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Abstract

Let Ω ⊂ IRN , N ≥ 2, be a bounded open set with smooth bound-
ary. Consider in Ω the equation −∆pu − ∆qu = λ|u|p−2u subject
to a Robin-like boundary condition involving a positive constant α,
where p, q ∈ (1,∞), p 6= q, and λ ∈ IR. We show that there is no
eigenvalue λ of the above problem in the interval (−∞, λR], where
λR := inf {

∫
Ω
|∇v|p dx+α

∫
∂Ω
|v|p ds; v ∈W 1,max{p,q}(Ω),

∫
Ω
|v|p dx =

1}, while any λ ∈ (λR, λ
∗) is an eigenvalue of this problem, where

λ∗ := αmN−1(∂Ω)/mN (Ω). Note that the case p 6= q investigated here
is complementary to the homogeneous case p = q for which the set of
eigenvalues is completely known only if p = q = 2.
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1 Introduction and main results

Let Ω ⊂ IRN be a bounded open set with smooth boundary ∂Ω. Consider
the eigenvalue problem{

Au := −∆pu−∆qu = λ|u|p−2u in Ω,
∂u
∂νA

+ α|u|p−2u = 0 on ∂Ω,
(1)

where p, q ∈ (1,∞), p 6= q, α > 0, λ ∈ IR, and

∂u

∂νA
:=
(
|∇u|p−2 + |∇u|q−2

)∂u
∂ν

,

with ν = ν(x) being the unit outward normal to ∂Ω at x ∈ ∂Ω. The above
PDE (as well as problem (1)) is called nonhomogeneous since p 6= q.

The solutions u of problem (1) will be sought in a weak sense, in the
Sobolev space W := W 1,max{p,q}(Ω), so that the above PDE is satisfied in
the distribution sense, and the generalized normal derivative ∂u

∂νA
(associated

with operator A) exists in a trace sense (see [4]). Using a Green formula
(see [4, Corollary 2, p. 71]) one can define the eigenvalues of our problem
in terms of weak solutions u ∈W as follows:

Definition 1. λ ∈ IR is an eigenvalue of problem (1) if there exists u ∈
W \ {0} such that∫

Ω
(|∇u|p−2 + |∇u|q−2)∇u · ∇v dx+ α

∫
∂Ω
|u|p−2uv ds

= λ

∫
Ω
|u|p−2uv dx ∀ v ∈W . (2)

Indeed, it is easily seen that if u ∈ W is a weak solution of (1) then u
satisfies (2). Note that all the terms of (2) are well defined. Conversely, by
virtue of the same Green formula it follows that if λ ∈ IR is an eigenvalue of
problem (1) then any eigenfunction u ∈W \{0} corresponding to it satisfies
problem (1) in the distribution sense.

Our goal is to determine the set of eigenvalues of the Robin problem
(1). We cannot achieve completely this goal, but we are able to show that
there is no eigenvalue λ of the problem (1) in the interval (−∞, λR], where
λR is defined by (3) below, while any λ ∈ (λR, λ

∗) is an eigenvalue of this
problem, where λ∗ is defined by (4). The case λ ≥ λ∗ remains open.

Note that the homogeneous case q = p > 1 has been very much discussed
in the literature, and a complete description of the corresponding eigenvalue
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set is available only if p = q = 2 (when problem (1) reduces to the classic
Robin problem whose eigenvalue set is represented by a sequence of positive
eigenvalues). If p = q ∈ (1,∞) \ {2} it is only known that, as a consequence
of the Ljusternik-Schnirelman theory, there exists a sequence of positive
eigenvalues of the corresponding operator, i.e., of the negative p-Laplacian
(see [7, Theorem 3.4, p. 1068]), but this sequence may not constitute the
whole eigenvalue set.

In order to state our results let us define

λR = inf {
∫

Ω
|∇v|p dx+ α

∫
∂Ω
|v|p ds; v ∈W,

∫
Ω
|v|p dx = 1}

= inf
v∈W\{0}

∫
Ω |∇v|

p dx+ α
∫
∂Ω |v|

p ds∫
Ω |v|p dx

, (3)

where W = W 1,max{p,q}(Ω) .
Next, we introduce the following constant

λ∗ := α
mN−1(∂Ω)

mN (Ω)
, (4)

where mN−1(∂Ω) and mN (Ω) denote the corresponding N−1 and N dimen-
sional Lebesgue measures of the boundary ∂Ω and the set Ω, respectively.

Remark 1. If q < p then W = W 1,p(Ω) so λR = λR1 , where λR1 denotes the
first eigenvalue of the Robin problem{

−∆pu = λ|u|p−2u in Ω,

|∇u|p−2 ∂u
∂ν + α|u|p−2u = 0 on ∂Ω .

(5)

If p < q then W = W 1,q(Ω) which is a proper subset of W 1,p(Ω) so in this
case λR ≥ λR1 . In both cases λR is a positive number since λR1 is so. For
information on the Robin problem (5) we refer the reader to [7]. See also
[8].

Throughout in what follows we assume

(H) Ω ⊂ IRN , N ≥ 2, is a bounded open set with smooth boundary
∂Ω, and α is a positive real number.

Let us state first a nonexistence result:

Theorem 1. Assume (H) is satisfied and p, q ∈ (1,∞), p 6= q. Then there
exists no eigenvalue of problem (1) in the interval (−∞, λR] .
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Theorem 2. Assume (H) is satisfied and 1 < p < q. Then any λ ∈ (λR, λ
∗)

is an eigenvalue of problem (1).

Theorem 3. Assume (H) is satisfied and 1 < q < p. Then, any λ ∈
(λR1 , λ

∗) is an eigenvalue of problem (1), where λR1 is the first eigenvalue of
problem (5).

Remark 2. If in the definition of λR, with p ∈ (1,∞), we choose v(x) =
1 + tφ(x), where t > 0 is small and φ ∈ C∞0 (Ω), φ ≥ 0, φ not identically
zero, we obtain∫

Ω |∇v|
p dx+ α

∫
∂Ω |v|

p ds∫
Ω |v|p dx

=
tp
∫

Ω |∇φ|
p dx+ αmN−1(∂Ω)∫

Ω(1 + tφ)p dx
=: f(t) .

Note that f(0) = λ∗. Since t 7−→ f(t) is strictly decreasing on an interval
[0, δ], we have λR ≤ f(δ) < f(0) and hence

λR < λ∗ .

Thus the statements of Theorems 2 and 3 make sense.

Recall that the spectrum of A = −∆p−∆q under the Neumann boundary
condition (i.e., the case α = 0 in (1)) has been discussed in [10], with p and q
satisfying p ∈ [2,∞), q ∈ (1,∞), p 6= q (thus extending the results obtained
in [5] and [9] for the particular case p = 2). In this case the eigenvalue set
is {0} ∪ (λN ,∞), where

λN = inf {
∫

Ω
|∇v|p dx; v ∈W 1,max{p,q}(Ω),∫

Ω
|v|p dx = 1,

∫
Ω
|v|p−2v dx = 0} .

If the Robin condition in (1) is replaced by the Dirichlet condition, i.e.,
u = 0 on ∂Ω, then the corresponding set of eigenvalues is equal to (λD,∞),
where

λD = inf {
∫

Ω
|∇v|p dx; v ∈W 1,max{p,q}

0 (Ω),

∫
Ω
|v|p dx = 1} , (6)

provided that p, q ∈ (1,∞), p 6= q. For details see [1] and [2]. We only
point out that their definition of λD (with infimum over C∞0 (Ω) instead of

W
1,max{p,q}
0 (Ω)) is in fact equivalent with (6), as the reader can easily check

by using the density of C∞0 (Ω) in W
1,max{p,q}
0 (Ω).
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It is worth pointing out that in all cases (Dirichlet, Neumann or Robin)
one can use essentially the same strategy to derive the corresponding eigen-
value sets. However there are significant differences so separate analysis is
required in each case. In particular, the Robin eigenvalue problem (1) is
the most difficult one and we cannot provide for the moment a complete
description of the eigenvalue set in this case. For the convenience of the
reader we shall provide complete proofs of our results above (Theorems 1,
2, 3).

2 Proofs

We start with the

Proof of Theorem 1.

Assume (H) is satisfied, and p, q ∈ (1,∞), p 6= q. The proof is divided into
four steps.

Step 1: there is no negative eigenvalue of problem (1).

Indeed, if (λ, u) ∈ IR × (W \ {0, }) is an eigenpair of problem (1), then
choosing v = u in (2) we obtain

∫
Ω

(|∇u|p + |∇u|q) dx+ α

∫
∂Ω
|u|p ds = λ

∫
Ω
|u|p ∀ v ∈W , (7)

which clearly shows that λ ≥ 0.

Step 2: λ = 0 is not an eigenvalue for problem (1).

Assume by contradiction that λ = 0 is an eigenvalue of problem (1), and
let u ∈ W \ {0} be a corresponding eigenfunction. It follows from (7) that
∇u = 0 as an element of W . By Weyl’s regularity lemma (see, e.g., [12])
u ∈ C∞(Ω), hence u is a constant function. Since

∫
∂Ω |u|

p ds = 0 it follows
that u is the null function, contradiction.

Step 3: there is no eigenvalue of problem (1) in (0, λR).

Assume the contrary, that there exists an eigenvalue λ ∈ (0, λR). Let
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u ∈W \ {0} be an eigenfunction of problem (1) corresponding to λ. Then

0 < (λR − λ)

∫
Ω
|u|p dx ≤

∫
Ω
|∇u|p dx+ α

∫
∂Ω
|u|p ds− λ

∫
Ω
|u|p dx

≤
∫

Ω
|∇u|p dx+ α

∫
∂Ω
|u|p ds− λ

∫
Ω
|u|p dx

+

∫
Ω
|∇u|q dx = 0

which implies the impossible inequality 0 < 0.

Step 4: λ = λR is not an eigenvalue for problem (1).

Assume by contradiction that λR is a eigenvalue of problem (1), and let
uR ∈ W \ {0} be an eigenfunction corresponding to λR. Choosing λ = λR
and v = u = uR in (2) yields∫

Ω

(
|∇uR|p + |∇uR|q

)
dx+ α

∫
∂Ω
|uR|p ds = λR

∫
Ω
|uR|p . (8)

From (8) and the definition of λR we derive∫
Ω
|∇uR|q dx+ λR

∫
Ω
|uR|p dx ≤

∫
Ω
|∇uR|q +

∫
Ω
|∇uR|p dx

+α

∫
∂Ω
|uR|p ds = λR

∫
Ω
|uR|p dx ,

hence ∫
Ω
|∇uR|q dx = 0 .

This implies that uR is a constant function, and as uR is a solution of the
first equation in (1) with λ = λR > 0, it follows that uR is the null function,
a contradiction.

Proof of Theorem 2.

We assume that (H) is satisfied and 1 < p < q. Then W = W 1,q(Ω).

We choose a λ ∈ (λR, λ
∗) which will remain fixed throughout the proof

of Theorem 2. Define J : W → IR by

J(v) :=
1

p

∫
Ω
|∇v|p dx+

1

q

∫
Ω
|∇v|q dx+

α

p

∫
∂Ω
|v|p ds− λ

p

∫
Ω
|v|p dx .
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It is easily seen that J ∈ C1(W, IR) with the derivative given by

〈J ′(v), φ〉 =

∫
Ω
|∇v|p−2∇v · ∇φ dx+

∫
Ω
|∇v|q−2∇v · ∇φ dx

+α

∫
∂Ω
|v|p−2vφ ds− λ

∫
Ω
|v|q−2vφ dx ,

for all v, φ ∈W . It is worth pointing out that λ is an eigenvalue of problem
(1) if and only if there exists u ∈ W \ {0} such that J

′
(u) = 0. In the

following we shall prove the existence of a nontrivial critical point of J by
using a classical result in Calculus of Variations, see [13, Theorem 1.2].
Obviously, W = W 1,q(Ω) is a reflexive Banach space. We have

Claim 1: functional J is coercive, i.e., J(v)→∞ as ‖v‖W 1,q(Ω) →∞
Assume by contradiction that functional J is not coercive. Then there

exist a constant M > 0 and a sequence (un)n≥1 in W 1,q(Ω) such that
‖un‖W 1,q(Ω) → +∞ and J(un) ≤M , for n = 1, 2, ... We have

0 ≤ p

q

∫
Ω
|∇un|q dx < λ

∫
Ω
|un|p dx− α

∫
∂Ω
|un|p ds−

∫
Ω
|∇un|p dx+ pM

≤ λ

∫
Ω
|un|p dx− α

∫
∂Ω
|un|p ds+ pM (9)

≤ λ‖un‖pLp(Ω) + pM. (10)

Taking into account the fact that the norm ‖∇u‖Lq(Ω) + ‖u‖Lp(Ω) is equiv-
alent to the usual norm ‖u‖W 1,q(Ω) in W 1,q(Ω) (see [3, Remark 15, p. 286])
we conclude from (10) that ‖un‖p := ‖un‖Lp(Ω) → +∞. Set vn := un/‖un‖p
and divide (10) by ‖un‖qp. Then ‖∇vn‖Lq(Ω) → 0 implying that (vn) con-
verges (on a subsequence) strongly in W 1,q(Ω) to some constant function.
Indeed, (vn) is bounded in W 1,q(Ω), hence there exists v∞ ∈ W 1,q(Ω) such
that (on a subsequence) vn → v∞ weakly in W 1,q(Ω) and strongly in Lp(Ω)
and Lp(∂Ω). Next, we have

‖∇v∞‖Lq(Ω) ≤ lim
n→∞

‖∇vn‖Lq(Ω) = 0 ,

so v∞ is a constant function, say v∞ ≡ C. In addition,

‖v∞‖p = lim
n→∞

‖vn‖p = 1 ,

thus C 6= 0. On the other hand, if we divide (9) by ‖un‖pp and take the limit
as n→∞, then we obtain

0 ≤ λ
∫

Ω
|v∞|p dx− α

∫
∂Ω
|v∞|p ds = |C|p(λ− λ∗)mN (Ω) < 0 ,
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a contradiction.
Thus functional J is indeed coercive.

Claim 2: for any sequence vk → v weakly in W 1,q(Ω) we have J(v) ≤
lim inf J(vk).

Since the canonical injections from W 1,q(Ω) to Lp(Ω) and Lp(∂Ω) are
both compact, we have

lim
k→∞

∫
Ω
|vk|p dx =

∫
Ω
|v|p dx, lim

k→∞

∫
∂Ω
|vk|p ds =

∫
∂Ω
|v|p ds . (11)

From (11) and the weak lower semicontinuity of the norms in Lp(Ω) and
Lq(Ω), we see that J(v) ≤ lim inf J(vk), as claimed.

Now, taking into account Claim 1 and Claim 2, we infer by [13, Theorem
1.2] that J is bounded from below and has a global minimizer, say u ∈
W 1,q(Ω), i.e., J(u) = minv∈W 1,q(Ω) J(v). Hence u is a critical point of J :
J ′(u) = 0. One can show that J(u) < 0. To this purpose let us first observe
that

λR = inf
v∈W\{0}

1
p

∫
Ω |∇v|

p dx+ 1
q

∫
Ω |∇v|

q dx+ α
p

∫
∂Ω |v|

p ds
1
p

∫
Ω |v|p dx

. (12)

Indeed, the inequality ≤ in (12) is obvious, while the converse inequality
follows easily by replacing v ∈W \ {0} in the right hand side by tv, t > 0,

1
p

∫
Ω |∇(tv)|p dx+ 1

q

∫
Ω |∇(tv)|q dx+ α

p

∫
∂Ω |tv|

p ds
1
p

∫
Ω |tv|p dx

=

∫
Ω |∇v|

p dx+ α
∫
∂Ω |v|

p ds∫
Ω |v|p dx

+
ptq−p

q

∫
Ω |∇v|

q dx∫
Ω |v|q dx

,

and observing that tq−p → 0 as t→ 0+. (Note that in fact (12) is also valid
if q < p since tq−p → 0 as t→∞). As λR < λ it follows from (12) that there
exists a v∗ ∈ W 1,q(Ω) \ {0} such that J(v∗) < 0. Hence J(u) ≤ J(v∗) < 0,
showing that u 6= 0.

Consequently, as J ′(u) = 0, λ is an eigenvalue of problem (1).

Proof of Theorem 3.

We assume that 1 < q < p. It follows that W = W 1,p(Ω) and λR = λR1 .
We again fix a λ ∈ (λR, λ

∗). Under the present conditions we cannot
derive coercivity of J on W = W 1,p(Ω) so have to use another method. Note
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that in this case J ∈ C1(W 1,p(Ω), IR). Note also that any eigenfunction u
corresponding to λ satisfies equation (2) so testing with v = 1 and with
v = u we obtain

α

∫
∂Ω
|u|p−2u ds = λ

∫
Ω
|u|p−2u dx,∫

Ω
(|∇u|p + |∇u|q) dx+ α

∫
∂Ω
|u|p ds = λ

∫
Ω
|u|p dx .

We plan to show that J has a nonzero critical point (which will be an eigen-
function corresponding to λ) so it is natural to investigate the restriction of
functional J to the Nehari type manifold (see [14])

M = { v ∈W \ {0}; α
∫
∂Ω
|v|p−2v ds = λ

∫
Ω
|v|p−2v dx, 〈J ′(v), v〉 = 0 }

= { v ∈W \ {0}; α
∫
∂Ω
|v|p−2v ds = λ

∫
Ω
|v|p−2v dx,∫

Ω
(|∇v|p + |∇v|q) dx+ α

∫
∂Ω
|v|p ds = λ

∫
Ω
|v|p dx }.

We shall prove that J attains its infimum m := infv∈M J(v) at some point
u ∈M and J ′(u) = 0. The proof is based on several claims as follows:

Claim (a): M 6= ∅.
We will first show that there exists a function w which belongs to the

set

S = { v ∈W 1,p(Ω); α

∫
∂Ω
|v|p−2v ds = λ

∫
Ω
|v|p−2v dx } ,

such that ∫
Ω
|∇w|p dx+ α

∫
∂Ω
|w|p ds < λ

∫
Ω
|w|p dx . (13)

Recall that there exists a positive eigenfunction uR ∈ W 1,p(Ω) \ {0}
corresponding to the first eigenvalue λR1 of the problem (5) (see, e.g., [7] and
[8]). In particular,

α

∫
∂Ω
|uR|p−2uR ds = λR1

∫
Ω
|uR|p−2uR dx < λ

∫
Ω
|uR|p−2uR dx, (14)∫

Ω
|∇uR|p dx+ α

∫
∂Ω
|uR|p ds = λR1

∫
Ω
|uR|p dx < λ

∫
Ω
|uR|p dx . (15)

Denote

γ(v) := α

∫
∂Ω
|v|p−2vds− λ

∫
Ω
|v|p−2vdx. (16)
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One can easily check that

lim
ξ→±∞

γ(v + ξ)

|ξ|p−2ξ
= αmN−1(∂Ω)− λmN (Ω) > 0. (17)

We take w in the form w = uR + ξ∗, where ξ∗ is the least positive constant
such that

α

∫
∂Ω
|uR + ξ∗|p−2(uR + ξ∗) ds = λ

∫
Ω
|uR + ξ∗|p−2(uR + ξ∗) dx.

Indeed, such constant exists since the function ξ 7→ γ(uR + ξ) is continuous,
negative at ξ = 0 (due to inequality (14)) and γ(uR + ξ)→ +∞ as ξ → +∞
(according to (17)). In addition, we have

α

∫
∂Ω
|w|p ds− λ

∫
Ω
|w|p dx < α

∫
∂Ω
|uR|p ds− λ

∫
Ω
|uR|p dx

since

d

dξ

(
α

∫
∂Ω
|uR + ξ|p ds− λ

∫
Ω
|uR + ξ|p dx

)
= pγ(uR + ξ) < 0

for any ξ ∈ [0, ξ∗). Hence the inequality (13) holds for w = uR + ξ∗ due to
(15). Then there exists a t > 0 such that tw ∈M , i.e.,

tp
∫

Ω
|∇w|p dx+ tq

∫
Ω
|∇w|q dx+ αtp

∫
∂Ω
|w|p ds = λtp

∫
Ω
|w|p dx , (18)

noting that tw ∈ S. Indeed, equation (18) can be solved for t:

t =
( ∫

Ω |∇w|
q dx

λ
∫

Ω |w|p dx− α
∫
∂Ω |w|p ds−

∫
Ω |∇w|p dx

) 1
p−q

, (19)

which is a positive number (since
∫

Ω |∇w|
q dx = 0 ⇔ w = const., which

contradicts w ∈ S \ {0}) and for this t we have tw ∈ M . Therefore M 6= ∅
as claimed.

Claim (b): m ≥ 0.
Indeed, for all v ∈M , we have

J(v) =
1

q

∫
Ω
|∇v|q dx+

1

p

∫
Ω
|∇v|p dx+

α

p

∫
∂Ω
|v|p ds− λ

p

∫
Ω
|v|p dx

=
1

q

∫
Ω
|∇v|q dx− 1

p

∫
Ω
|∇v|q dx

=
p− q
pq

∫
Ω
|∇v|q dx

≥ 0 .
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Claim (c): every minimizing sequence for J on the set M is bounded
in W 1,p(Ω).

Let (un) be a minimizing sequence in M , i.e.,

0 ≤ λ

∫
Ω
|un|p dx−

∫
Ω
|∇un|p dx− α

∫
∂Ω
|un|p ds

=

∫
Ω
|∇un|q dx→

pq

p− q
m as n→∞ . (20)

Assume by contradiction that (un) is unbounded in W 1,p(Ω), i.e.,∫
Ω
|∇un|p dx+

∫
Ω
|un|p dx

is unbounded. According to (20), ‖un‖p := ‖un‖Lp(Ω) is unbounded too,
i.e., for a subsequence of (un), still denoted (un), we have ‖un‖p →∞. Set
vn := un/‖un‖p. We divide (20) by ‖un‖p and derive

∫
Ω |∇vn|

p dx ≤ λ, i.e.,
(vn) is bounded in W 1,p(Ω). Therefore there exists v∞ ∈W 1,p(Ω) such that
(on a subsequence)

vn → v∞ weakly in W 1,p(Ω), and strongly in both Lp(Ω) and Lp(∂Ω) ,
(21)

since W 1,p(Ω) is reflexive and the canonical injections from this space to
Lp(Ω) and Lp(∂Ω) are compact. Then, as vn ∈ S for all n, it follows by
Lebesgue’s Dominated Convergence Theorem and [3, Theorem 4.9, p. 94]
that v∞ ∈ S. Now, since

∫
Ω |∇un|

q dx is bounded (cf. (20) we have∫
Ω
|∇vn|q dx→ 0 ,

so ∫
Ω
|∇v∞|q dx ≤ lim inf

∫
Ω
|∇vn|q dx = 0 ,

since vn converges to v∞ weakly in W 1,p(Ω), hence in W 1,q(Ω) as well.
Therefore v∞ is a constant function. This fact combined with v∞ ∈ S
implies v∞ ≡ 0. On the other hand, from ‖vn‖p =1 and ‖vn − v∞‖p → 0,
we derive ‖v∞‖p = 1 contradicting v∞ ≡ 0. Therefore Claim (c) holds true.

Claim (d): m = infv∈M J(v) is positive: m > 0.

Assume the contrary, i.e., in view of Claim (b), m = 0. Let (un) be a
minimizing sequence, i.e., un ∈M for all n and J(un)→ 0. So we can write
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(see (20))

0 ≤ λ

∫
Ω
|un|p dx−

∫
Ω
|∇un|p dx− α

∫
∂Ω
|un|p ds

=

∫
Ω
|∇un|q dx→ 0 as n→∞ . (22)

By Claim (c) we know that (un) is bounded in W 1,p(Ω). It follows that
there exists u∞ ∈ W 1,p(Ω) such that (on a subsequence) un converges to
u∞ weakly in W 1,p(Ω) (hence also in W 1,q(Ω)) and un converges strongly
to u∞ in both Lp(Ω) and Lp(∂Ω). Therefore, u∞ ∈ S and∫

Ω
|∇u∞|q dx ≤ lim inf

∫
Ω
|∇un|q dx = 0 ,

and consequently u∞ is the null function. Summarizing, we see that un
converges to 0 weakly in W 1,p(Ω).

Now, set vn := un/‖un‖p. From (22) we deduce that∫
Ω
|∇un|p dx+ α

∫
∂Ω
|un|p ds ≤ λ

∫
Ω
|un|p dx ∀n ,

which implies ∫
Ω
|∇vn|p dx+ α

∫
∂Ω
|vn|p ds ≤ λ ∀n .

Therefore, (vn) is bounded in W 1,p(Ω). It follows that there exists v∞ ∈
W 1,p(Ω) such that (on a subsequence) vn converges to v∞ weakly in W 1,p(Ω)
and strongly in both Lp(Ω) and Lp(∂Ω). Moreover, as vn ∈ S for all n, we
also have v∞ ∈ S.

Now, dividing (22) by ‖un‖qp we obtain∫
Ω
|∇vn|q dx = ‖un‖p−qp

[
λ−

∫
Ω
|∇vn|p dx− α

∫
∂Ω
|vn|p ds

]
→ 0 .

Next, since vn converges (on a subsequence) to v∞ weakly in W 1,p(Ω) and
hence in W 1,q(Ω), we have∫

Ω
|∇v∞|q dx ≤ lim inf

∫
Ω
|∇vn|q dx = 0 ,

and consequently v∞ is a constant function. In fact v∞ = 0 since v∞ ∈ S.
Thus vn converges strongly to 0 in Lp(Ω), which contradicts the fact that
‖vn‖p = 1 for all n.
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This contradiction shows that m > 0 as asserted.

Claim (e): there exists u ∈ M such that J(u) = m, i.e., m = infM J
is attained.

Let (un) be a sequence in M such that J(un) → m. By Claim (c) (un)
is bounded in W 1,p(Ω). Thus, on a subsequence, un converges to some u
weakly in W 1,p(Ω) and strongly in both Lp(Ω) and Lp(∂Ω). Therefore,

J(u) ≤ lim inf J(un) = m. (23)

As un ∈M for all n we have∫
Ω

(|∇un|p + |∇un|q) dx+ α

∫
∂Ω
|un|p ds = λ

∫
Ω
|un|p dx ∀n , (24)

and

α

∫
∂Ω
|un|p−2un ds = λ

∫
Ω
|un|p−2un dx ∀n . (25)

Assuming u = 0 we can infer from (24) that un converges to 0 strongly in
W 1,p(Ω). Arguing as in the proof of Claim (d) we reach a contradiction.
Hence u 6= 0. Passing to the limit in (25) we find that u ∈ S. Now, letting
n→ 0 in (24) we get∫

Ω
|∇u|p dx+

∫
Ω
|∇u|q dx+ α

∫
∂Ω
|u|p ds ≤ λ

∫
Ω
|u|p . (26)

If we have equality in (26) then u ∈ M and the proof is complete since by
(23) J(u) = m. In what follows we show that the strict inequality∫

Ω
|∇u|p dx+

∫
Ω
|∇u|q dx+ α

∫
∂Ω
|u|p ds < λ

∫
Ω
|u|p . (27)

is impossible. Let us assume by contradiction that (27) holds true. Then
we can find a t > 0 such that tu ∈M . This t is given by (19) where w = u.
Note that

∫
Ω |∇u|

q dx 6= 0 because otherwise u is a constant function which
contradicts the fact that u ∈ S \ {0}. By (27) we have t ∈ (0, 1). Since
tu ∈M we can write

J(tu) =
p− q
pq

∫
Ω
|∇(tu)|q dx =

(p− q)tq

pq

∫
Ω
|∇u|q dx .

We also have

J(un) =
p− q
pq

∫
Ω
|∇un|q dx ⇒ m = lim

n→∞
J(un) ≥ p− q

pq

∫
Ω
|∇u|q dx .
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Therefore,

0 < m ≤ J(tu) =
(p− q)tq

pq

∫
Ω
|∇u|q dx

≤ tq lim
n→∞

J(un)

= tqm

< m,

which is impossible, hence inequality (27) is so, as claimed. So u ∈ M and
J(u) = m.

Claim (f): if u ∈ M is the minimizer found before, i.e., J(u) = m =
infM J then J ′(u) = 0.

We will first prove that in fact u minimizes the functional J on the larger
set

N := { v ∈W 1,p(Ω) \ {0}; 〈J ′(v), v〉 = 0 }.

Obviously, M is a proper subset of N .
Take an arbitrary element v ∈ N . Denote again

γ(v) := α

∫
∂Ω
|v|p−2vds− λ

∫
Ω
|v|p−2vdx.

Obviously, if γ(v) = 0, then v ∈ M and J(v) ≥ J(u). So, we have to
investigate the case when γ(v) 6= 0.

Let us first consider the case when γ(v) is positive. Therefore, there
exists ξ∗ < 0 such that γ(v + ξ∗) = 0, i.e., v + ξ∗ ∈ S since γ(v + ξ)→ −∞
as ξ → −∞ (see (17)). In addition, let ξ∗ be the greatest possible, i.e.,

ξ∗ := sup {ξ < 0 : γ(v + ξ∗) = 0} < 0 .

Then γ(v + ξ) > 0 for any ξ ∈ (ξ∗, 0], which means that the function

ξ 7→ α

∫
∂Ω
|v + ξ|pds− λ

∫
Ω
|v + ξ|pdx

is strictly increasing with respect to ξ on the interval [ξ∗, 0]. In particular,

α

∫
∂Ω
|v + ξ∗|pds− λ

∫
Ω
|v + ξ∗|pdx < α

∫
∂Ω
|v|pds− λ

∫
Ω
|v|pdx. (28)

Let t be defined as in (19) with w = v + ξ∗, i.e.,

t :=

( ∫
Ω |∇v|

q dx

λ
∫

Ω |v + ξ∗|p dx− α
∫
∂Ω |v + ξ∗|p ds−

∫
Ω |∇v|p dx

) 1
p−q

< 1. (29)
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The last inequality is a consequence of (28) and the fact that v ∈ N , i.e.,∫
Ω
|∇v|q dx = λ

∫
Ω
|v|p dx− α

∫
∂Ω
|v|p ds−

∫
Ω
|∇v|p dx

< λ

∫
Ω
|v + ξ∗|p dx− α

∫
∂Ω
|v + ξ∗|p ds−

∫
Ω
|∇v|p dx.

Hence, t(v + ξ∗) ∈M and then

J(v) =
p− q
pq

∫
Ω
|∇v|q dx >

p− q
pq

tq
∫

Ω
|∇(v + ξ∗)|q dx

= J(t(v + ξ∗)) ≥ J(u). (30)

Similarly, (17) implies that if v ∈ N and γ(v) < 0, then we can choose
ξ∗ := inf {ξ > 0 : γ(v + ξ∗) = 0} > 0 and as before, we again deduce the
inequality (30). Hence, u is a minimizer of the functional J on the set N .

In fact u is a solution of the minimization problem, denoted (P ),

min
v∈W 1,p(Ω)\{0}

J(v) ,

under the following constraint

h(v) :=

∫
Ω
|∇v|p dx+

∫
Ω
|∇v|q dx+ α

∫
∂Ω
|v|p ds− λ

∫
Ω
|v|p dx = 0 . (31)

For such a problem we can use the well known Lagrange multiplier rule
(see [15, Theorem 3.3.3, p.179] or [11, Theorem 2.2.10, p. 76]):

Lemma 1. Let X, Y be real Banach spaces and let f : D → IR, h : D → Y
be C1 functions on the open set D ⊂ X. If y is a local solution of the
minimization problem

min f(x), h(x) = 0 ,

and h′(y) is a surjective operator, then there exists y∗ ∈ Y ? such that

f ′(y) + y∗ ◦ h′(y) = 0 , (32)

where Y ? stands for the dual of Y .

We choose X = W 1,p(Ω), Y = IR2, D = W 1,p(Ω) \ {0}, f = J , and
let h be the function defined by (31). Obviously, Y ? can be identified with
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Y = IR. Note that all the conditions of Lemma 1 are satisfied in our case,
including the surjectivity of h′(u) which means

∀ξ1 ∈ IR, ∃w ∈W 1,p(Ω) such that 〈h′(u), w〉 = ξ1,

i.e.,

p

∫
Ω
|∇u|p−2∇u · ∇w dx+ q

∫
Ω
|∇u|q−2∇u · ∇w dx

+pα

∫
∂Ω
|u|p−2uw ds− pλ

∫
Ω
|u|p−2uw dx = ξ1 . (33)

We try to determine w of the form w = au, where a ∈ IR. Replacing
this w in (33) and having in mind that u ∈ N , we obtain

a
[
p

∫
Ω
|∇u|p dx+ q

∫
Ω
|∇u|q dx+ pα

∫
∂Ω
|u|p ds− pλ

∫
Ω
|u|p dx

]
︸ ︷︷ ︸

=(q−p)
∫
Ω |∇u|q dx

= ξ1,

i.e.,

a(q − p)
∫

Ω
|∇u|q dx︸ ︷︷ ︸
6=0

= ξ1 .

So a can be uniquely determined, and this shows that h′(u) is indeed sur-
jective. Therefore Lemma 1 is applicable to our minimization problem (P ).
Specifically, there exist c ∈ IR such that (see (32))

〈J ′(u), φ〉+ c〈h′(u), φ〉 = 0 , ∀ φ ∈W 1,p(Ω). (34)

Testing with φ = u in (34) we derive (having in mind that u ∈M)

c(q − p)
∫

Ω
|∇u|q dx︸ ︷︷ ︸
6=0

= 0 ,

which implies c = 0.
Consequently,

〈J ′(u), φ〉 = 0 ,

for all φ ∈W 1,p(Ω), i.e., J ′(u) = 0, as claimed.
Therefore λ is an eigenvalue of problem (1).
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3 Final Comments

1. In fact all our results hold true for any bounded open set ∅ 6= Ω ⊂ IRN ,
N ≥ 2, which is of class C1. For the definition of this class see [3, p. 272].

2. We ask ourselves whether there are any eigenvalues of problem (1) in
the interval [λ∗,+∞), where λ∗ is the constant defined by (4). This is an
open problem. Probably the first step in its investigation would be to find
necessary and sufficient conditions under which the set M (see the proof of
Theorem 3) is nonempty since any eigenfunction belongs to it. There is an
evidence that when λ∗ < λ < λN1 and p = 2 the set M is empty. Here λN1
denotes the first positive eigenvalue of the classical Laplace operator under
the Neumann boundary condition. Indeed, let λ∗ < λ < λN1 and u be such
that λ

∫
Ω udx = α

∫
∂Ω uds. According to the variational characterization of

λN1 we have

λN1 = inf

{∫
Ω
|∇v|2 dx :

∫
Ω
v2dx = 1,

∫
Ω
vdx = 0

}
,

hence∫
Ω
|∇u|2 dx ≥ λN1

∫
Ω

(
u−

∫
Ω udx

mN (Ω)

)2

dx = λN1

(∫
Ω
u2dx−

(∫
Ω udx

)2
mN (Ω)

)
.

On the other hand,

λN1

(∫
Ω
u2dx−

(∫
Ω udx

)2
mN (Ω)

)
− λ

∫
Ω
u2dx+ α

∫
∂Ω
u2dx

=
(
λN1 − λ

)(∫
Ω
u2dx−

(∫
Ω udx

)2
mN (Ω)

)
︸ ︷︷ ︸

≥0

+α

∫
∂Ω
u2dx− λ

(∫
Ω udx

)2
mN (Ω)

≥ α
∫
∂Ω
u2dx− α2

λ

(∫
∂Ω udx

)2
mN (Ω)

= α

(∫
∂Ω
u2dx− λ∗

λ

(∫
∂Ω udx

)2
mN−1(∂Ω)

)
≥ 0,

where we have used the Cauchy–Schwarz inequality. Then∫
Ω
|∇u|2 dx− λ

∫
Ω
u2dx+ α

∫
∂Ω
u2dx ≥ 0,
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i.e.,∫
Ω
|∇u|q dx+

∫
Ω
|∇u|2 dx− λ

∫
Ω
u2dx+ α

∫
∂Ω
u2dx ≥

∫
Ω
|∇u|q dx > 0,

since u is a non-constant function. Thus the set M is empty when λ ∈
(λ∗, λN1 ). So, generally speaking, it seems λ = λ∗ is a bifurcation point.

3. Combinations of different conditions on ∂Ω (Dirichlet, Neumann and
Robin) can also be investigated by using a similar method.
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[10] M. Mihăilescu, G. Moroşanu: Eigenvalues of −∆p−∆q under Neumann
boundary condition, Canadian Math. Bull., in print.

[11] N. S. Papageorgiou, S. Th. Kyritsi-Yiallourou: Handbook on Applied
Analysis, Springer, 2009.

[12] D. W. Stroock: Weyl’s lemma, one of many, Groups and analysis, Lon-
don Math. Soc. Lecture Notes Ser., 354, Cambridge Univ. Press, Cam-
bridge, 164− 173, 2008.

[13] M. Struwe: Variational Methods. Applications to Nonlinear Partial Dif-
ferential Equations and Hamiltonian Systems, Fourth Edition, Springer,
2008.

[14] A. Szulkin, T. Weth: The Method of Nehary Manifold, Handbook of
Nonconvex Analysis and Applications, Int. Press, Somerville, MA, 597−
632, 2010.
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