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Abstract

We review te method of computing invariants for discrete dynam-
ical systems in a birational form (mappings). It is shown that after
elimination of singularities by blow ups the mapping is lifted to an
automorphism of a rational elliptic surface. The linear action of the
bundle mapping on the Picard group of the surface makes possible the
computation of the invariant as the strict transform of the eigenvalue
one divizor.
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1 Introduction

Discrete integrability is a very hot topic today in the theory of com-
pletely integrable systems. Although it started with the study of lattice
(partial difference) soliton equations, gradually it has been focusing on dis-
crete ordinary discrete equations called mappings. Here the methods of
soliton theory which enabled the study in the case of lattice equations are
not working anymore.
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In the case of discrete setting one of the starting point of study was so
called the QRT mapping which is an order two mapping defining an elliptic
function. This is a 16-parameter autonomous mapping with a solution given
by the values of an elliptic function at equidistant points on a line in the com-
plex torus. The utility in the derivation of discrete Painlevé equations is well
known [8]. Starting from a mapping with constant coefficients and allowing
the coefficients to depend on the independent variable, then using an inte-
grability detector one can select the proper dependence of coefficients. The
first integrability detector was singularity confinement criterion [11] which
imposes a finite number of iterations of singular/indeterminate behavior
until reaches regular dynamics with recovery of initial condition memory.
This criterion was very productive and a big number of discrete Painleve
equations have been obtained [9]. Their integrable character has been set-
tled definitively by finding Lax pairs, bilinear forms Backlund/Schlesinger
transformations, special solutions etc.[10].

In this paper we give a short review of the problem of integrability and
invariants of second order mappings, (based on our papers [4, 5, 6]) which are
not in the QRT family. The mappings which are not in the QRT family were
discovered by Hirota, Kimura and Yahagy [14] with a peculiar fact that the
invariant is given by a biquartic expression. However these are not the only
type of non-QRT integrable mappings. Other types have been discovered
which are not particular case of Painlevé equations. The idea is to analyse
the singularities of the mappings and eliminate them by blowing up. After
this the mapping is lifted to an automorphism of a rational elliptic surface
whose Picard group is a lattice changing linearly under the action of the
bundle induced automorphism. Analysing this linear action one can compute
the divisors of eigenvalue one. Then the strict transform of such divisors
gives the associated linear system whose fibering gives the invariant. In the
case of existence of invariant exceptional curves then the situation is more
complicated. These curves need to be blown down and the corresponding
transformation will transform the initial dynamical system.

The paper is structured as follows. In the first chapter we give the
main preliminaries about rational elliptic surfaces, blowing up and blowing
down procedures. Then in the next chapters we discuss examples of various
discrete equations.
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2 Preliminaries

Notations: cf. [2, 1]

S : a smooth rational surface

D : the linear equivalent class of a divisor D

D ·D′ : the intersection number of divisors D and D′

O(D) : the invertible sheaf corresponding to D

Pic(S) = the group of isomorphism classes of invertible sheaves on S

' the group of linear equivalent classes of divisors on S

E : the total transform of divisor class of a line on P2

Hx,Hy : the total transform of divisor class of a line x = constant

(or y = constant) on P1×P1

Ei : the total transform of the exceptional divisor class of the i-th

blow − up
|D| '(H0(S,O(D))− {0})/C× : the linear system of D

KS : the canonical divisor of a surface S

g(C) : the genus of an irreducible curve C, given by the genus formula

g(C) = 1 + 1
2(C2 + C ·KS) if C is smooth.

Blowing up: Let X be a smooth projective surface and let p be a point on
X. There exist a smooth projective surface X ′ and a morphism π : X ′ → X
such that π−1(p) ∼= P1 and π represents a biholomorphic mapping from
X ′ − π−1(p) → X − (p). The morphism is called blowing down and the
correspondence π−1 is called blowing up of X at p as a rational mapping.
For example if X is the space C2 and p is a point of coordinate (x0, y0) then
we denote blowing up of X in p

X ′ = {(x− x0, y − y0; ζ0 : ζ1) ∈ C2×P1 |(x− x0)ζ0 = (y − y0)ζ1}

by

π : (x, y)←− (x− x0, (y − y0)/(x− x0)) ∪ ((x− x0)/(y − y0), y − y0).

Total transform and proper transform: Let π : Y → X be the blow-down
to a point p on X and D be a divisor on X. The divisor π∗(D) on Y is called
total transform of D and for any analytic subvariety V on X the closure of
π−1(V − p) in Y is called the proper transform of V .
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Let X be a surface obtained by N times blowing up of P2. Then the
Picard group Pic(X) is isomorphic to the Z-module (the Neron-Severi lat-
tice):

Pic(X) = Z E ⊕
N⊕
i=1

Z Ei

and the intersection of two divisors on X are given by the following basic
formulas (valid for any i, j = 1, · · · , N):

E2 = 1, E2i = −1, E · Ei = Ei · Ej = 0 (i 6= j).

The anti-canonical divisor class is

−KS = 3E −
N∑
i=1

Ei.

In the case where X is a surface obtained by N times blowing up of
P1×P1, the Picard group Pic(X) is

Pic(X) = ZHx ⊕ ZHy ⊕
N⊕
i=1

Z Ei

and the intersection of divisors and the anti-canonical divisor are given by

Hx · Hy = 1, E2i = −1, Ei · Ej = Ei · Hx = Ei · Hy = H2
x = H2

y = 0 (ı 6= j),

−KS = 2Hx + 2Hy −
N∑
i=1

Ei.

Definition 1: A rational elliptic surface is defined by the following:

a) a complex surface X;

b) a fibration given by the morphism: π : X → P1 such that:

• for all but finitely many points k ∈ P1 the fiber π−1(k) is an elliptic
curve

• π is not birational to the projection : E × P1 → P1

• no fibers contains exceptional curves of first kind.
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It is known that a rational elliptic surface can be obtained by 9 blow-ups
from P2 and that the generic fiber of X can be put into a Weierstrass form:

f(x, y, k) = y2 + a1xy + a3y − x3 − a2x2 − a4x− a6

where all the coefficients ai depend on k.

∆ ≡ −b22b8 − 8b34 − 27b26 + 9b2b4b6 = 0,

where b2 = a21 + 4a2, b4 = 2a4 + a1a3, b6 = a23 + 4a6, b8 = a21a6 + 4a2a6 −
a1a3a4 + a2a

2
3− a24. The discriminant has degree 12 which gives the number

of singular fibers together with their multiplicities. The singularities have
been classified by Kodaira according to the type of singularity of the fiber
and according to the irreducible components of the resolution of singular
fibers. In the non-autonomous case, the role of minimal rational elliptic
surfaces are replaced by “generalized Halphen surfaces” [15].

Let S = Sm be a surface obtained by successive m times blowing up from
P2 (or any rational surface) at indeterminate or extremal point of ϕ, i.e. the
Jacobian ∂(x̄, ȳ)/∂(x, y) in some local coordinates is zero, such that ϕ̃ is
analytically stable. Let Fm be a curve on S with self-intersection −1 and
Fm be the corresponding divisor class. Our strategy to write the blow-down
Sm along Fm by coordinates is as follows.

Take a divisor class F such that there exists a blowing down structure:
S = Sm → Sm−1 → Sm−2 → · · · → S1 → P2, where Sm → Sm−1 is a blow-
down along Fm and each Si → Si−1 is a blow-down along an irreducible
curve, such that the divisor class of lines in P2 is F . Let |F| = α0f0 +
α1f1 + α2f2 = 0. Then (f0 : f1 : f2) gives P2 coordinates.

In order to find such F we note the following facts.
It is necessary for the existence of such a blow-down structure that there

exists a set of divisor classes F1, . . . ,Fm such that

F2 = 1 F2
i = −1, Fi · Fj = 0, F · Fi = 0

for (1 ≤ i, j ≤ m), and further that (i) the genus of divisor F is zero; (ii)
the linear system of F does not have a fixed part in the sense of Zariski
decomposition and its dimension is two.

If the linear system of F does not have fixed part, then by Bertini theo-
rem, its generic divisor is smooth and irreducible (this follows from the fact
that two divisors defines a pencil by blowing up at the unique intersection
and P. 137 of [1]), and its genus is given by the formula

g = 1 +
1

2
(F 2 + F ·KS).
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From this fact and Condition (ii), 1 + 1
2(F 2 + F ·KS) should be zero.

If we want to blow down to P1×P1 instead of P2, our strategy becomes
as follows.

Let Fm−1 be a curve on S with self-intersection −1 and Fm−1 be the
corresponding divisor class. Take a divisor class Hu and Hv such that there
exists a blow-down structure: S = Sm−1 → Sm−2 →→ · · · → S1 → P1×P1,
where Sm−1 → Sm−2 is a blow-down along Fm−1 and each Si → Si−1 is a
blow-down along an irreducible curve, such that the divisor class of lines
u = const and v = const are Hu and Hv. Let |Hu| = α0f0 + α1f1 = 0
and |Hv| = β0g0 + β1g1 = 0. Then (u, v) = (f0/f1, g0/g1) gives P1×P1

coordinates.
Let S be a rational surface and let KS the canonical divisor class of S.

It is known that if S admits an automorphism ϕ of infinite order, then ϕ
is ”linearizable”, ϕ preserves an elliptic fibration of S, or the algebraic (or
topological) entropy of ϕ is positive. In this section we classify the second
case.

Let X be a rational elliptic surface obtained by 9 blow-ups from P2. The
main result from [4] is the following classification.

Classification Let ϕ : X be an automorphism of X which preserve the
elliptic fibration αf0(x, y, z) + βg0(x, y, z) = 0. Such cases are classified as
follows.
i-1) ϕ preserves α : β and the degree of fibers is 3;
i-2) ϕ does not preserve α : β and the degree of fibers is 3;
ii-1) ϕ preserves α : β and the degree of fibers is 3m, (m ≥ 2);
ii-2) ϕ does not preserve α : β and degree of fibers is 3m, (m ≥ 2)

The QRT mappings belong to Case 1-i) [16]. In case i-2) and ii-2), elliptic
fibrations admit exchange of fibers.

Case ii) occurs only in the case when the linear system | − kKX | = 0
for k = 1, . . . ,m − 1 and | −mKX | = 1. Such a pencil is called a Halphen
pencil of index m or a rational elliptic surface of index m, i.e. those fibers
are degree 3m curve on P2 passing through each point of blow-ups with
multiplicity m. It is known that every Halphen pencil of index m contains
a unique cubic curve with multiplicity m (see Chap. 5 §6 of [3] for more
details).

Let X be a generalized Halphen surface, i.e. −KX is decomposed into
effective divisors as D =

∑
miDi, [D] = −KX such that Di · KX = 0. A

generalized Halphen surface can be obtaind from P2 by successive 9 blow-
ups. Generalized Halphen surfaces are classified by the type of D to elliptic,
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multiplicative and additive.

Let Q be the root lattice defined as the orthogonal complement of D
(with respect to the intersection form) and let ω be a meromorphic 2-form
on X with Div(ω) = −D. Then, with suitable normalization, ω determines
the period mapping χ from Q to the torus for elliptic case, to C× = C \{0}
for multiplicative and to C for additive (see [15] for more details).

We can also characterize the Halphen surface in a different way which
is more amenable to the case of non-autonomous dynamical systems. Let
X be a generalized Halphen surface and Q the root lattice defined as the
orthogonal complement of D with respect to the intersection form and ω
a meromorphic 2-form on X with Div(ω) = −Dred, where Dred =

∑s
i Di.

Then, the 2-form ω determines the period mapping χ from Q to C by

χ(α) =

∫
α
ω

in modulo
∑

γ Zχ(γ), where the summation is taken for all the cycles onDred

(see examples in the next section and [15] for more details). A generalized
Halphen surface is called elliptic, multiplicative, or additive type if the rank
of the first homology group of Dred is 2, 1, or 0 respectively.

Theorem 1.
(ell) If X is elliptic type, then X is a Halphen pencil of index m iff k χ(KX) 6=
0 for k = 1, . . . ,m− 1 and χ(mKX) = 0.
(mult) If X is multiplicative type, then the same assertion holds as the el-
liptic case.
(add) If X is additive type, then X is a Halphen pencil of index 1 iff
χ(KX) = 0, and never be a Halphen pencil of index m ≥ 2.

Proof. Case (ell) is a classical result (see Remark 5.6.1 in [3] or references
therein). Case (mult) and case (add) of index 1 are Proposition 23 in [15].
Similar to that proof, we can vary D and χ continuously to nonsingular case.
Indeed, let P1, . . . , P9 be the points of blow-ups (possibly infinitely near, we
assume P9 is the point for the last blow-up) and f0 be the cubic polynomial
defining D. There exists a pencil of cubic curves Cλ : fλ = f0 + λf1 = 0
λ ∈ P1 passing through the 8 points P1, . . . , P8. For small λ, the cubic curve
Cλ is close to D, and the meromorphic 2-form ωλ for Cλ is also close to ω.
Let P ′9 be a point close to P9 on Cλ such that

lim
λ→0

χλ(−mKX′) = lim
λ→0

∫
−mKX′

ω′ =

∫
−mKX

ω′ = χ(−mKX)
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holds(here X ′ is the surface obtained by blow-ups at P1, . . . , P8 and P ′9
instead of P9). Thus, χλ(−mKX′) 6= 0 holds if χ(−mKX) 6= 0 for small
λ, and therefore X does not have a pencil of degree 3m. Conversely, if
χ(−mKX) = 0, then χ′(−mKX′) is close to zero, and there exists P ′′9 close
to P ′9 on C ′ such that χλ(−mKX′′) = 0. Thus, we have

lim
λ→0

χλ(−mKX′′) = χ(−mKX).

Since X ′′ has (at least) a pencil of curves of degree 3m passing through
the 9 points with multiplicity m and this condition is closed in the space of
coefficients of polynomials defining curves, X also has the same property.

Remark 1. Since every elliptic curve over a function field can be written in
Weierstrass normal form, Case ii) of our classification also can. However
it needs huge calculation [19].

3 Examples

In this section we are going to give some examples in order to show our
results. A typical example of Case i-1 is th QRT mappings. There are some
literature about their relation to rational elliptic surfaces [7], and we do not
repeat here.

3.1 Case i-2

First we start with the non-QRT mappings which are not particular
cases of q-Painleve equations. We choose an example which is a new inte-
grable mapping and we give a full analysis of space of initial conditions and
invariants.

xn+1 = −xn−1
(xn − a)(xn − 1/a)

(xn + a)(xn + 1/a)

First of all in order to compactify the space of dependent variables we write
the equations in projective space as a two component system:

φ : P1×P1 → P1×P1, φ(x, y) = (x, y).

We use P 1 × P 1 instead of P 2 just because the parameters of blowing-up
points become easy to write.

x = y
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y = −x(y − a)(y − 1/a)

(y + a)(y + 1/a)

The projective space P1×P1 is generated by the following coordinate sys-
tems (X = 1/x, Y = 1/y):

P1×P1 = (x, y) ∪ (X, y) ∪ (x, Y ) ∪ (X,Y )

The nondeterminate points for the mappings φ and φ−1

p1 : (x, y) = (0,−a); p2 : (x, y) = (0,−1/a)

p3 : (X, y) = (0, a); p4 : (X, y) = (0, 1/a)

p5 : (x, y) = (a, 0); p6 : (x, y) = (1/a, 0)

p7 : (x, Y ) = (−a, 0); p8 : (x, Y ) = (−1/a, 0)

After blowing up these points projective space is transformed into a surface
X and the mapping is lifted to a birational mapping

φ : X → P1×P1 .

Moreover it can be shown that φ is lifted to an automorphism of X.
The Picard group of X is the following Z-module

Pic(X) = ZHx ⊕ ZHy ⊕
8∑
i=1

Z E i,

where Hx, Hy are the total transforms of the lines x = const., y = const. and
E i are the total transforms of the eight blowing up points. The anticanonical
divisor of X is

−KX = 2Hx +2Hy −
8∑
i=1

E i .

Also the intersection form of divisors is given by Hi ·Hj = 1−δij , E i · Ej =
−δij , Hi · Ek = 0.

The proper transforms of the lines (x = 0, X = 0, y = 0, Y = 0) are the
following:

D0 := (x, y) = (0, y), D1 := (X, y) = (0, y)

D2 := (x, y) = (x, 0), D3 := (x, Y ) = (x, 0)

The induced bundle mapping φ∗ : Pic(X) → Pic(X) is acting on these
curves in a linear way as a permutation:

(D0, D1, D2, D3) = (D2, D3, D0, D1)
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The relations between strict transforms and total transforms are:

D0 = H0−E1−E2, D1 = H0−E3−E4

D2 = H1−E5−E6, D3 = H1−E7−E8

Finally the intersections of strict transforms

Di ·Di = −2, D0 ·D2 = D0 ·D3 = D1 ·D2 = D2 ·D3 = 1

D0 ·D1 = D2 ·D3 = 0

show that X is A
(1)
3 -type surface in the Kodaira classification. One can see

immediately that the combination D0 +D1 +D2 +D3 +D4 is an invariant
with respect to the action of φ∗ : Pic(X)→ Pic(X). The proper transform of
such a combination correspond to the following linear system (these curves
pass through all Ei for any k).

F ≡ αxy − β((x2 + 1)(y2 + 1) + (a+ 1/a)(y − x)(xy + 1)) = 0 (1)

⇔ kxy − ((x2 + 1)(y2 + 1) + (a+ 1/a)(y − x)(xy + 1)) = 0.

This family of curves defines a rational elliptic surface. One can see that the
linear system is not preserved by the mapping. More precisely the action
changes k in −k.

So, as a conclusion the dimension of the linear system corresponding to
the anticanonical divisor is 1. It can be written as αf1(x, y) + βf2(x, y) =
0 ⇔ kf1(x, y) + f2(x, y) = 0 for α, β ∈ C and deg f = deg g = (2, 2). This
elliptic fibration is preserved by the action of the dynamical system but not
trivially in the sense that it exchanges the singular fibers. The conserved
quantity becomes higher degree as (f/g)ν for some ν > 1. In our case ν = 2
and the invariant is:

I =

(
((x2 + 1)(y2 + 1) + (a+ 1/a)(y − x)(xy + 1))

xy

)2

Remark 2. In order to have a Weierstrass model we perform some homo-
graphic transformations according to the algorithm of Schwartz [18]. Then,
after long but straitforward calculations we can compute the roots of the
elliptic discriminant ∆(k)



34 A. S. Cârstea

k1 = 0, multiplicity = 2

k2,3 = ±4(1 + a2)/a, multiplicity = 1

k4,5 = ±(1− a2)2/a2, multiplicity = 2

k6 =∞, multiplicity = 4

Inserting these values in the linear system we get the main singular fibers of

the rational elliptic surface. Namely, for k1 and k4,5 we have A
(1)
1 fiber, for

k2,3 we have A
(1)
0 fiber and for k6 the A

(1)
3 fiber. The action of the mapping is

nothing but exchanging fibers (k1 ↔ k1, k2 → k3 → k2, k4 → k5 → k4, k6 ↔
k6)

This approach is useful to compute also the symmetries. The symme-
try group is related to the orthogonal complement of the space of initial

condition A
(1)
3 . In order to see this we note that

rank Pic(X) = rank < H0,H1, E1, ... E8 >Z= 10

Now we define:

< D >=
3∑
i=0

ZDi

< D >⊥= {α ∈ Pic(X)|α ·Di = 0, i = 0, 3}

which have 6-generators:

< D >⊥=< α0, α1, ..., α5 >Z

α0 = E4−E3, α1 = E1−E2, α2 = H1−E1−E5
α3 = H0−E3−E7, α4 = E5−E6, α5 = E8−E7

Related to them we define elementary reflections:

wi : Pic(x)→ Pic(X), wi(αj) = αj − cijαi

where cji = 2(αj · αi)/(αi · αi). One can easily see that cij is a Cartan

matrix of D
(1)
5 -type for the root lattice Q =

⊕5
i=0 Zαi. We introduce also

permutation of roots:

σ10(α0, α1, α2, α3, α4, α5) = (α1, α0, α2, α3, α4, α5)
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σtot(α0, α1, α2, α3, α4, α5) = (α5, α4, α3, α2, α1, α0)

Hence the group generated by reflections and permutations becomes an ex-
tended Weyl group

W̃ (D
(1)
5 ) =< w0, w1, ..., w5, σ10, σtot >

This extended Weyl group becomes the group of Cremona isometries for
the space of initial conditions X since preserves the intersection form, the
canonical divisor KX (which is nothing but the null vector δ of the Cartan
matrix) and semigroup of effective classes of divisors. Accordingly our map-

ping lives in a Weyl group W̃ (D
(1)
5 ) and has the following decomposition in

elementary reflections:

φ∗ = σtot ◦ w3 ◦ w5 ◦ w4 ◦ w3

All elements ω ∈ W̃ (D
(1)
5 ) which commutes with φ∗, namely (ω◦φ∗ = φ∗◦ω)

form the symmetries of the mapping.
At the last we characterize also the surface using period map χ : Q→ C.

Let

ω =
1

2πi

dx ∧ dy
xy

. (2)

For example, χ(α0) is computed as follows. The exceptional divisors E1

and E2 intersect with D0 at (x, y) = (0,−a) and (0,−1/a), and χ(α0) is
computed as

χ(α0) =

∫
|x|=ε, y:−1/a∼−a

1

2πi

dx ∧ dy
xy

=−
∫ −a
−1/a

dy

y

=− log a2,

where y : −1/a ∼ −a denotes a path from −1/a to a in D1. According to
the ambiguity of paths, the result should be considered in modulo 2πiZ.
Similarly, we obtain

χ(α0) = − log a2, χ(α1) = log a2, χ(α2) = πi,

χ(α3) = −πi, χ(α4) = log a2, χ(α5) = − log a2,

and therefore χ(−KX) = 0, i.e. q = exp(χ(−KX)) = 1.
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3.2 Case ii-1

We consider the following symmetric reduction of q-PV for q = i [14].

x̄ =
(x− t)(x+ t)

y(x− 1)

.
ȳ = x

We define the phase space as a rational surface obtained by blow-ups
from P1×P1 at 8 points

P1 : (x, y) = (t, 0)

P2 : (x, y) = (−t, 0)

P3 : (x, y) = (0, t)

P4 : (x, y) = (0,−t)
P5 : (x, y) = (1,∞)

P6 : (x, y) = (∞, 1)

P7 : (x, y) = (∞,∞)

P8 : (x, x/y) = (∞, 1)

.

Then the system acts the phase as a holomorphic automorphism.
The divisor with eigenvalue one in the linear mapping φ∗ : Pic(X) →

Pic(X) is now exactly the anticanonical divizor. −KX = 2Hx +2Hy −E1− · · ·−
E8. However the situation here is different since the strict transform of −KX

is xy = 0 which is not a linear system. Accordingly we cannot compute any
invariant here. So dim | − KX | is zero. In this case we investigate what
happens with

−2KX = 4Hx +4Hy −
8∑
i=1

2 E i

One can see that dim | − 2KX | = 1. Actually, we have

| − 2KX | =αx2y2 + β(2x2y3 + 2x3y2 + x2y4 + x4y2 − 2x3y3−
2xy4 − 2x4y + x4 + y4 + 2t2(xy2 + x2y − y2 − x2) + t4) ≡ αf + βg

and

k =
g

f
=

(2x2y3 + 2x3y2 + x2y4 + x4y2 − 2x3y3 − 2xy4 − 2x4y

x2y2
+
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+
x4 + y4 + 2t2(xy2 + x2y − y2 − x2) + t4)

x2y2

is the conserved quantity. So it belongs to Case ii-1.

Remark 3. We say a curve f(x, y) = 0 passing through a point (x0, y0)

with multiplicity m if ∂jf(x0,y0)
∂xp∂yq = 0 for any j ≤ m and p+ q = j.

3.3 Case ii-2

We consider the mapping ϕ

ϕ :


x̄ =

x(−ix(x+ 1) + y(bx+ 1)

y(x(x− b) + iby(x− 1))

ȳ =
x(x(x+ 1) + iby(x− 1))

b(x(x+ 1)− iy(x− 1)

. (3)

The inverse of ϕ is

ϕ−1 :


x =

y(bxy − bx− by + 1)

xy − x+ by − 1

y =
−iy(bxy − bx− by + 1))(bxy + x− by + 1)

bx(xy − x− y − 1)(xy − x+ by − 1)

. (4)

The phase space is obtained by blow-ups from P1×P1 at 8 points:

P1 : (x, y) = (−1, 0)

P2 : (x, y) = (0, b)

P3 : (x, y) = (1,∞)

P4 : (x, y) = (∞, 1)

P5 : (x, y) = (0, 0)

P6 : (x, y/x) = (0, i)

P7 : (x, y) = (∞,∞)

P8 : (x, y/x) = (∞, i/b)
.

Then the system acts the phase as a holomorphic automorphism.
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For above example, dim |−KX | is zero and dim |−2KX | is one. Actually,
we have

| − 2KX | :

0 = kf0(x, y)− f1(x, y)

= kx2y2 −
(
ix(x+ 1)2 − i(x+ i)(x2 − 1)y

+b(x− 1)2y2
)(
− ix(y − 1) + y(by − 1)

)
and

k =
f1(x, y)

f0(x, y)

is mapped to −k. So

k2 =

(
f1(x, y)

f0(x, y)

)2

is the conserved quantity and it belongs to Case ii-2.
The anticanonical divisor consists of

Hx−E2−E5, E5−E6, Hy −E1−E5,
Hx−E4−E7, E7−E8, Hy −E3−E7

and its orthocomplement is generated by

α0 = Hx +Hy −E5−E6−E7−E8
α1 = Hx−E1−E3
α2 = Hy −E2−E4
β0 = Hx +Hy −E1−E2−E7−E8

(β1 = Hx +Hy −E3−E4−E5−E6).

The mapping is an automorphism of the family of surfaces, whose type is

A
(1)
2 +A

(1)
1 .The expression of mapping in terms of the elementary reflections

is done in [4].

3.4 Case involving blowing down structure; discrete Nahm
equation with icosahedral symmetry

The last example we discuss is the discrete Nahm equation with icosa-
hedral symmetry [20]. It is given by{

x̄− x = ε(2xx̄− yȳ)
ȳ − y = −ε(5xȳ + 5yx̄− yȳ)

(5)
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and is integrable as well. However the invariant here is more complicated.
We can simplify the system by the following change of variable

x =
1

5
(X +

y

2
), x̄ =

1

5
(X̄ +

ȳ

2
),

then we divide by yȳ both equations and call again a = X/y, b = 1/y, u =
b− εa, v = b+ εa and finally we get a simpler equation but non-QRT type:

6ūu− u(ū+ u)− 7ε

2
(ū− u)− 4u2 + 49ε2 = 0.

We can apply our procedure to this last non-QRT mapping, however,
here we demonstrate that our procedure works well even for the original
mapping.

The space of initial condition is given by the P1×P1 blown up at the
following 12 points:

E1 : (x, y) = (∞,∞), E2(−1/7ε,−3/7ε), E3(−1/7ε, 4/7ε),

E4(1/7ε, 3/7ε), E5(1/7ε,−4/7ε) E6(1/5ε, 0),

E7(1/3ε, 0), E8(1/ε, 0), E9(−1/ε, 0),

E10(−1/3ε, 0), E11(−1/5ε, 0). E12 : (1/x, x/y) = (0, 1/3)

On this surface the dynamical system is neither an automorphism nor
analytically stable due to the following topological singularity patterns:

Hy −E1 (y =∞)→ point→ · · · (4 points) · · · → point→ Hy −E1
· · · → point→ point→ Hx−E1 (x =∞)→ point→ point→ · · · .

Moreover, the curve 4x + y = 0 : Hx +Hy −E1−E3−E5 is invariant. We
blow down along these three curves with the blow-down structure

Hu = Hx +Hy −E1−E3, Hv = Hx +Hy −E1−E5,
Hx−E1, Hy −E1, Hx +Hy −E1−E3−E5,
F1 = E12, F2 = E2, F3 = E4, F4 = E6,
F5 = E7, F6 = E8, F7 = E9, F8 = E10, F9 = E11,

where the linear systems of Hv and Hv are given by

|Hu | :u0(1 + 7εx) + u1(4x+ y)

|Hv | :v0(1− 7εx) + v1(4x+ y).
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If we take the new variables u and v as

v =
2(1 + 7εx)

ε(4x+ y)
, v =

2(1− 7εx)

ε(4x+ y)
,

then we have

F1 : (u, v) = (2,−2),F2 : (0,−4),F3 : (4, 0),F4 : (6,−1),F5 : (5,−2),

F6 : (4,−3),F7 : (3,−4),F8 : (2,−5),F9 : (1,−6).

The dynamical system becomes an automorphism having the following topo-
logical singularity patterns

Hv −F9 → F2 → F1 → F3 → Hu−F4

Hv −F3 → F4 → F5 → F6 → F7 → F8 → F9 → Hu−F2

and Hu → Hu +Hv −F2−F4. Hence we find the invariant (−1) curve
Hu +Hv −F1−F2−F3, which should be blown down. Again we take the
blow-down structure as

Hs = Hu +Hv −F1−F2, Ht = Hu +Hv −F1−F3,

Hu +Hv −F1−F2−F3, F ′1 = Ha−F1, F ′2 = Hb−F1

F ′3 = F4, F ′4 = F5, F ′5 = F6, F ′6 = F7,

F ′7 = F8, F ′8 = F9,

where the linear systems of Hs and Ht are given by

|Hs | :s0u(v + 2) + s1(u− v − 4)

|Ht | :t0v(u− 2) + t1(u− v − 4)

and hence we take the new variables s and t as

s = − 3u(v + 2)

2(u− v − 4)
, t = − 3v(u− 2)

2(u− v − 4)
.

Then we have

F ′1 : (s, t) = (3, 0), F ′2(0, 3), F ′3(−3, 2), F ′4 : (
s

t− 3
, d− 3) = (5, 0),

F ′5(2, 3), F ′6(3, 2), F ′7 : (u− 3,
t

s− 3
) = (0, 5), F ′8(2,−3)
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and 
s̄ =

2st− 3s− 3t+ 9

s+ t− 3

t̄ =
2(s− 3)(t+ 3)

3s− t− 9

.

The invariants can be computed by using the the anticanonical divisor as

K =
(s− t)2 + 4(s+ t)− 21

(s− 2)(t− 2)(2st− 5s− 5t+ 15)
=
−56ε6y(−3x+ y)2(4x+ y)3

d1d2d3
(6)

and

ω =
2εds ∧ dt

(s− t)2 + 4(s+ t)− 21
=

dx ∧ dy
y(3x− y)(4x+ y)

, (7)

where

d1 = −3− 12εx+ 15ε2x2 − 3εy − 17ε2xy + 4ε2y2

d2 = −3 + 12εx+ 15ε2x2 + 3εy − 17ε2xy + 4ε2y2

d3 = −3 + 27ε2x2 + 10ε2xy + 10ε2y2.

Finally the invariant has the following extremely complicated form:

K =
y(3x− y)2(4x+ y)3

1 + ε2c2 + ε4c4 + ε6c6
, (8)

where

c2 = −7(5x2 − y2)
c4 = 7(37x4 + 22x2y2 − 2xy3 + 2y4)

c6 = −225x6 + 3840x5y + 80xy5 − 514x3y3 − 19x4y2 − 206x2y4.

4 Conclusions

In this paper we gave a review of the algebraic-geometric approach (given
in [15], [17]) to integrable second order mappings of non-QRT type. The
interesting findings are related to the invariants corresponding to Halphen
pencils of higher index. The action of the mapping may or may not exchange
their singular fibers. We gave a classification of such mappings which pre-
serve an elliptic fibration and also a theorem which charcaterise their space
of initial conditions as Halphen pencils of higher index. Finally three exam-
ples showed an explicit realizations of the above mentioned results. Also the
case of relatively non-minimal rational elliptic surfaces is quite interesting
since the invariants in these cases can have very complicated forms.
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