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Abstract

Several experiments are reported, related to the implicit parametriza-
tion method and its application in optimization, together with com-
parisons with the existing methodology.
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1 Introduction

In the recent papers [5], [3], [6] a new approach to the solution of general
implicit systems has been introduced, based on the application of certain
iterated ordinary differential systems. This method can be extended to the
critical case via the use of generalized solutions [6]. Some numerical ex-
periments are reported in [3] and [2]. It was noticed that one may apply
such techniques to constrained nonlinear programming problems, by solv-
ing the equality constraints and reducing the dimension of the minimization
problem [6]. In this work, we report on several large scale numerical experi-
ments in constrained optimization and compare them with other approaches
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from the literature, [1], [4] or from MatLab. It is a continuation of [6], in the
sense that the provided examples are related to the theoretical developments
therein.

2 An example in R6

Let f : R6 → R be a continuous function and Fi : R6 → R, i = 1, 3 be
of class C1, such that:

Fi(x
0) = 0, i = 1, 3,

x0 ∈ R6 given.

Consider the following constrained optimization problem:

min f(x1, x2, x3, x4, x5, x6), (1)

with the restrictions:

Fi(x1, x2, x3, x4, x5, x6) = 0, i = 1, 2, 3. (2)

We eliminate the constraints (2) using the implicit parametrization method
from [6].

To solve the problem (1)-(2), we also assume:

D(F1, F2, F3)

D(x1, x2, x3)
6= 0, in x0. (3)

Let A(x) be the corresponding 3×3 non-singular submatrix of the Jacobian
(3).

We introduce the following linear system:

vj(x) · ∇Fi(x) = 0, i = 1, 3, j = 1, 3, (4)

where vj(x) has the last three components given by the rows of I3 ·det(A(x)),
I3 beeing the identity matrix in R3. Using the three solutions vj(x), j = 1, 3,
thus obtained from (4), we define the following three iterated differential
systems, in R6 each:
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∂y1(t1)

∂t1
= v1(y1(t1)),

y1(0) = x0,

∂y2(t1, t2)

∂t2
= v2(y2(t1, t2)), t2 ∈ I2(t1) ⊂ R, (5)

y2(t1, 0) = y1(t1),

∂y3(t1, t2, t3)

∂t3
= v3(y2(t1, t2, t3)), t3 ∈ I3(t1, t2),

y3(t1, t2, 0) = y2(t1, t2).

In [6], it is shown that the systems (5) solve the restrictions (2) around x0.

We discuss now an example from [4].

Example 1. Let Z ⊂ R3 and P ⊂ R3. Consider the objective function
f : Z × P → R:

f(z, p) =
3∑

j=1

[aj(pj − cj)]
2 +

∑
i 6=j

aj(pi − ci) (6)

− 5

(
(j − 1)(j − 2)(z2 − z1) +

3∑
i=1

(−1)i+1zj

))2

where ai, ci, i = 1, 2, 3 are fixed constants, given in Table 1 and the equality
constraints are:

h1(z, p) = 10−9
(
e38z1 − 1

)
+ p1z1 − 1.6722z1 + 0.6689z3 − 8.0267 = 0,

h2(z, p) = 1.98·10−9
(
e38z2−1

)
+0.6622z1+p2z2+0.6622z3+4.0535 = 0, (7)

h3(z, p) = 10−9
(
e38z3 − 1

)
+ z1 − z2 + p3z3 − 6 = 0.

i = 1 i = 2 i = 3

ai 37, 3692 18, 5805 6.25

ci 0.602 1.211 3.6

Table 1: constants values
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We choose two different initial conditions, that are indicated in [4] as
local, respectively global solutions of (6), (7):

x10 = [0.56,−3.3158, 0.5115, 0.602, 1.4685, 3.6563],

x20 = [0.56,−3.3158, 0.5115, 0.7039, 1.4364, 3.6113].

To apply the implicit parametrization method, we solve the three differential
systems (5) using the routine ode15s, for stiff problems, from MatLab.

In both cases, we use the parameter integration intervals: [−0.2, 0.2],
with different discretizations: for the first system in (5), we take the step
0.00001 and for the second and the third system 0.001. In this way we obtain
a discretization around x0 of the manifold generated by (7) in R6.

For the first initial condition, we obtain for the objective function (6) the
minimal value 348, 1322, corresponding to z = [0.5580,−3.3172, 0.5136], p =
[0.4692, 1.4635, 3, 5890]. The values for the restrictions are h1 = −0.2557,
h2 = −0.0021, h3 = 0.0026.

For the second initial condition, the minimum value for f is 384, 8258.
The point where the function touches its minimum is z = [0.565,−3.3154,
0.5089], p = [0.5047, 1.4365, 3.6777] and the constraints have the values:
h1 = −0.2557, h2 = −0.1083, h3 = 0.0193. In each experiment the necessary
time was about three minutes on a medium size laptop.

The constraints are not very close to zero due to the approximations.
We now make a correction by keeping fixed, in each case, the last three

coordinates of the minimum point, and we obtain the following results, by
solving (7) in MatLab:
• for the first initial condition:

fmin = 343.7695 in [0.5631,−3.3258, 0.5159, 0.4692, 1.4635, 3.5890] and the
constraints values are h1 = 2.9387 · 10−39, h2 = 0, h3 = 0.
• for the second initial condition:

fmin = 383.7265 in [0.5616,−3.3154, 0.5089, 0.5047, 1.4365, 3.6777] and the
constraints values are h1 = 2.9387 · 10−39, h2 = −1.4693 · 10−39, h3 = 0.

While our solutions improve the numerical results in [4], this is not a
contradiction, since the implicit parametrization method extends the search
region. Clearly, it is possible, for instance, to further extend the parameter
integration interval [−0.2, 0.2], in a very simple way, if needed.

3 High dimensional examples

In this section, we investigate the possibility to apply the implicit parame-
trization method in complex nonlinear programming problems. We just
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discuss examples in R12 and R50, for simplicity of writing. Large scale ex-
amples, for instance, in dimension 1000, are possible by the same technique.
In [1] such examples are discussed for unconstrained problems, with different
methods.

Example 2. In R12 we consider the problem:

min f(x), (8)

where f(x) = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12
or f(x) = x21 + 3x2 + x3 + x4x5 + x6 + x37 + x8 + x9 − x10x11 + x12,
with ten equality constraints:

F1(x) = x1 − x11x12,

F2(x) = 2x21 − x2 − x211x12,

F3(x) = x21 − x2 − x3 + x11x12,

F4(x) = 2x1 − x2 − x3 + x4 + x211x12,

F5(x) = x31 + x2 − x3 + 3x4 − x5 − 3x11x12, (9)

F6(x) = x31 + x22 + x3 + x5 − x6 − x211 − 2x12,

F7(x) = x1 − x32 − x4 + x5 − x7 + x11x12,

F8(x) = x1 − x33 − 2x5 + x7 − x8 + x211 + x212,

F9(x) = −x2 + x33 − x4 + 3x6 − x7 − x9 − x11 + x212,

F10(x) = x31 + x23 − x24 + 2x6 − x7 − 3x8 + x9 − x10 + x311 − x212,

We first choose the initial condition x0 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
which satisfies

Fi(x
0) = 0, i = 1, 10

and

D(F1, · · · , F10)

D(x1, · · · , x10)
(x0) 6= 0. (10)

Let A(x) be the corresponding 10× 10 nonsingular submatrix in (10), of
the Jacobian. We solve the linear system:

vj(x) · ∇Fi(x) = 0, i = 1, 10, j = 1, 2, (11)

where the last two components of vj(x) are the rows of I2 · det(A(x)), I2
being the identity matrix in R2, and we obtain vj(x) ∈ R12, j = 1, 2, x in a
neighborhood of x0.
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By applying the method from [6], we solve the problem (8)-(9) via the
iterated differential systems (12), (13), with right-hand given by vj ∈ R12,
j = 1, 2:

x′1(t1) = −x12(t1),
x′2(t1) = −(4x1(t1)x12(t1)− 2x11(t1)x12(t1));

x′3(t1) = −(x12(t1)− 2x1(t1)x12(t1) + 2x11(t1)x12(t1)),

x′4(t1) = −(x12(t1)− 2x1(t1)x12(t1) + 2x11(t1)x12(t1)),

x′5(t1) = −(3x12(t1)x
2
1(t1)− x12(t1) + 2x11(t1)x12(t1)),

x′6(t1) = −(4x11(t1)x12(t1)− 2x1(t1)x12(t1)− 2x11(t1) + 6x1(t1)
2x12(t1)

+8x1(t1)x2(t1)x12(t1)− 4x2(t1)x11(t1)x12(t1))

x′7(t1) = −(2x1(t1)x12(t1)− 3x22(t1)(4x1(t1)x12(t1)− 2x11(t1)x12(t1)) +

3x1(t1)
2x12(t1)),

x′8(t1) = −(2x11(t1) + 3x12(t1) + 2x1(t1)x12(t1)− 4x11(t1)x12(t1)−
3x21(t1)x12(t1)− 3x3(t1)

2x12(t1)− 12x1(t1)x
2
2(t1)x12(t1) +

6x1x3(t1)
2x12(t1) + 6x22(t1)x11(t1)x12(t1)−

6x23(t1)x11(t1)x12(t1)) (12)

x′9(t1) = −(12x11(t1)x12(t1)− x12(t1)− 10x1x12(t1)− 6x11(t1) +

15x21(t1)x12(t1) + 3x23(t1)x12(t1) + 12x1(t1)x
2
2(t1)x12(t1)−

6x1(t1)x
2
3(t1)x12(t1)− 6x22(t1)x11(t1)x12(t1) +

6x23(t1)x11(t1)x12(t1) + 24x1(t1)x2(t1)x12(t1)

−12x2(t1)x11(t1)x12(t1)− 1)

x′10(t1) = −(2x3(t1)x12(t1)− 10x12(t1)− 24x1(t1)x12(t1)− 18x11(t1)−
2x4(t1)x12(t1) + 36x11(t1)x12(t1) + 42x21(t1)x12(t1) +

12x23(t1)x12(t1) + 3y(11)2(t1) + 60x1(t1)x
2
2(t1)x12(t1)−

24x1(t1)x
2
3(t1)x12(t1)− 30x22(t1)x11(t1)x12(t1) +

24x23(t1)x11(t1)x12(t1) + 48x1(t1)x2(t1)x12(t1)−
4x1(t1)x3(t1)x12(t1) + 4x1(t1)x4(t1)x12(t1)−
24x2(t1)x11(t1)x12(t1) + 4x3(t1)x11(t1)x12(t1)−
4x4(t1)x(11)(t1)x12(t1)− 1),

x′11(t1) = −1,

x′12(t1) = 0,
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x1(0) = 1, x2(0) = 1, x3(0) = 1, x4(0) = 1, x5(0) = 1, x6(0) = 1,

x7(0) = 1, x8(0) = 1, x9(0) = 1, x10(0) = 1, x11(0) = 1, x12(0) = 1,

ẏ1(t1, t2) = −y11(t1, t2),
ẏ2(t1, t2) = −(−y11(t1, t2)2 + 4y1(t1, t2)y11(t1, t2))

ẏ3(t1, t2) = −(y11(t1, t2)− 2y1(t1, t2)y11(t1, t2) + y11(t1, t2)
2)

ẏ4(t1, t2) = −(y11(t1, t2)− 2y1(t1, t2)y11(t1, t2) + y211(t1, t2))

ẏ5(t1, t2) = −(3y21(t1, t2)y11(t1, t2) + y211(t1, t2)− y11(t1, t2))

ẏ6(t1, t2) = −(6y21(t1, t2)y11(t1, t2)− 2y1(t1, t2)y11(t1, t2)−
2y2(t1, t2)y

2
11(t1, t2) + 2y211(t1, t2) +

8y1(t1, t2)y2(t1, t2)y11(t1, t2)− 2)

ẏ7(t1, t2) = −(2y1(t1, t2)y11(t1, t2)− 3y22(−y211(t1, t2) +

4y1(t1, t2)y11(t1, t2)) + 3y21(t1, t2)y11(t1, t2))

ẏ8(t1, t2) = −(3y11(t1, t2) + 2y12(t1, t2)− 3y22(−y11(t1, t2)2 +

4y1(t1, t2)y11(t1, t2))− 3y23(y11 − 2y1y11 + y211) +

2y1(t1, t2)y11(t1, t2)− 3y21(t1, t2)y11(t1, t2)− 2y211(t1, t2))
ẏ9(t1, t2) = −(15y21(t1, t2)y11(t1, t2) +

12y1(t1, t2)y
2
2(t1, t2)y11(t1, t2) +

24y1(t1, t2)y2(t1, t2)y11(t1, t2)− (13)

6y1(t1, t2)y
2
3(t1, t2)y11(t1, t2)− 10y1(t1, t2)y11(t1, t2)−

3y22(t1, t2)y
2
11(t1, t2)− 6y2(t1, t2)y

2
11(t1, t2) +

3y23(t1, t2)y
2
11(t1, t2) + 3y23(t1, t2)y11(t1, t2) + 6y211(t1, t2)−

y11(t1, t2) + 3y212(t1, t2)− 6)

ẏ10(t1, t2) = −(12y23(t1, t2)y
2
11(t1, t2)−8y12(t1, t2)−15y22(t1, t2)y

2
11(t1, t2)−

10y11(t1, t2)− 24y1(t1, t2)y11(t1, t2) + 2y3(t1, t2)y11(t1, t2)−
2y4(t1, t2)y11(t1, t2) + 42y21(t1, t2)y11(t1, t2)−
12y2(t1, t2)y

2
11(t1, t2) + 2y3(t1, t2)y

2
11(t1, t2) +

12y23(t1, t2)y11(t1, t2)− 2y4(t1, t2)y
2
11(t1, t2) + 18y211(t1, t2) +

3y212(t1, t2) + 60y1(t1, t2)y
2
2(t1, t2)y11(t1, t2)−

24y1(t1, t2)y
2
3(t1, t2)y11(t1, t2) +

48y1(t1, t2)y2(t1, t2)y11(t1, t2)−
4y1(t1, t2)y3(t1, t2)y11(t1, t2) +

4y1(t1, t2)y4(t1, t2)y11(t1, t2)− 12)
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ẏ11(t1, t2) = 0

ẏ12(t1, t2) = −1

where ẏ denotes the derivative with respect to t2,

y1(t1, 0) = x1(t1), y2(t1, 0) = x2(t1), y3(t1, 0) = x3(t1), y4(t1, 0) = x4(t1),

y5(t1, 0) = x5(t1), y6(t1, 0) = x6(t1), y7(t1, 0) = x7(t1), y8(t1, 0) = x8(t1),

y9(t1, 0) = x9(t1), y10(t1, 0) = x10(t1), y11(t1, 0) = x11(t1),

y12(t1, 0) = x12(t1).

These equations were obtained using the Symbolic Math Toolbox from
MatLab in (11). We apply ode45 to solve (12), (13). We used a step of
0.5 in the first system and 1 in the second one, with the intervals [−3, 3],
respectively [−2000, 2000]. The discretization here is very rough, but it
happens that the numerical results are very good.

The values obtained for the minimum of the cost function is −1.5988 ·
1010 and the coordinates of the solution point are [−2.4967 · 1013, 6.0715 ·
1018,−2.4967 ·1013,−2.4967 ·1013, 2.4964 ·1013, 3998,−5.6136 ·10−6, 3.9960 ·
106,−7.9879 · 109,−8.0039 · 109, 1.2490 · 10−16,−1999]. The result was ob-
tained in 4 seconds and the restrictions are satisfied: F1 = 0, F2 = −6.0715 ·
10−18, F3 = −6.0715 · 10−18, F4 = −6.0715 · 10−18, F5 = 3.3827 · 10−17, F6 =
0, F7 = 5.6136 · 10−6, F8 = 0, F9 = −1.9073 · 10−6, F10 = 1.9073 · 10−6.

Working the same minimization problem with the routine
MultiStart from MatLab, we get (for 400 initial guesses):

fmin = −7.9092 · 106,

time = 10 minutes,

x̂ = [−0.0030,−0.5916, 0.5886, 0.5886, 0.5947,−38149.2109, 0.2071,

38149.555,−114252.3108,−7794834.4490,−195.3221, 1.5509 · 10−5]

(Fi(x̂))i=1,12 = [0,−2.2204 · 10−16,−1.4528 · 10−16,−1.1102 · 10−16,

−1.1796 · 10−16, 8.4314 · 10−12,−1.1752 · 10−16,

4.3956 · 10−13, 5.0059 · 10−12,−2.4054 · 10−10].

If we take the second cost functional and we fix the integration intervals
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[−1, 1], [−9, 9], with the step 0.0005, respectively 0.00001, we obtain:

fmin = −3.2253 · 1020,

time = 11 minutes,

x = [10, 190,−80,−80, 103, 3.7999 · 104,−6.8579 · 106,−6.3478 · 106,

6.4608 · 106, 3.2447 · 107, 1, 10],

(Fi(x))i=1,12 = [0, 1.1191 · 10−13, 7.2831 · 10−14, 3.0198 · 10−14, 5.6133 ·
10−13, 7.2724 · 10−12,−0.0389, 0.0049,−0.0049, 3.7252 · 10−9].

Using MultiStart for the same problem, we get:

fmin = −4.859 · 1010,

time = 9 minutes,

x̃ = [−15.7970,−1.4006, 235.1496, 235.1496,−3.4258 · 103,−8.1356 · 103,

−3.6898 · 103,−1.2999 · 107, 1.2986 · 107, 5.1921 · 107,−31.6827, 0.4986],

(Fi(x̃))i=1,12 = [0, 0, 1.7764 · 10−15, 0,−1.9895 · 10−13, 3.1630 · 10−13,

3.7126 · 10−13, 8.6710 · 10−10, 4.2308 · 10−10, 1.5013 · 10−9].

Finally, in R50, consider the following example:

Example 3.

min(x1 + x2 + · · ·+ x50), (14)

with the restrictions given by the relations:

Fi=2k = x21 + xi−1 − xi − r1, k = 1, 24,

Fi=2k−1 = x21 + 2xi−1 − xi − r2, k = 1, 24,

where r1 = x49 + x50, r2 = x249 + x250.

We again choose the initial condition x0 = [1, 1, · · · , 1] ∈ R50 and verify
that

Fi(x
0) = 0, i = 1, 48

and

D(F1, · · · , F48)

D(x1, · · · , x48)
(x0) 6= 0. (15)
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Let A(x) be the corresponding 48 × 48 nonsingular submatrix of the
Jacobian (15). We solve the linear system:

vj(x) · ∇Fi(x) = 0, i = 1, 48, j = 1, 2, (16)

where the last two components of vj(x) are the rows of I2 · det(A(x)) and
we obtain vj(x) ∈ R50, j = 1, 2, x ∈ R50.

We again use the Symbolic Math Toolbox of MatLab to solve (16).
The two corresponding systems of differential equations (that we skip) were
solved with the routine ode45 and with the integration intervals [−100,
100] for both systems and the discretization step 0.5, respectively 0.1. We
obtain a local solution of (16):

fmin = −3.4229 · 1011

time = 2 minutes

x? = [0,−3.8857 · 10−16,−10201,−10201,−30603,−30603,−71407,

−71407,−153015,−153015,−316231,−316231,−642663,−642663,

−1295527,−1295527,−2601255,−2601255,−5212711,−5212711,

−10435623,−10435623,−20881447,−20881447,−41773095,−41773095,

−83556391,−83556391,−167122983,−167122983,−334256167,

−334256167,−668522535,−668522535,−1337055271,−1337055271,

−2674120743,−2674120743,−5348251687,−5348251687,−10696513575,

−10696513575,−21393037351,−21393037351,−42786084903,

−42786084903,−85572180007,−85572180007, 0, 101];

with constraints satisfied as follows:

(Fi(x
?))i=1,48 = [0, 3.8857 · 10−16, 0, 0, 3.63797 · 10−12, 0,−7.2759 · 10−12,

0, 0, 0, 0, 0, 1.1641 · 10−10, 0,−2.3283 · 10−10, 0, 0, 0, 9.3132 · 10−10, 0,

−1.8626 · 10−9, 0, 3.7252 · 10−9, 0, 0, 0,−1.4901 · 10−8, 0, 0, 0, 0, 0, 1.1920 ·
10−7, 0,−2.3841 · 10−7, 0, 0, 0, 0, 0, 0, 0, 3.8146 · 10−6, 0, 0, 0,

−1.5258 · 10−5, 0].

Solving the same problem with MultiStart, with 400 initial guesses, we
get:

fmin = −1.0538 · 104,

time = 7 minutes
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The solution point is:

x = [9.3801, 87.9865, 9.3797, 87.9861, 9.3789, 87.9853, 9.3774, 87.9838,

9.3743, 87.9808, 9.3683, 87.9747, 9.3561, 87.9625, 9.3317, 87.9381, 9.2829,

87.8894, 9.1854, 87.7918, 8.990, 87.5968, 8.6004, 87.2068, 7.8203, 86.4267,

6.2602, 84.8666, 3.1399, 81.7463,−3.1006, 75.5057,−15.5817, 63.0246,

−40.5439, 38.0624,−90.4684,−11.8620,−190.3174,−111.7110,

−390.0153,−311.4089,−789.4111,−710.8047,−1588.2028,−1509.5964,

−3185.7861,−3107.1797,−0.5882,−15.9447]

and the constraints values are:

(Fi(x))i=1,48 = [1.1474 · 10−6, 1.3228 · 10−6,−1.410 · 10−5, 1.2036 · 10−6,

−1.4166 · 10−5, 1.1446 · 10−6,−1.4195 · 10−5, 1.1166 · 10−6,−1.4216 · 10−5,

1.1007 · 10−6,−1.4222 · 10−5, 1.0944 · 10−6,−1.4221 · 10−5, 1.0902 · 10−6,

−1.4219 · 10−5, 1.0890 · 10−6,−1.4223 · 10−5, 1.0899 · 10−6,−1.4216 · 10−5,

1.0838 · 10−6,−1.4219 · 10−5, 1.0859 · 10−6,−1.4249 · 10−5, 1.0779 · 10−6,

−1.4247 · 10−5, 1.0378 · 10−6,−1.4177 · 10−5, 1.0165 · 10−6,−1.4206 · 10−5,

1.1074 · 10−6,−1.6069 · 10−5, 6.7033 · 10−7,−1.3447 · 10−5, 2.3012 · 10−6,

−1.4711 · 10−5, 1.6266 · 10−6,−1.4845 · 10−5, 8.4856 · 10−7,−1.4017 · 10−5,

1.3591 · 10−6,−1.7655 · 10−5, 5.3842 · 10−7,−1.4211 · 10−5, 3.4216 · 10−6,

−1.8340 · 10−5, 5.4224 · 10−6,−3.8360 · 10−6, 4.7253 · 10−6].

Remark 1. In all the considered examples, the implicit parametrization
met- hod produces better numerical results comparing with the other indicated
approaches. As explained in [6], the parametrization method can be extended
to the critical case as well (i.e. when (3)) is not satisfied.
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