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Abstract

In this paper we have shown that the space cn×n0 cannot be comple-
mented in ln×n∞ and c0(H) cannot be complemented in l∞(H) where
H is a Hilbert space. Further, extending these results we show that if
X is a Banach space then c0(X) cannot be complemented in l∞(X).
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1 Introduction

A closed subspace M of a Banach space X is said to be complementd in
X if and only if there exists a bounded linear projection from X onto M.
It is not difficult to see that if M is complemented by the closed subspace
N, then there exists a c > 0 such that ‖m+ n‖ ≥ c‖m‖ for all m ∈ M and
n ∈ N. Murray [12] showed that lp, p > 1, p 6= 2 has subspaces that cannot
be complemented. Philips [14] and Lindenstrauss and Tzafriri [11] proved
that c0 cannot be complemented in l∞. In fact, Lindenstrauss and Tzafriri
[11] established that every infinite dimensional Banach space which is not
isomorphic to a Hilbert space contains a closed subspace that cannot be
complemented. Similar results were also proved in [2],[4] [6],[15],[17] and [20].
Pelczynski [13] showed that complemented subspaces of l1 are isomorphic to
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