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Abstract

In this paper we have shown that the space cn×n0 cannot be comple-
mented in ln×n∞ and c0(H) cannot be complemented in l∞(H) where
H is a Hilbert space. Further, extending these results we show that if
X is a Banach space then c0(X) cannot be complemented in l∞(X).
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1 Introduction

A closed subspace M of a Banach space X is said to be complementd in
X if and only if there exists a bounded linear projection from X onto M.
It is not difficult to see that if M is complemented by the closed subspace
N, then there exists a c > 0 such that ‖m+ n‖ ≥ c‖m‖ for all m ∈ M and
n ∈ N. Murray [12] showed that lp, p > 1, p 6= 2 has subspaces that cannot
be complemented. Philips [14] and Lindenstrauss and Tzafriri [11] proved
that c0 cannot be complemented in l∞. In fact, Lindenstrauss and Tzafriri
[11] established that every infinite dimensional Banach space which is not
isomorphic to a Hilbert space contains a closed subspace that cannot be
complemented. Similar results were also proved in [2],[4] [6],[15],[17] and [20].
Pelczynski [13] showed that complemented subspaces of l1 are isomorphic to
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l1. Lindenstrauss [9] proved that every infinite dimensional complemented
subspace of l∞ is isomorphic to l∞. This also holds if l∞ is replaced by lp, 1 ≤
p < ∞, c0 or c. It is also shown by Lindenstrauss [10] that if the Banach
space X and its closed subspace Y are generated by weakly compact sets (in
particular, if X is reflexive) then Y is complemented in X. Thorp [18] has
shown that for X and Y, certain Banach spaces of sequences, the subspace
LC(X,Y ) of compact linear operators from X to Y cannot be complemented
in L(X,Y ), the space of bounded linear operators from X to Y. Arterburn
and Whitley [1] proved similar results for either X an abstract L−space or
Y a space of type C(S) and considered projections on the subspace W (X,Y )
of weakly compact linear operators mapping X to Y. Tong [19] studied the
existence of bounded projections from the space L(X,Y ) onto the subspace
LC(X,Y ), where X and Y are normed spaces. Johnson [5] showed that if
X and Y are Banach spaces, the space X is infinite dimensional and if Y
contains a complemented copy of c0, then LC(X,Y ) cannot be complemented
in L(X,Y ). Kuo [7] showed that if X and Z are Banach spaces and (a) if
X contains an isomorph of c0, then LC(X, l∞) cannot be complemented in
L(X, l∞) (b) if S is a compact Hausdorff space which is not scattered, then
LC(C(S), Z) cannot be complemented in W (C(S), Z) for Z = c0 or l∞. In
particular, LC(l∞, c0) cannot be complemented in L(l∞, c0).

Let L(X) be the set of all bounded linear operators from the Banach
space X into itself and LC(X) be the set of all compact operators in L(X).
Conway [3] has established that LC(H) cannot be complemented in L(H)
where H is an infinite dimensional separable Hilbert space.

Let

ln×n∞ = {f : N→ Cn×n : f(m) = An×nm and sup
m
‖f(m)‖Cn×n <∞}

and

cn×n0 = {f : N→ Cn×n : f(m) = An×nm and ‖f(m)‖Cn×n → 0 as m→∞}.

It is not difficult to see that cn×n0 ⊂ ln×n∞ . If f ∈ ln×n∞ , we define ‖f‖ =
supm ‖f(m)‖Cn×n . The space ln×n∞ with the sup norm is a Banach space and
cn×n0 is a closed subspace of ln×n∞ .

Let H be a Hilbert space and

l∞(H) = {f : N→ H : f(n) = xn ∈ H

and

sup
n
‖f(n)‖H <∞}
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and

c0(H) = {f : N→ H : f(n) = xn ∈ H, f ∈ l∞(H)

and

‖f(n)‖H → 0 as n→∞}.

It is also not difficult to verify that c0(H) ⊂ l∞(H). The space l∞(H) is
a Banach space [8] with the norm ‖f‖ = supn ‖f(n)‖H and c0(H) is a closed
subspace of l∞(H).

Now let (X, ‖ · ‖X) be a Banach space. Define

l∞(X) = {f : N→ X : f(n) = xn ∈ X and sup
n
‖f(n)‖X <∞}.

The space l∞(X) is a Banach space with the norm ‖f‖ = supn ‖f(n)‖X and
define

c0(X) = {f : N→ X : f(n) = xn ∈ X, f ∈ l∞(X)

and
‖f(n)‖X → 0 as n→∞}.

The space c0(X) is a closed subspace of l∞(X). In this paper we have shown
that the space cn×n0 cannot be complemented in ln×n∞ and c0(H) cannot be
complemented in l∞(H) where H is a separable Hilbert space. Further,
extending these results we show that if X is a Banach space then c0(X)
cannot be complemented in l∞(X).

For this we need to introduce the Hardy space. Let T denote the unit
circle in the complex plane C. Let dθ be the arc-length measure on T. For

1 ≤ p ≤ +∞, Lp(T) will denote the Lebesgue space of T induced by
dθ

2π
.

Given f ∈ L1(T), the Fourier coefficients of f are

an(f) =
1

2π

∫ 2π

0
f(θ)e−inθdθ, n ∈ Z (1)

where Z is the set of all integers. Let Z+ denote the set of nonnegative
integers. For 1 ≤ p ≤ +∞, the Hardy space of T denoted by Hp(T), is the
subspace of Lp(T) consisting of functions f with an(f) = 0 for all negative
integers n. We shall let Hp(D) denote the space of analytic functions on
D which are harmonic extensions of functions in Hp(T). The Hardy space
H2(D) is a reproducing kernel Hilbert space and the reproducing kernel

(called the Cauchy or Szego kernel) Kw(z) =
1

1− w̄z
, for z, w ∈ D. It is not
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so important to distinguish Hp(D) from Hp(T). The sequence of functions
{einθ}n∈Z+ forms an orthonormal basis for H2(T).

Let L2Cn(T) denote the Hilbert space of Cn-valued, norm square inte-
grable, measurable functions on T. When endowed with the inner product
defined by the equality

〈f, g〉 =

∫
T
〈f(z), g(z)〉Cndm, f, g ∈ L2Cn(T),

the space L2Cn(T) becomes a separable Hilbert space. Here the measure m
denotes the normalized Lebesgue measure on T. For a function F ∈ L2Cn(T),
we define the nth Fourier coefficient of F as

cn(F ) =
1

2π

∫ 2π

0
e−intF (eit)dt, n ∈ Z.

The integral is understood in the strong sense. Let H2
Cn(T) be the Hardy

space of functions in L2Cn(T) with vanishing negative Fourier coefficients.
Notice that L2Cn(T) = L2(T) ⊗ Cn and H2

Cn(T) = H2(T) ⊗ Cn where the
Hilbert space tensor product is used.

2 The space ln×n∞

In this section we show that cn×n0 cannot be complemented in ln×n∞ . For
this purpose, we introduce the operators Ua and Va acting on a direct sum∑
b∈B
⊕Hb, with each Hb the same Hilbert space H. Define the bounded linear

operators

Ua : H −→
∑
⊕Hb, Va :

∑
⊕Hb −→ H,

for each a in B, as follows. When x ∈ H and u = {xb} ∈
∑
⊕Hb, Vau = xa

and Uax is the family {zb} in which za = x and all other zb are 0; H ′a is the
range of Ua, and so consists of all elements {zb} of

∑
⊕Hb in which zb = 0

when b 6= a. The space H ′a is a closed subspace of
∑
⊕Hb, and observe

that VaUa is the identity operator on H and UaVa is the projection Ea from∑
⊕Hb ontoH ′a. Since the subspacesH ′a(a ∈ B) are pairwise orthogonal, and

∨H ′a =
∑
⊕Hb, it follows that the sum

∑
a∈B

Ea is strong-operator convergent

to I. Note that Ua = V ∗a , since

〈Uax, {xb}〉 = 〈x, xa〉 = 〈x, Va{xb}〉
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whenever x ∈ H and {xb} ∈
∑
⊕Hb. With each bounded linear operator T

acting on
∑
⊕Hb, we associate a matrix [Tab]a,b∈B, with entries Tab in L(H)

defined by

Tab = VaTUb. (2)

If u = {xb} ∈
∑
⊕Hb, then Tu is an element {yb} of

∑
⊕Hb, and

ya = VaTu = VaT

(∑
b

Ebu

)
=
∑
b

VaTUbVbu =
∑
b

Tabxb.

Thus
T
(∑

⊕xb
)

=
∑
⊕yb where ya =

∑
b∈B

Tabxb (a ∈ B). (3)

The usual rules of matrix algebra have natural analogues in this situation.
From (2.1), the matrix elements Tab depend linearly on T. Since

VaT
∗Ub = U∗aT

∗V ∗b = (VbTUa)
∗ = (Tba)

∗,

the matrix of T ∗ has (Tba)
∗ in the (a, b) position. If S and T are bounded

linear operators acting on
∑
⊕Hb, and R = ST, then

Rab = VaRUb = VaSTUb =
∑
c∈B

VaSEcTUb

=
∑
c∈B

VaSUcVcTUb =
∑
c∈B

SacTcb,

the sum converging in the strong-operator topology if the index set B is
infinite. In this way, we establish a one-to-one correspondence between

elements of L(
∑
b∈B
⊕Hb) and certain matrices [Tab]a,b∈B with entries Tab in

L(H). When the index set B is finite, each such matrix corresponds to some
bounded operator T acting on

∑
⊕Hb; indeed, T is defined by (2.2), and its

boundedness follows at once from the relations

||{yb}||2 =
∑
a

||ya||2 =
∑
a

||
∑
b

Tabxb||2 ≤
∑
a

(∑
b

||Tab|| ||xb||

)2

≤
∑
a

(∑
b

||Tab||2
)(∑

b

||xb||2
)

=

(∑
a

∑
b

||Tab||2
)
||{xb}||2.
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Theorem 1. The space cn×n0 cannot be complemented in ln×n∞ .

Proof. The set of vectors {en}∞n=0 form an orthonormal basis for H2(T)
where en(z) = zn, z ∈ T. It is easy to verify that H2

Cn(T) = H2(T)⊕H2(T)⊕
· · · ⊕H2(T) (direct sum of n-copies of H2(T)) and if T ∈ L(H2

Cn(T)) then

T =


T11 T12 · · · T1n
T21 T22 · · · T2n

...
... · · ·

...
Tn1 Tn2 · · · Tnn

 ,

Tij ∈ L(H2(T)), 1 ≤ i, j ≤ n. Define the maps Vi and Ui, 1 ≤ i ≤ n, as
we have discussed earlier in this section on the space H2

Cn(T) = H2(T) ⊕
H2(T)⊕ · · ·⊕H2(T). It is not difficult to see that Tij = ViTUj , 1 ≤ i, j ≤ n.
Further, define the map σ : L(H2

Cn(T)) into ln×n∞ as

σ(T )(m) =
1

n


〈T11em, em〉 〈T12em, em〉 · · · 〈T1nem, em〉
〈T21em, em〉 〈T22em, em〉 · · · 〈T2nem, em〉

...
... · · ·

...
〈Tn1em, em〉 〈Tn2em, em〉 · · · 〈Tnnem, em〉

 ,

if T = (Tij)1≤i,j≤n. Notice that ‖Tij‖ = ‖ViTUj‖ ≤ ‖T‖. Then

‖σ(T )‖ = supm ‖σ(T )(m)‖Cn×n

= supm max1≤j≤n
1
n

∑n
i=1 |〈Tijem, em〉|

≤ supm max1≤j≤n
1
n

∑n
i=1 ‖Tij‖

≤ supm max1≤j≤n
1
nn‖T‖ = ‖T‖.

Thus σ is a contraction. Now if T ∈ LC(H2
Cn(T)), then Tij ∈ LC(H2(T))

for all i, j ∈ {1, 2 · · · , n} and |〈Tijem, em〉| → 0 as m→∞. Hence ‖σ(T )(m)‖
→ 0 as m→∞. Thus σ(LC(H2

Cn(T))) ⊂ cn×n0 .
Define ρ : ln×n∞ → L(H2

Cn(T)) as ρ(F ) = T where

T =


T11 T12 · · · T1n
T21 T22 · · · T2n

...
... · · ·

...
Tn1 Tn2 · · · Tnn

 ,

and Tij = 1
n

∑∞
m=1 Fij(m)Psp{em} if

F =


F11 F12 · · · F1n

F21 F22 · · · F2n
...

... · · ·
...

Fn1 Fn2 · · · Fnn

 ∈ ln×n∞ .
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Now ‖F‖ln×n
∞

= supm ‖F (m)‖Cn×n = supm max1≤j≤n
∑n

i=1 |Fij(m)|. Hence

‖ρ(F )‖ = ‖T‖
≤ (

∑n
i,j=1 ‖Tij‖2)

1
2

≤ (
∑n

i,j=1(
1
n supm ‖F (m)‖)2)

1
2

=
[∑n

i,j=1

(
1
n2 (supm ‖F (m)‖)2

)] 1
2

= supm ‖F (m)‖Cn×n

= ‖F‖ln×n
∞

.

This proves that ρ is a contraction and ρ(cn×n0 ) ⊂ LC(H2
Cn(T)). Now if there

is a projection P from ln×n∞ onto cn×n0 , then Q = ρ◦P ◦σ is a projection from
L(H2

Cn(T)) onto LC(H2
Cn(T)) since Q2 = Q. This is a contradiction since

LC(H) cannot be complemented [3] in L(H) if H is an infinite dimensional
separable Hilbert space.

3 Projection onto c0(H)

In this section we shall establish that c0(H) cannot be complemented in
l∞(H) if H is an infinite dimensional separable Hilbert space.

Theorem 2. If H is an infinite dimensional separable Hilbert space, then
c0(H) cannot be complemented in l∞(H).

Proof. Let {en}∞n=0 be an orthonormal basis for H. Then it is well known
[8] that en → 0 weakly. Define σ : L(H)→ l∞(H) as σ(T )(n) = Ten for all
n ∈ N. The map σ is well defined and is a contraction since

sup
n
‖σ(T )(n)‖ = sup

n
‖Ten‖ ≤ ‖T‖ <∞.

If T ∈ LC(H), then Ten → 0 strongly and ‖σ(T )(n)‖ = ‖Ten‖ → 0 as
n→∞. Thus σ(T ) ∈ c0(H) and σ(LC(H)) ⊂ c0(H).

Now define ρ : l∞(H)→ L(H) as ρ(F ) = T where

T =
∞∑
n=0

〈F (n), en〉Psp{en}

if F = (F (n))∞n=0 ∈ l∞(H). Notice that if F ∈ l∞(H), then

‖F‖l∞(H) = sup
n
‖F (n)‖H <∞
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and ‖T‖ = supn |〈F (n), en〉| ≤ supn ‖F (n)‖H < ∞. Hence the map ρ is
well-defined, ρ(c0(H)) ⊆ LC(H) and

‖ρ(F )‖ = ‖T‖ = supn |〈F (n), en〉| ≤ supn ‖F (n)‖H
= ‖F‖l∞(H).

Thus the map ρ is a contraction. Now if there exists a projection P
from l∞(H) onto c0(H) then Q = ρ ◦ P ◦ σ is a projection from L(H) onto
LC(H). Since there exists no projection [3] from L(H) onto LC(H), hence
there exists no projection from l∞(H) onto c0(H).

4 Projection onto c0(X)

In this section we shall establish that c0(X) cannot be complemented in
l∞(X) where X is an infinite dimensional separable Banach space.

Definition 1. Let (X, ‖ · ‖) be a normed linear space over C. A countable
subset {x1, x2, · · · } of X is called a Schauder basis for X if ‖xn‖ = 1 for
each n and if for every x ∈ X, there are unique α1, α2, · · · in C such that
x =

∑∞
n=1 αnxn with the series converging in the norm of X.

If {x1, x2, · · · } is a Schauder basis for X, then for n = 1, 2, · · · , define fn :
X → C by fn(x) = αn, for x =

∑∞
n=1 αnxn ∈ X. The uniqueness condition

in the definition of a Schauder basis shows that each fn is well-defined and
linear on X. It is called the nth coefficient functional on X corresponding
to the Schauder basis {x1, x2, · · · } for X. If X is a Banach space then it
is not difficult to verify [8] that each fn is a continuous linear functional
and ‖fn‖ ≤ α for all n = 1, 2, · · · and some α > 0. If x =

∑∞
n=1 αnxn,

define ‖x‖∞ = supn ‖
∑n

k=1 αkxk‖. Then ‖ · ‖∞ is a norm and (X, ‖ · ‖∞)
is complete. The norm ‖ · ‖ and ‖ · ‖∞ are equivalent. Let X be a Banach
space, U∗ = {f : f ∈ X∗ and ‖f‖ ≤ 1} be the unit ball of X∗ and let E be
the set of extreme points of U∗.

Theorem 3. Let X be a separable Banach space and {xn}∞n=1 be a Schauder
basis for X. Suppose limn→∞ f(xn) = f(0) for each f in E. Then c0(X)
cannot be complemented in l∞(X).

Proof. Let X be a separable Banach space with a Schauder basis {xn}∞n=1

such that ‖xn‖ = 1 for all n ∈ N. From [16], it follows that limn→∞ f(xn) =
f(0) for each f in E if and only if xn → 0 weakly. Define σ : L(X) →
l∞(X) such that σ(T )(n) = Txn. Since ‖σ(T )‖ = supn ‖σ(T )(n)‖X =
supn ‖Txn‖ ≤ ‖T‖‖xn‖ = ‖T‖. The map σ is well-defined and σ is a
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contraction. Further, if T ∈ LC(X), then Txn → 0 strongly. Hence
‖σ(T )(n)‖ = ‖Txn‖ → 0 strongly and in this case σ(T ) ∈ c0(X). Thus
σ(LC(X)) ⊂ c0(X). Now define a map ρ : l∞(X) → L(X) as ρ(F ) = T
where T =

∑∞
n=1 fn(F (n))Psp{xn} where fn’s are the coordinate functions.

If F ∈ l∞(X) then F is a function from N to X such that supn ‖F (n)‖X <∞
and F (n) ∈ X. If F (n) =

∑∞
j=1 αjxj , αj ∈ C then fj(F (n)) = αj for all

j ∈ N. The map ρ is well-defined since

‖ρ(F )‖ = ‖T‖
= supn |fn(F (n))|
≤ α supn ‖F (n)‖X
= α‖F‖∞

for some constant α > 0 and ρ(c0(X)) ⊂ LC(X). Now if there exists a
projection P from l∞(X) onto c0(X) then Q = ρ◦P ◦σ is a projection from
L(X) onto LC(X). But from [19] it follows that there exists no bounded
projection from L(X) onto LC(X). Hence there exists no bounded projection
P from l∞(X) onto c0(X). This proves the claim.
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