) — (1+n)?2 3(1+2n)

<
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If we take n = 0 in Corollary 3.7, then we obtain the following con-
sequence which is an improvement of the estimates obtained by Frasin in
Theorem 1.4.

Corollary 3.9. Let the function f given by (1) be in the class Hx(3). Then

2(1-5)

, 0<B<y
jag| < 3 ’
and
lag| < 2(1?)_@
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