The space $l_{\infty}(X)^*$

Namita Das[†]

Abstract

In this paper we have shown that the space $c_0^{n \times n}$ cannot be complemented in $l_{\infty}^{n \times n}$ and $c_0(H)$ cannot be complemented in $l_{\infty}(H)$ where H is a Hilbert space. Further, extending these results we show that if X is a Banach space then $c_0(X)$ cannot be complemented in $l_{\infty}(X)$.

MSC: 46B25, 46B45, 46C07

keywords: Hilbert space, Banach space, projection operator, contraction, Schauder basis.

1 Introduction

A closed subspace M of a Banach space X is said to be complemented in X if and only if there exists a bounded linear projection from X onto M. It is not difficult to see that if M is complemented by the closed subspace N, then there exists a c > 0 such that $||m + n|| \ge c||m||$ for all $m \in M$ and $n \in N$. Murray [12] showed that $l_p, p > 1, p \neq 2$ has subspaces that cannot be complemented. Philips [14] and Lindenstrauss and Tzafriri [11] proved that c_0 cannot be complemented in l^{∞} . In fact, Lindenstrauss and Tzafriri [11] established that every infinite dimensional Banach space which is not isomorphic to a Hilbert space contains a closed subspace that cannot be complemented. Similar results were also proved in [2],[4] [6],[15],[17] and [20]. Pelczynski [13] showed that complemented subspaces of l_1 are isomorphic to

^{*}Accepted for publication on October 22-nd 2015

[†]**namitadas4400yahoo.co.in**, P.G. Department of Mathematics Utkal University Vanivihar, Bhubaneswar, 751004, Odisha, India