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1 Introduction and preliminary results

Let X be a real Banach space and let A : D(A) ⊂ X  X be an
m–dissipative operator, generating the nonlinear semigroup of contractions
{S(t) : D(A) → D(A); t ≥ 0}. Let F : I × X  X be a multi–function
with nonempty values, where I ⊂ R is a nonempty and open from the right
interval. Consider the Cauchy problem{

y′(t) ∈ Ay(t) + F (t, y(t)),

y(τ) = ξ ∈ D(A).
(1)

By an integral solution of (1) on [τ, T ] ⊂ I we mean a continuous function
y : [τ, T ]→ D(A) which is an integral solution of{

y′(t) ∈ Ay(t) + f(t),

y(τ) = ξ ∈ D(A),
(2)

for some f ∈ L1(τ, T ;X) satisfying f(t) ∈ F (t, y(t)) a.e. for t ∈ [τ, T ].
We recall that a continuous function y : [τ, T ]→ D(A) is called an integral
solution of (2) if

‖y(t)− u‖ ≤ ‖ξ − u‖+

∫ t

τ
[y(s)− u, f(s)− v]+ds,

for every u ∈ D(A), v ∈ Au and t ∈ [τ, T ]. Here and thereafter [·, ·]+
denotes the right directional derivative of the norm. Concerning properties
of [·, ·]+ see, e.g., [13] Section 1.2. We point out that in order to stress the
dependence of integral solution of (2) on τ , ξ and f(·), we shall denote it by
y(·, τ, ξ, f).

It is well known (see, e.g., [2]) that for every f ∈ L1(τ, T ;X) and
ξ ∈ D(A) the Cauchy problem (2) has a unique integral solution. More-
over, if y1(·) = y(·, τ, ξ, f) and y2(·) = y(·, τ, η, g) on [τ, T ] for some f, g ∈
L1(τ, T ;X) and ξ, η ∈ D(A), then

‖y1(t)− y2(t)‖ ≤ ‖ξ − η‖+

∫ t

τ
‖f(s)− g(s)‖ds, (3)

and

‖y1(t)− y2(t)‖ ≤ ‖ξ − η‖+

∫ t

τ
[y1(s)− y2(s), f(s)− g(s)]+ds, (4)

for every t ∈ [τ, T ].
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Remark 1. Let us point out an important feature concerning inequalities (3)
and (4). In fact, if 0 ∈ D(A), 0 ∈ A0 and g ≡ 0 then y2(t) = y(t, τ, 0, 0) = 0,
for every t ∈ [τ, T ]. This means that the following inequalities hold:

‖y1(t)‖ ≤ ‖ξ‖+

∫ t

τ
‖f(s)‖ds,

and

‖y1(t)‖ ≤ ‖ξ‖+

∫ t

τ
[y1(s), f(s)]+ds,

for every t ∈ [τ, T ], where y1(·) = y(·, τ, ξ, f) for some f ∈ L1(τ, T ;X) and
ξ ∈ D(A).

Let us denote by B the closed unit ball of X. Let ε > 0. We introduce
the notion of ε–solution of (1) that we are dealing with in this paper.

Definition 1. A function y : [τ, T ] → D(A) is said to be an ε–solution of
(1) on [τ, T ] ⊂ I if it is a solution of{

y′(t) ∈ Ay(t) + F (t, y(t) + εB),

y(τ) = ξ ∈ D(A),
(5)

on [τ, T ].

Let K : I  D(A) be a given multi–function with graph K, i.e.,

K = {(t, x); t ∈ I, x ∈ K(t)}.

Using the definition of ε–solution given above, we introduce the concept of
approximate viability for K with respect to (1).

Definition 2. We say that K is approximate viable (globally approximate
viable) with respect to (1) if for any (τ, ξ) ∈ K there exists T > τ with
[τ, T ] ⊂ I (for all T > τ with [τ, T ] ⊂ I) and for any ε > 0 there exists an
ε–solution y : [τ, T ] → D(A) of (1) on [τ, T ] satisfying dist(y(t);K(t)) ≤ ε,
for all t ∈ [τ, T ].

Here and thereafter we use the distance between two subsets C and D
in X given by

dist(C,D) = inf
x∈C,y∈D

‖x− y‖.

The starting point of this paper lies in [10], where characterizations of
approximate viability for a nonempty subset K of D(A) with respect to the
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fully nonlinear autonomous differential inclusion y′(t) ∈ Ay(t) +F (y(t)) are
given.

Here, we allow K to be the graph, K, of a given multi–function and we
provide necessary and sufficient conditions in order that K be approximate
viable with respect to the fully nonlinear quasi–autonomous differential in-
clusion y′(t) ∈ Ay(t) + F (t, y(t)).

It is important to note that the usual trick used to pass from the quasi–
autonomous case to the autonomous case, i.e., to consider the Banach space
Y = R×X, the operator A = (0, A), the multi–function G : Y  Y defined
by G(t, y) = (1, F (t, y)) and the Cauchy problem{

x′(t) ∈ Ax(t) +G(x(t)),

x(τ) = (z0, ξ) ∈ D(A),
(6)

does not work here. In fact, if the function (z(·), y(·)) is an ε–solution of (6)
on [τ, T ], we do not get that y(·) is an ε–solution of (1) on [τ, T ], due to the
variation t − τ + z0 + εBR, which appears in the time variable in F (·, ·) in
the Cauchy problem (5). We denoted by BR the unit ball of R.

Our approach here consists in adapting the tangency condition used in
[15] (see also [8] and [7]) to our setting. By using this tangency condition, we
provide in Section 2 some sufficient and necessary conditions for a graph K
to be approximate viable with respect to (1). As application, we investigate
in Section 3 approximate null controllability for fully nonlinear evolution
inclusions.

Now let us present some preliminary results. As we have mentioned
above, we aim to adapt the tangency condition used in [15] to our setting.
Let (τ, ξ) ∈ K and let S[τ,τ+h]F (·, ξ) be the set of all integrable selections of
the multi–function F (·, ξ) defined on [τ, τ+h] for some h > 0 with [τ, τ+h] ⊂
I. We say that F (·, ·) satisfies the tangency condition if,

(TC) for every (τ, ξ) ∈ K,

lim inf
h→0+

1

h
dist

({
y(τ + h, τ, ξ, f), f ∈ S[τ,τ+h]F (·, ξ)

}
;K(τ + h)

)
= 0. (7)

Remark 2. Notice that if F (·, ξ) takes nonempty closed values and is mea-
surable and integrally bounded, then S[τ,τ+h]F (·, ξ) is nonempty (see, e.g.,
[1, Theorem 8.1.3]). We recall that F (·, ξ) is integrally bounded if F (t, ξ) ⊂
l(t)B, for a.e. t ∈ I, for some l ∈ L1(I,R+).

We point out that in order to study viability for a graph K with respect
to (1), appropriate tangency conditions have been used in many papers; see,
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e.g., [16], [17], [3] and [15]. Let us recall the following tangency condition
which was used in [15];

(TC1) for every (τ, ξ) ∈ K,

lim inf
h→0+

1

h
dist

({
y(τ + h, τ, ξ, f), f ∈ S[τ,τ+h]F (τ, ξ)

}
;K(τ + h)

)
= 0. (8)

The next proposition which follows directly from (7) will be very useful
in the sequel.

Proposition 1. Let (τ, ξ) ∈ K. The following conditions are equivalent:

(i) the relation (7) holds true;

(ii) there exist two sequences, (hn)n in R+ with hn ↓ 0 and (fn)n such that
fn ∈ S[τ,τ+hn]F (·, ξ) for each n ∈ N?, satisfying

lim inf
n→+∞

1

hn
dist

(
y(τ + hn, τ, ξ, fn);K(τ + hn)

)
= 0;

(iii) there exist three sequences, (hn)n in R+ with hn ↓ 0, (fn)n such that
fn ∈ S[τ,τ+hn]F (·, ξ) for each n ∈ N? and (pn)n in X with limn→+∞ pn =
0, satisfying

y(τ + hn, τ, ξ, fn) + hnpn ∈ K(τ + hn),

for n = 1, 2, ...

Next, we shall clarify the relationship between (TC) and (TC1).

Proposition 2. Let X be a separable Banach space and let (τ, ξ) ∈ K.
Assume that F (·, ξ) is a nonempty and closed valued multi–function. Then
the following assertions hold true.

(i) If F (·, ξ) is ε− δ lower semicontinuous at τ and (8) holds true, then (7)
holds.

(ii) If F (·, ξ) is ε − δ upper semicontinuous at τ and (7) holds true, then
(8) holds.

Before proceeding to the proof, we shall recall a well known result con-
cerning measurable multi–functions, that will play crucial role in what fol-
lows (see, e.g., [12, Lemma 1.3]).
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Lemma 1. Let X be a separable Banach space, U : [τ, T ] X a measurable
multi–function with nonempty and closed values and g : [τ, T ] → X, k :
[τ, T ]→ R+ measurable functions. Assume that

W (t) := U(t) ∩ (g(t) + k(t)B) 6= ∅,

for a.e. t ∈ [τ, T ]. Then there exists a measurable function w : [τ, T ] → X
such that w(t) ∈W (t) for a.e. t ∈ [τ, T ].

Proof of Proposition 2. Let us, for example, prove (i). The proof of (ii)
follows the same arguments. Let (τ, ξ) ∈ K and assume that (8) holds
true. According to Proposition 1, there exist (hn)n in R+ with hn ↓ 0,
(fn)n such that fn ∈ S[τ,τ+hn]F (τ, ξ) for each n ∈ N? and (pn)n in X with
limn→+∞ pn = 0, such that

y(τ + hn, τ, ξ, fn) + hnpn ∈ K(τ + hn), (9)

for all n = 1, 2, .... Since F (·, ξ) is ε − δ lower semicontinuous at τ , then
there exists δn > 0 such that

F (τ, ξ) ⊂ F (s, ξ) +
1

n
B,

for all n = 1, 2, ...., and all s ∈ [τ, τ+δn]. Let kn ∈ N∗ be such that hkn < δn.
Then

fkn(s) ∈ F (s, ξ) +
1

n
B,

for all s ∈ [τ, τ + hkn ]. Therefore,

F (s, ξ) ∩
(
fkn(s) +

1

n
B
)
6= ∅,

for all s ∈ [τ, τ+hkn ]. By Lemma 1, for all n = 1, 2, ... there exist measurable
functions gkn(·) and bkn(·) such that gkn(s) ∈ F (s, ξ), bkn(s) ∈ B and

gkn(s) = fkn(s) +
1

n
bkn(s), (10)

for a.e. s ∈ [τ, τ + hkn ]. Since

y(τ + hkn , τ, ξ, gkn) = y(τ + hkn , τ, ξ, fkn) + hknpkn + hknqkn

for every n = 1, 2..., where

qkn =
1

hkn

(
y(τ + hkn , τ, ξ, gkn)− y(τ + hkn , τ, ξ, fkn)

)
− pkn ,
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then, from (9),

y(τ + hkn , τ, ξ, gkn) ∈ K(τ + hkn) + hknqkn ,

for every n = 1, 2.... By using (3) and (10) we get limn qkn = 0. In view
of (iii) in Proposition 1, we deduce that (7) holds. The proof is therefore
complete.

Concerning the multi–function F (·, ·), we have:

Definition 3. (i) We say that F (·, ·) is integrally bounded if, for each
(τ, ξ) ∈ I × X, there exist l ∈ L1(I,R+) and ρ1 > 0 such that
F (t, x) ⊂ l(t)B, for a.e. t ∈ I and all x ∈ B(ξ, ρ1), where B(ξ, ρ1)
is the closed ball with center ξ and radius ρ1.

(ii) We say that F (·, ·) satisfies a sublinear growth condition if there exits
c ∈ L1(I,R+) such that

F (t, x) ⊂ c(t)(1 + ‖x‖)B, (11)

for a.e. t ∈ I and for every x ∈ X.

Concerning the graph K, we have:

Definition 4. (i) The graph K is said to be locally closed from the left if
for each (τ, ξ) ∈ K, there exist T > τ and ρ2 > 0 such that for each
(τn, ξn) ∈ ([τ, T ]×B(ξ, ρ2))

⋂
K with (τn)n nondecreasing, limn τn = τ

and limn ξn = ξ, we have (τ , ξ) ∈ K.

(ii) The graph K is said to be X–closed if for each (τn, ξn) ∈ K with
limn τn = τ , τ ∈ I and limn ξn = ξ, we have (τ , ξ) ∈ K.

2 Sufficient and necessary conditions for approxi-
mate viability

We first state the standing hypothesis concerning the multi–function
K(·).

(K) The multi–function K : I  D(A) has nonempty closed values and is
uniformly continuous, that is, for each ε > 0 there exists δ > 0 such
that

K(t) ⊂ K(s) + εB,

whenever |t− s| ≤ δ.
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The following result gives sufficient conditions for a graph K to be approxi-
mate viable with respect to (1).

Theorem 1. Let X be a Banach space, A : D(A) ⊂ X  X an m–
dissipative operator, K : I  D(A) a multi–function satisfying (K) and
F (·, ·) an integrally bounded multi–function with nonempty and closed values.
If (TC) holds true, then K is approximate viable with respect to (1).

The next lemma is the main step through the proof of Theorem 1.

Lemma 2. Let X be a Banach space, A : D(A) ⊂ X  X an m–dissipative
operator, K : I  D(A) a multi–function with a locally closed from the left
graph K and F (·, ·) an integrally bounded multi–function with nonempty and
closed values. Let (τ, ξ) ∈ K and let l(·) and ρ1 be as in Definition 3. Let
T and ρ2 > 0 be as in Definition 4 and take ρ = min{ρ1, ρ2}. If (TC)
holds true, then there exists T ∈ (τ, T ) such that for every ε ∈ (0, 1) there
exist a nondecreasing function σ : [τ, T ] → [τ, T ], a measurable function
f ∈ [τ, T ]→ X and a continuous function v : [τ, T ]→ X such that

(i) t− ε ≤ σ(t) ≤ t, for all t ∈ [τ, T ] and σ(T ) = T ;

(ii) v(σ(t)) ∈ K(σ(t)) ∩B(ξ, ρ), for all t ∈ [τ, T ];

(iii) f(t) ∈ F (t, v(σ(t))), for a.e. t ∈ [τ, T ] and ‖f(t)‖ ≤ l(t) for a.e.
t ∈ [τ, T ];

(iv) v(τ) = ξ and
∥∥v(t)− y

(
t, σ(s), v(σ(s)), f

)∥∥ ≤ (t− σ(s))ε for all t, s ∈
[τ, T ], τ ≤ s ≤ t ≤ T ;

(v) ‖v(t)− v(σ(t))‖ ≤ ε, for all t ∈ [τ, T ].

We point out that the proof of the above lemma is purely technical and
follows the same arguments as those used in the proof of [15, Lemma 1]
(see also [7, Lemma 11.3.1]). However, it is important to note that if we
use the tangency condition (TC1) instead of (TC) in the above lemma,
then we get in (iii) in Lemma 2, f(t) ∈ F (σ(t), v(σ(t)), for a.e. t ∈ [τ, T ].
Actually, this σ(t)–variation, which appears in the first variable in F (·, ·), is
a drawback for the existence of ε–solution of the Cauchy problem (1).

Next, and before proceeding to the proof of Theorem 1, we note that,
under hypotheses of Lemma 2, if we assume further that F (·, ·) satisfies the
sublinear growth condition (11) and the graph K is X–closed, then we get
the following refined version of Lemma 2.
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Lemma 3. Let X be a Banach space, A : D(A) ⊂ X  X an m–dissipative
operator, K : I  D(A) a multi–function with a X–closed graph K and
F (·, ·) a multi–function with nonempty closed values satisfying the sublinear
growth condition (11). If (TC) holds true, then for every (τ, ξ) ∈ K, T > τ
with [τ, T ] ⊂ I and ε ∈ (0, 1) there exist a nondecreasing function σ : [τ, T ]→
[τ, T ], a measurable function f : [τ, T ] → X and a continuous function
v : [τ, T ]→ X such that

(i) t− ε ≤ σ(t) ≤ t, for all t ∈ [τ, T ] and σ(T ) = T ;

(ii) v(σ(t)) ∈ K(σ(t)), for all t ∈ [τ, T ];

(iii) f(t) ∈ F (t, v(σ(t))), for a.e. t ∈ [τ, T ];

(iv) v(τ) = ξ and
∥∥v(t)− y

(
t, σ(s), v(σ(s)), f

)∥∥ ≤ (t− σ(s))ε for all t, s ∈
[τ, T ], τ ≤ s ≤ t ≤ T ;

(v) ‖v(t)− v(σ(t))‖ ≤ ε, for all t ∈ [τ, T ].

Let us now pass to the proof of Theorem 1.

Proof of Theorem 1. Let (τ, ξ) ∈ K and T > τ , ρ > 0 as in Lemma 2. Let
ε > 0 and let δ be such that

K(t) ⊂ K(s) +
ε

2
B, (12)

whenever |t− s| ≤ δ. Take ε′ ∈ (0, 1) and

0 < ε′ ≤ min

{
ε

2(T − τ + 1)
, δ

}
.

Notice that if the multi–function K(·) satisfies hypothesis (K), then the
graph K is locally closed from the left. We apply Lemma 2 for ε′. There exist
σ, f and v such that (i)∼(v) in Lemma 2 hold true. Let y(t) = y(t, τ, ξ, f)
for every t ∈ [τ, T ]. We claim that y(·) is an ε–solution of (1) on [τ, T ].
Indeed, from (iii) and (v) we have

f(t) ∈ F (t, v(t) + ε′B),

for a.e. t ∈ [τ, T ]. Using (iv) with s = τ , we get

‖v(t)− y(t)‖ ≤ (t− τ)ε′ ≤ (T − τ)ε′, (13)
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for all t ∈ [τ, T ]. Consequently,

f(t) ∈ F
(
t, y(t) + (T − τ)ε′B + ε′B

)
for a.e. t ∈ [τ, T ]. From the choice of ε′ we deduce that

f(t) ∈ F (t, y(t) + εB),

for a.e. t ∈ [τ, T ]. Accordingly, y(·) is an ε–solution of (1) on [τ, T ] as
claimed. To finish the proof let us check that

dist(y(t);K(t)) ≤ ε,

for every t ∈ [τ, T ]. Indeed, from (i), (ii), (v), (13), (12) and the choice of
ε′ we get

dist(y(t);K(t)) ≤ dist(y(t);K(σ(t))) + dist(K(σ(t));K(t))

≤ ‖y(t)− v(σ(t))‖+ dist(K(σ(t));K(t))

≤ ‖y(t)− v(t)‖+ ‖v(t)− v(σ(t))‖+
ε

2

≤ (T − τ)ε′ + ε′ +
ε

2
≤ ε,

for every t ∈ [τ, T ].

Next we shall show that, under the hypotheses of Theorem 1, if we
assume further that F (·, ·) satisfies the sublinear growth condition (11),
then K is globally approximate viable with respect to (1). More precisely,
we have the following result.

Theorem 2. Let X be a Banach space, A : D(A) ⊂ X  X an m–
dissipative operator, K : I  D(A) a multi–function satisfying (K) and
F (·, ·) a multi–function with nonempty and closed values satisfying the sub-
linear growth condition (11). If (TC) holds true, then K is globally approx-
imate viable with respect to (1).

Proof. The proof follows the same arguments as those used in the proof of
Theorem 1, using this time Lemma 3 instead of Lemma 2.

Now we investigate necessary conditions of approximate viability for a
graph K with respect to (1).

Let us first recall that in [10, Theorem 3.3] the author proved that if X
is a separable Banach space and F : X  X is ε− δ upper semicontinuous
satisfying a sublinear growth condition, then approximate viability of the
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set K ⊂ X with respect to x′(t) ∈ Ax(t) + F (x(t)) implies the following
tangency condition

lim inf
h→0+

1

h
dist

({
y(τ + h, τ, ξ, f), f ∈ S[τ,τ+h]F (ξ)

}
;K

)
= 0,

for each ξ ∈ K, where S[τ,τ+h]F (ξ) is the set of all integrable selections
of the multi–function s 7→ F (ξ) defined on [τ, τ + h] for some h > 0 with
[τ, τ + h] ⊂ I.

The same result was established in the semilinear autonomous case when
A : D(A) ⊂ X → X generates a C0–semigroup (see [14, Theorem 4.1]) and
in the autonomous case with A ≡ 0 (see [11, Theorem 3.2] and [6, Theorem
3]).

Here, we prove that approximate viability for a graph K with respect
to (1) implies also a tangency condition, under some Carathéodory condi-
tions on F (·, ·). More precisely, let us first state the following Carathéodory
assumptions on the multi–function F (·, ·).

(F1) For each x ∈ X the multi–function F (·, x) is measurable.

(F2) There exists k ∈ L1(I;R+) such that for each (τ, ξ) ∈ K there exist
a nondecreasing function w : R+ → R+ which is continuous at 0 with
w(0) = 0 and a bounded open set Ω ⊂ X containing ξ such that

F (t, x) ⊂ F (t, ξ) + k(t)w(‖x− ξ‖)B,

for each x ∈ Ω and for a.e. t ∈ I.

The following result provides necessary conditions of approximate viability
for a graph K with respect to (1).

Theorem 3. Let X be a separable Banach space, A : D(A) ⊂ X  X an
m–dissipative operator such that 0 ∈ D(A) and 0 ∈ A0. Let K : I  D(A)
be a multi–function with the graph K and let F (·, ·) be a multi–function with
nonempty and closed values satisfying (F1), (F2) and the sublinear growth
condition (11). If K is approximate viable with respect to (1), then (7) holds
true for a.e. τ ∈ I and for every ξ ∈ K(τ).

Proof. It is well known that if k ∈ L1(I,R+) then there exists a negligible
set Z ⊂ I such that

lim
t→0+

1

t

∫ τ+t

τ
|k(s)− k(τ)|ds = 0, (14)
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for every τ ∈ I \ Z. Let τ ∈ I \ Z, ξ ∈ K(τ) and T > τ be as in Definition
2. Take (εn) ⊂ (0, 1) such that εn ↓ 0 and

√
εn < T − τ for every n ∈ N∗.

Since K is approximate viable with respect to (1), there exists a sequence of
εn–solutions yn : [τ, T ]→ X of (1) satisfying

dist(yn(t);K(t)) ≤ εn, (15)

for each t ∈ [τ, T ], where yn(·) = y(·, τ, ξ, fn) and (fn) ⊂ L1(τ, T ;X) satis-
fying

fn(s) ∈ F (s, yn(s) + εnB), (16)

for every n ∈ N∗ and for a.e. s ∈ [τ, T ]. Using (16) and (11), we get

‖fn(s)‖ ≤ c(s)(2 + ‖yn(s)‖), (17)

for every n ∈ N∗ and for a.e. s ∈ [τ, T ]. From Remark 1 and the above
inequality one has

‖yn(t)‖ ≤ ‖ξ‖+

∫ t

τ
‖fn(s)‖ds ≤ ‖ξ‖+

∫ t

τ
c(s)(2 + ‖yn(s)‖)ds,

for every n ∈ N∗ and every t ∈ [τ, T ]. Applying Gronwall’s inequality, we
get

‖yn(t)‖ ≤M,

for every n ∈ N∗ and every t ∈ [τ, T ], where M = (‖ξ‖ + 2C)eC and

C =
∫ T
τ c(s)ds. It follows from (17) that

‖fn(s)‖ ≤ c(s)(2 +M), (18)

for every n ∈ N∗ and for a.e. s ∈ [τ, T ]. Using (3), we get

‖yn(t)− ξ‖ ≤
∫ t

τ
‖fn(s)‖ds+ ‖y(t, τ, ξ, 0)− ξ‖

≤
∫ t

τ
c(s)(2 +M)ds+ ‖y(t, τ, ξ, 0)− ξ‖,

for every n ∈ N∗ and every t ∈ [τ, T ]. Let tn =
√
εn. Then

‖yn(t)− ξ‖ ≤ δn,

for every n ∈ N∗ and every t ∈ [τ, τ + tn], where

δn =

∫ τ+tn

τ
c(s)(2 +M)ds+ sup

τ≤t≤τ+tn
‖y(t, τ, ξ, 0)− ξ‖.
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Hence yn(t) ∈ ξ+ δnB, for every n ∈ N∗ and every t ∈ [τ, τ + tn]. Therefore,
from (16), we infer that

fn(s) ∈ F (s, ξ + (δn + εn)B)

for every n ∈ N∗ and a.e. s ∈ [τ, τ + tn]. Using hypothesis (F2) and taking
into account that limn δn = 0, we get for n sufficiently large that

fn(s) ∈ F (s, ξ + (δn + εn)B) ⊂ F (s, ξ) + k(s)wnB,

for a.e. s ∈ [τ, τ + tn], where wn = w(δn + εn). Thus,

F (s, ξ) ∩ (fn(s) + k(s)wnB) 6= ∅,

for a.e. s ∈ [τ, τ + tn]. By virtue of Lemma 1, we deduce that there exist
measurable functions gn(·) and bn(·) such that gn(s) ∈ F (s, ξ), bn(s) ∈ B
and

gn(s) = fn(s) + k(s)wnbn(s), (19)

for a.e. s ∈ [τ, τ + tn]. Therefore, combining (19), (15), (3) and making use
of the choice of tn, for n sufficiently large we get

1

tn
dist

(
y(τ + tn, τ, ξ, gn);K(τ + tn)

)
≤ 1

tn

∥∥y(τ+tn, τ, ξ, gn)−y(τ+tn, τ, ξ, fn)
∥∥+

1

tn
dist

(
y(τ+tn, τ, ξ, fn);K(τ+tn)

)
≤ 1

tn

∫ τ+tn

τ
k(s)wnds+

εn
tn
≤ wn

1

tn

∫ τ+tn

τ
|k(s)−k(τ)|ds+wnk(τ)+

√
εn.

Finally, from (14), taking into account that limn→+∞wn = 0 and considering
the continuity of w(·) at 0 and w(0) = 0, we deduce that

lim inf
n→+∞

1

tn
dist

(
y(τ + tn, τ, ξ, gn);K(τ + tn)

)
= 0.

From Proposition 1 (ii), we conclude that (7) holds true. The proof is
therefore complete.

3 Application to approximate null controllability

We consider the state evolution inclusion{
x′(t) ∈ Ax(t) + f(t, x(t)) + u(t),

x(0) = x0 ∈ D(A),
(20)
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where A : D(A) ⊂ X  X is an m–dissipative operator, X is a Banach
space, u(·) is a measurable control taking values in B and f : R+ ×X → X
satisfies

(f1) f(·, x) is continuous for each x ∈ X;

(f2) f(t, 0) = 0 for all t ∈ R+ and ‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖, for every
x, y ∈ X, t ∈ R+ and for some L > 0.

We will prove an approximate null controllability result for (20), that is, for
each ε > 0 find a control u(·) and a solution x(·) of (20) issuing from the
initial point x0 and satisfying ‖x(T )‖ ≤ ε in some time T .
Our main result in this section is the following.

Theorem 4. Let X be a Banach space, A : D(A) ⊂ X  X an m–
dissipative operator with 0 ∈ D(A), 0 ∈ A0 and let f : R+ ×X → X satisfy

(f1) and (f2). Then, for any x0 ∈ D(A) with 0 < ‖x0‖ <
1

2L
, there exists

T > 0 such that for any ε > 0 there exist a measurable control u(·) with
u(t) ∈ B for a.e. t ∈ [0, T ] and a solution x : [0, T ] → X of (20) satisfying
‖x(T )‖ ≤ ε.

Proof. Consider the Banach space Y = X ×R, the operator A = (A, 0) and
the cylindrical domain K = R+ ×K, where

K = {(x, z) ∈ D(A)× R; ‖x‖ ≤ |z|}.

Define G : R+ × Y  Y by

G(t, y) = (f(t, x) +
1

2
B)× {Lz − 1

2
},

where y = (x, z). We can easily verify that G(·, ·) has nonempty closed
values and satisfies a sublinear growth condition. Consider the following
Cauchy problem {

y′(t) ∈ Ay(t) +G(t, y(t)),

y(0) = ξ ∈ D(A).
(21)

In order to apply our main result on approximate viability (Theorem 2), we
have to check that the tangency condition (TC) holds with F (·, ·) replaced
by G(·, ·). To this end, let (τ, y) ∈ K be fixed but arbitrary and let y =
(x, z) ∈ K. We assume first that x 6= 0. Let us show that there exist
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the sequences (hn) ⊂ R+, hn ↓ 0+, (pn) ⊂ R with pn → 0 and (gn) with

gn(t) ∈ f(t, x) +
1

2
B for a.e. t ∈ [τ, τ + hn] such that

(
y(τ + hn, τ, x, gn), z + hn(Lz − 1

2
) + hnpn

)
∈ K,

for every n ∈ N∗. Let h > 0 be arbitrary. We define g : [τ, τ + h] → X by

g(t) = f(t, x)− x

2‖x‖
. From Remark 1, the following inequality holds

‖y(τ + h, τ, x, g)‖ ≤ ‖x‖+

∫ τ+h

τ
[y(s, τ, x, g), g(s)]+ds. (22)

By the upper semicontinuity of [·, ·]+ we get

lim sup
h→0+

1

h

∫ τ+h

τ
[y(s, τ, x, g), g(s)]+ds ≤

[y(τ, τ, x, g), g(τ)]+ = [x, g(τ)]+ = [x, f(τ, x)− x

2‖x‖
]+

≤ [x, f(τ, x)]+ + [x,− x

2‖x‖
]+ ≤ ‖f(τ, x)‖ − 1

2
≤ L‖x‖ − 1

2
.

Hence, there exist the sequences (hn) ⊂ R+ with hn ↓ 0+ and (pn) ⊂ R with
pn → 0 such that∫ τ+hn

τ
[y(s, τ, x, g), g(s)]+ds ≤ hn(L‖x‖ − 1

2
) + hnpn,

for all n ∈ N∗. Let gn : [τ, τ + hn] → X be such that gn(t) = g(t) for all
t ∈ [τ, τ + hn]. From (22) and the above inequality we get

‖y(τ + hn, τ, x, gn)‖ ≤ ‖x‖+ hn(L‖x‖ − 1

2
) + hnpn

≤ |z|+ hn(L|z| − 1

2
) + hnpn

≤
∣∣z + hn(Lz − 1

2
) + hnpn

∣∣.
Then (7) holds true. If x = 0, we check easily that (7) holds. By virtue of
Theorem 2 we deduce that K is globally approximate viable with respect to

(21). Let x0 ∈ D(A) be such that 0 < ‖x0‖ <
1

2L
and let

T =
1

L
log

1

1− 2L‖x0‖
.
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For ε > 0 take ε′ > 0 such that

ε′ ≤ min

{
1

2L
,

ε

eLTLT + 1

}
.

Since K is globally approximate viable with respect to (21), there exists
x : [0, T ]→ X a solution of{

x′(t) ∈ Ax(t) + f(t, x(t) + ε′B) +
1

2
B,

x(0) = x0,
(23)

on [0, T ] and z : [0, T ]→ R+ a solution of{
z′(t) ∈ L(z(t) + ε′BR)− 1

2
,

z(0) = ‖x0‖,
(24)

on [0, T ] such that

dist((x(t), z(t)),K) ≤ ε′

2
< ε′, (25)

for every t ∈ [0, T ]. We recall that BR is the unit ball of R. From (23), we
deduce that x(·) is a solution of{

x′(t) ∈ Ax(t) + g(t),
x(0) = x0,

on [0, T ], for some g ∈ L1(0, T ;X) with g(t) ∈ f(t, x(t) + ε′B) +
1

2
B a.e. for

t ∈ [0, T ]. Taking into account that f(·, ·) satisfies (f2) and from the choice
of ε′, we deduce that g(t) ∈ f(t, x(t)) + B for a.e. t ∈ [0, T ]. Hence, there
exists a measurable control u(·) with u(t) ∈ B for a.e. t ∈ [0, T ] such that
x(·) is a solution of (20) on [0, T ]. To finish the proof, let us check that
‖x(T )‖ ≤ ε. Indeed, using (25), one proves that

‖x(t)‖ ≤ |z(t)|+ ε′,

for every t ∈ [0, T ]. From (24), by a simple calculation, one gets

|z(t)| ≤
∣∣eLt(‖x0‖ − 1

2L
) +

1

2L

∣∣+ eLtLε′t,

for every t ∈ [0, T ]. Thus, using the choice of T , we find

|z(T )| ≤ eLTLε′T.
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Finally, from the choice of ε′, we deduce that

‖x(T )‖ ≤ eLTLε′T + ε′ ≤ ε.
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[6] O. Cârjă, A. Lazu: Approximate weak invariance for differential inclu-
sions in Banach spaces, J. Dyn. Control Syst., 18 : 215−−227, 2012.
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