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Abstract

We discuss a discretization approach for the p - Laplacian equation
and a variational inequality associated to fourth order elliptic opera-
tors, via a meshless approach based on duality theory.
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1 Introduction

We consider the well known p - Laplacian boundary value problem, ex-
pressed in the variational form (minimization of energy) via the Dirichlet
principle:

Min
y∈W 1,p

0 (Ω)

{
1

p

∫
Ω

[|∇y|p + |y|p]dx−
∫

Ω
fydx

}
, (1)

where Ω ⊂ Rd is a bounded domain and p > d ≥ 2 is given, f ∈ Lq(Ω) with
1

p
+

1

q
= 1.

The space W 1,p
0 (Ω) is the usual Sobolev space.
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The existence of a unique weak solution y ∈W 1,p
0 (Ω) is standard due to

the coercivity and strict convexity of the functional (1).
It may be interpreted as solving the nonlinear boundary value problem

−
d∑

i=1

∂

∂xi

(
|∇y|p−1 ∂y

∂xi

)
+ |y|p−2y = f in Ω, (2)

y = 0 on ∂Ω, (3)

in a weak sense in W 1,p
0 (Ω).

The basic idea of our approach is to interprete the boundary condition
in (2), (3) as a constraint in the minimization problem (1), as it is in fact.
These infinitely many pointwise constraints make sense due to the Sobolev
embedding theorem W 1,p

0 (Ω) ⊂ C(Ω), if p > d.
The method that we introduce in this note, discretizes (3) without using

a discretization of Ω or ∂Ω, it is a meshless method.
Moreover, we are not applying the (rather complex) bases (like RBF for

instance) that are usual in meshless methods [2], [10].
The idea goes back to [6], [11], [9], Ch. 6, where the Kirchhoff - Love

model for arches is discussed. Since this model involves just a finite num-
ber of boundary conditions, then the explicit solution is obtained [6]. As a
comparison, underlying the efficiency of our approach, in [3], [4] finite ele-
ment discretizations and the locking problem are discussed for the Kirchhoff
- Love arches.

In Section 2, we introduce the approximating problem and prove some
convergence properties. Its solving is discussed in Section 3. In the recent
papers [7], [8] similar ideas were used for the distributed obstacle problem
in elliptic equations, including numerical experiments.

In Section 4, we briefly analyze an elliptic variational inequality for fourth
order operators, via the same technique.

2 Approximation

Let {xi}i∈N be a sequence of points dense in ∂Ω. No ”elements” are
used, no uniformity or regularity assumptions are made for the geometry
and its approximation.

The approximation of (1) is given by

Min
y∈W 1,p(Ω)

y(xi)=0, i=1,n

{
1

p

∫
Ω

[|∇y|p + |y|p]dx−
∫

Ω
fydx

}
, (4)
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for any n ∈ N . We denote by (Pn) the problem (4).

Proposition 1. The problem (Pn) has a unique solution yn ∈ W 1,p(Ω).
Moreover, we have yn → y, the solution of (1), strongly in W 1,p(Ω).

Proof. The existence and uniqueness of yn ∈W 1,p(Ω) is again a consequence
of the coercivity and strict convexity of the functional (4). We have the
following inequality

1

p

∫
Ω

[|∇yn|pdx+ |yn|p]−
∫

Ω
fyndx ≤

1

p

∫
Ω

[|∇y|pdx+ |y|p]−
∫

Ω
fydx, (5)

since y is admissible for (Pn), any n ∈ N .
In particular, (5) shows that {yn} is bounded in W 1,p(Ω) due to the

coercivity of (4). On a subsequence, denoted again by n, we may assume
yn → ỹ weakly in W 1,p(Ω).

Since the functional (4) is weakly lower semicontinuous, using (5) as well,
we infer

1

p

∫
Ω

[|∇ỹ|pdx+ |ỹ|p]−
∫

Ω
fỹdx ≤ 1

p

∫
Ω

[|∇y|pdx+ |y|p]−
∫

Ω
fydx. (6)

Notice that, for any i ∈ N , we have ỹ(xi) = 0. This is satisfied by
yn, n > i and remains valid by passing to the limit in W 1,p(Ω) weak (and
implicitly in C(Ω)).

As ỹ ∈ C(Ω) and {xi} is dense in ∂Ω, it yields ỹ ∈ W 1,p
0 (Ω). Then, by

(6) and the uniqueness of y, we obtain ỹ = y.
The inequalities (5), (6) also show that

1

p

∫
Ω

[|∇yn|pdx+ |yn|p]−
∫

Ω
fyndx→

1

p

∫
Ω

[|∇y|pdx+ |y|p]−
∫

Ω
fydx, (7)

for n → ∞. Since clearly
∫

Ω fyn →
∫

Ω fy due to the weak convergence of
{yn}, we obtain from (7) the convergence of the norms of the solutions and
the strong convergence of yn, via a strong convergence criterion in uniformly
convex Banach spaces.

The convergence is valid on the initial sequence since the limit is unique.
This ends the proof.
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Remark 1. This approximation argument can be easily extended to many
elliptic boundary value problems, linear or nonlinear. The key point is to
ensure the continuity of the solutions. To circumvent this argument, by
supplementary approximation techniques or other procedures, would be of
interest.

3 The duality argument

We investigate now the solution of (4). It has a finite number of con-
straints and we shall compute the dual problem, using the Fenchel theory.
The dual problem is finite dimensional and easier to solve.

Define gn : W 1,p(Ω)→ ]−∞,+∞] as

gn(y) =

{
0 y(xi) = 0, i = 1, n,
+∞ otherwise.

And denote by h : W 1,p(Ω)→ R the continuous, concave mapping

h(y) = −1

p

∫
Ω

[|∇y|p + |y|p] dx+

∫
Ω
fydx. (8)

Clearly, the problem (Pn) can be expressed as

min
y∈W 1,p(Ω)

{gn(y)− h(y)}, (9)

via (8), (8). Since gn is convex, lower semicontinuous and finite in certain
points of W 1,p(Ω), the Fenchel theorem [1], allows to rewrite (9) as

max
z∈W 1,p(Ω)∗

{h∗(z)− g∗n(z)}, (10)

where h∗, g∗n denote concave/convex conjugates defined on the dual space
W 1,p(Ω)∗.

We compute now the conjugates from (10).

Lemma 1. We have

g∗n(z) =

 0, z =
n∑

i=1
αiδxi , αi ∈ R,

+∞, otherwise,
(11)

where δxi is the Dirac measure concentrated in xi.
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Proof.

g∗n(z) = sup
w∈W 1,p(Ω)

{
(z, w)W 1,p(Ω)∗×W 1,p(Ω) − gn(w)

}
=

= sup
w∈W 1,p(Ω)

w(xi)=0, i=1,n

{
(z, w)W 1,p(Ω)∗×W 1,p(Ω)

}
≥ 0. (12)

If in ẑ ∈ W 1,p(Ω)∗, we have g∗n(ẑ) > 0, then we may change in (12)
w → λw with λ → ∞ and infer that g∗n(ẑ) = +∞. Consequently, g∗n takes
either the value 0 or +∞.

If δxi is the Dirac measure concentrated in xi, then δxi ∈W 1,p(Ω)∗ since
p > d and W 1,p(Ω) ⊂ C(Ω).

By (12), we have g∗n(δxi) = 0, for i = 1, n.

This remains valid for any z∗ =
n∑

i=1
αiδxi with αi ∈ R arbitrary scalars.

Therefore, g∗n is null on this finite dimensional subspace in W 1,p(Ω)∗.
Notice that:

dom g∗n =
{
z ∈W 1,p(Ω)∗; (z, w)W 1,p(Ω)∗×W 1,p(Ω) = 0, ∀ w ∈ An

}
, (13)

where An =
{
y ∈W 1,p(Ω); y(xi) = 0, i = 1, n

}
is a closed linear subspace

in W 1,p(Ω).

Denote Bn =

{
n∑

i=1
αiδxi , αi ∈ R

}
⊂W 1,p(Ω)∗, a linear closed subspace.

The polar space of Bn is

B◦n =
{
y ∈W 1,p(Ω); (y, z)W 1,p(Ω)×W 1,p(Ω)∗ = 0; ∀ z ∈ Bn

}
=

=
{
y ∈W 1,p(Ω); y(xi) = 0; i = 1, n

}
= An.

Since by (13), dom g∗n is the polar of An, the bipolar theorem [1], p. 88,
shows that dom g∗n = Bn. This ends the proof.

Proposition 2. The dual problem (10) is given by:

min

{
1

q
|f − z|q

W 1,p(Ω)∗
; z =

n∑
i=1

αiδxi , αi ∈ R

}
. (14)

It is a finite dimensional optimization problem.
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Proof.

h∗(z) = inf
y∈W 1,p(Ω)

{
(y, z)W 1,p(Ω)×W 1,p(Ω)∗ − h(y)

}
=

= inf
y∈W 1,p(Ω)

{
(y, z − f)W 1,p(Ω)×W 1,p(Ω)∗ + 1

p

∫
Ω [|∇y|p + |y|p]

}
≥

≥ −1
q |z − f |

q
W 1,p(Ω)∗

,

due to the elementary inequality ab ≤ 1
pa

p + 1
q b

q, with equality for a = b
1

p−1 .

If we choose y ∈ W 1,p(Ω), y = −J(z − f), then we get equality in (15)
and, consequently, h∗(z) = −1

q |z − f |
q
W1,p(Ω)∗

.

Above: J : W 1,p(Ω)∗ → W 1,p(Ω) is the duality mapping with weight

e(α) = α
1

p−1 , α ∈ R. That is, it satisfies (see [5], p. 38):

(J(z), z)W 1,p(Ω)×W 1,p(Ω)∗ = |J(z)|W 1,p(Ω)|z|W 1,p(Ω)∗ ,

|J(z)|W 1,p(Ω) = e(|z|W 1,p(Ω)∗).

Here, we also use that W 1,p(Ω) is a reflexive Banach space and J has
nonvoid values on W 1,p(Ω)∗.

Together with Lemma 1, this ends the proof.

Remark 2. If we denote by zn the unique solution of the dual problem (14),
then the solution yn of the approximating problem (9) may be obtained from
the relation zn − f ∈ ∂h(yn), where ∂h is the subdifferential of (8). See [1],
p. 188.

Since zn is a linear combination of Dirac measures, the solution of the
above relation is much simplified. If p = 2, it becomes linear and one can
also get continuity in space by taking in problem (2) the right hand side f
in Ls(Ω), s big enough, depending on dimension.

Remark 3. A formal interpretation of the approximating problem (4) is
as a mixed boundary value problem: pointwise Dirichlet conditions in xi,
i = 1, n and Neumann conditions in the remaining of ∂Ω.

4 A fourth order variational inequality

We formulate the variational problem
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Min
y∈K

{
1

2

∫
Ω
|∆y|2dx−

∫
Ω
hydx

}
, (15)

K =

{
z ∈ H2(Ω) ∩H1

0 (Ω),

∫
Ω
hzdx ≥ −1

}
, (16)

where h ∈ L2(Ω) is given and Ω is a bounded domain.
The problem (15), (16) can be interpreted as a simply supported plate

and the unilateral condition in (16) is related to the mechanical work asso-
ciated to the force h. It has a unique solution in K due to the coercivity
and strict convexity of the functional (15).

We approximate (15), (16) by an optimization problem with a finite
number of constraints:

Inf
y∈Kn

{
1

2

∫
Ω
|∆y|2dx−

∫
Ω
hydx

}
, (17)

Kn =

{
z ∈ H2(Ω); z(xi) = 0, i = 1, n,

∫
Ω
hzdx ≥ −1

}
, (18)

where {xi}i∈N ⊂ ∂Ω is a dense subset as in the previous sections and Kn

is well defined if z is continuous, for instance if Ω ⊂ R3, by the Sobolev
theorem.

Notice that the existence question in (17), (18) is not easy to be settled,
due to the possible lack of coercivity. Under conditions in (18), the seminorm
in (17) may not be a norm.

However, the dual approximating problem (which is finite dimensional)
has solutions and the Fenchel theorem may be applied. We fix:

g : L2(Ω)→ R, g(z) = −1

2

∫
Ω
|z|2dx, (19)

which is a concave continuous mapping,

D : H2(Ω)→ L2(Ω), Dy = ∆y, (20)

which is a linear continuous operator,

fn : H2(Ω)→ ]−∞,+∞], (21)

fn(z) =

{
−
∫

Ω hz , z ∈ Kn,

+∞ otherwise,
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a convex lower semicontinuous proper function.
By (19) - (21), the problem (17), (18) may be rewritten as

Inf
z∈H2(Ω)

{fn(z)− g(Dz)} (22)

and the hypotheses of the Fenchel theorem are fulfilled (for z = 0, for in-
stance).

The conjugate g∗(z) = −1

2

∫
Ω
|z|2dx is clear and, for f∗n, we state

Lemma 2. We have

f∗n(y) =

{
0 , y ∈ K0

n + h,

+∞ otherwise,

where K0
n ⊂ H2(Ω) is the polar of the convex Kn.

Proof.
f∗n(y) = sup

{
〈z, y + h〉H2(Ω)×H2(Ω)∗ ; z ∈ Kn

}
≥ 0. (23)

If y has the form y = −h+
n∑

i=1
αiδxi , αi ∈ R and δxi are Dirac measures

from H2(Ω)∗ concentrated in xi, then f∗n(y) = 0.

Fix z0 ∈ Kn, such that
∫

Ω z0hdx = −1, which clearly exists. Then,
Kn−z0 is a cone and the unilateral condition can be equivalently expressed:∫

Ω
h(z − z0)dx ≥ 0.

If y ∈ H2(Ω)∗ is such that f∗n(y) > 0, we take z0 +λ(z− z0) ∈ Kn, λ > 0
and compute

〈z0 + λ(z − z0), y + h〉H2(Ω)×H2(Ω)∗ = −1 + 〈z0, y〉H2(Ω)×H2(Ω)∗+

+λ〈z − z0, y + h〉 → ∞ as λ→∞.
(24)

The value −∞ is impossible in (24), due to (23).
It yields that f∗n(y) takes either 0, or +∞ values, due to (23), (24).
We also remark

f∗n(y − h) = sup
{
〈z, y〉H2(Ω)×H2(Ω)∗ ; z ∈ Kn

}
≤ 1
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for y ∈ K0
n, i.e. f∗n(y − h) = 0 for y − h ∈ K0

n.
Outside K0

n + h, we get greater than 1 values, i.e. f∗n(y − h) = +∞,
y /∈ K0

n.
This ends the proof.

Remark 4. Denote by An =

{
y = −h+

n∑
i=1

αiδxi , ∀ αi ∈ R
}
⊂ H2(Ω)∗.

Then

A0
n =

{
x ∈ H2(Ω); 〈x, z〉H2(Ω)×H2(Ω)∗ ≤ 1, ∀ z ∈ An

}
⊂

⊂
{
x ∈ H2(Ω); y(xi) = 0, i = 1, n

}
,

since, otherwise, we may take αi → ±∞ conveniently, and obtain a con-
tradiction. Using again the definition of the dual and this property, we get
A0

n =
{
y ∈ H2(Ω); 〈y,−h〉H2(Ω)×H2(Ω)∗ ≤ 1, y(xi) = 0, i = 1, n

}
= Kn.

It yields that K0
n = A00

n = conv ({0} ∪An), by the bipolar theorem, [1].
This further clarifies Lemma 2. By Fenchel Theorem, we infer:

Proposition 3. We have

Inf
z∈H2(Ω)

{fn(z)− g(Dz)} = Max
y∈L2(Ω)

{g∗(y)− f∗n(D∗y)} ,

where D∗ : L2 → H2(Ω)∗ is the adjoint operator of D.

Remark 5. The dual problem reduces to the maximization of g∗ under con-
straint D∗y ∈ K0

n + h, a finite dimensional optimization problem.
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