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ON THE EXISTENCE OF SOLUTIONS

FOR SOME MATRIX HIGHER ORDER

DIFFERENTIAL INCLUSIONS∗
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Abstract

The existence of solutions for Cauchy problems associated to a sec-
ond order and a fourth order matrix differential inclusions is investi-
gated. New results are obtained by using suitable fixed point theorems
when the right hand side has convex or non convex values.
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1 Introduction

This note is concerned with the following initial value problems

x′′ −A2x ∈ F (t, x), a.e. ([0, 1]), x(0) = x′(0) = 0, (1.1)

x′′′′ − (B2 + C2)x′′ +B2C2x ∈ F (t, x), a.e. ([0, 1]),
x(0) = x′(0) = x′′(0) = x′′′(0) = 0,

(1.2)

where F (., .) : [0, 1]×Rn → P(Rn) is a set-valued map and A,B,C ∈ Rn×n

are given matrices.
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The present note is motivated by recent papers of Bartuzel and Frysz-
kowski ([2], [3]), where problems (1.1), respectively, (1.2) are considered and
existence results of Filippov type are provided in the case when the set valued
map F is Lipschitz continuous in the second variable. The aim of our paper
is to present two other existence results for problems (1.1) and (1.2). Our
results are essentially based on a nonlinear alternative of Leray-Schauder
type and on Bressan-Colombo selection theorem for lower semicontinuous
set-valued maps with decomposable values. The methods used are rather
standard, however their exposition in the framework of problems (1.1) and
(1.2) is new.

We mention that fourth order differential equations are often used in
engineering and physical problems (e.g., [9]). In the single valued case,
equations appearing in (1.1) and (1.2) are known as beam differential equa-
tions. Equation (1.2) is known as Timoshenko beam equation that describes
the physical phenomenon of the vibrating beam. More exactly, it is derived
from a calculus of variations problem; namely a simplified form of the cor-
ressponding Euler-Lagrange equation. The same equation can describe the
”effect of the shear” when investigating transverse vibration ([9]). For more
about the motivation of the study of this class of problem we refer to [2], [3]
and references therein.

The paper is organized as follows: in Section 2 we recall some preliminary
facts that we need in the sequel and in Section 3 we prove our main results.

2 Preliminaries

In this section we sum up some basic facts that we are going to use later.
Let (X, d) be a metric space with the corresponding norm |.| and let

I ⊂ R be a compact interval. Denote by L(I) the σ-algebra of all Lebesgue
measurable subsets of I, by P(X) the family of all nonempty subsets of X
and by B(X) the family of all Borel subsets of X. If A ⊂ I then χA(.) : I →
{0, 1} denotes the characteristic function of A. For any subset A ⊂ X we
denote by A the closure of A.

Recall that the Pompeiu-Hausdorff distance of the closed subsets A,B ⊂
X is defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},

where d(x,B) = infy∈B d(x, y).
As usual, we denote by C(I,X) the Banach space of all continuous func-

tions x(.) : I → X endowed with the norm |x(.)|C = supt∈I |x(t)| and by
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L1(I,X) the Banach space of all (Bochner) integrable functions x(.) : I → X
endowed with the norm |x(.)|1 =

∫
I |x(t)|dt.

A subset D ⊂ L1(I,X) is said to be decomposable if for any u(·), v(·) ∈ D
and any subset A ∈ L(I) one has uχA + vχB ∈ D, where B = I\A.

Consider T : X → P(X) a set-valued map. A point x ∈ X is called
a fixed point for T (.) if x ∈ T (x). T (.) is said to be bounded on bounded
sets if T (B) := ∪x∈BT (x) is a bounded subset of X for all bounded sets
B in X. T (.) is said to be compact if T (B) is relatively compact for any
bounded sets B in X. T (.) is said to be totally compact if T (X) is a
compact subset of X. T (.) is said to be upper semicontinuous if for any
x0 ∈ X, T (x0) is a nonempty closed subset of X and if for each open set
D of X containing T (x0) there exists an open neighborhood V0 of x0 such
that T (V0) ⊂ D. Let E a Banach space, Y ⊂ E a nonempty closed subset
and T (.) : Y → P(E) a multifunction with nonempty closed values. T (.)
is said to be lower semicontinuous if for any open subset D ⊂ E, the set
{y ∈ Y ;T (y) ∩D 6= ∅} is open. T (.) is called completely continuous if it is
upper semicontinuous and totally compact on X.

It is well known that a compact set-valued map T (.) with nonempty
compact values is upper semicontinuous if and only if T (.) has a closed
graph.

Even if the definition of upper semicontinuous multifunction it is a nat-
ural adaptation of the concept of continuous function it does not contains
an important property of continuous functions; namely f is continuous if
xn → x, then f(xn)→ f(x). This explains the introduction of the notion of
lower semicontinuous multifunction. The above definition of lower semicon-
tinuity may be replaced by: for any sequence xn that converges to x and any
y ∈ T (x) there exists a sequence yn ∈ T (xn) which converges to y. For other
echivalent characterizations of lower and upper semicontinuous multifunc-
tions and for a detailed discussion on regularity concepts for multifunctions
we refer to [1].

We recall the following nonlinear alternative of Leray-Schauder type and
its consequences.

Theorem 2.1. ([8]) Let D and D be the open and closed subsets in
a normed linear space X such that 0 ∈ D and let T : D → P(X) be a
completely continuous set-valued map with compact convex values. Then
either

i) the inclusion x ∈ T (x) has a solution, or

ii) there exists x ∈ ∂D (the boundary of D) such that λx ∈ T (x) for
some λ > 1.
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Corollary 2.2. Let Br(0) and Br(0) be the open and closed balls in
a normed linear space X centered at the origin and of radius r and let
T : Br(0)→ P(X) be a completely continuous set-valued map with compact
convex values. Then either

i) the inclusion x ∈ T (x) has a solution, or

ii) there exists x ∈ X with |x| = r and λx ∈ T (x) for some λ > 1.

Corollary 2.3. Let Br(0) and Br(0) be the open and closed balls in
a normed linear space X centered at the origin and of radius r and let
T : Br(0) → X be a completely continuous single valued map with compact
convex values. Then either

i) the equation x = T (x) has a solution, or

ii) there exists x ∈ X with |x| = r and x = λT (x) for some λ < 1.

If F (., .) : I × X → P(X) is a set-valued map with compact values we
define SF : C(I,X)→ P(L1(I,X)) by

SF (x) := {f ∈ L1(I,X); f(t) ∈ F (t, x(t)) a.e. (I)}.

We say that F (., .) is of lower semicontinuous type if SF (.) is lower semicon-
tinuous with nonempty closed and decomposable values.

Theorem 2.4. ([4]) Let S be a separable metric space and G(.) : S →
P(L1(I,X)) be a lower semicontinuous set-valued map with closed decom-
posable values.

Then G(.) has a continuous selection (i.e., there exists a continuous
mapping g(.) : S → L1(I,X) such that g(s) ∈ G(s) ∀s ∈ S).

A set-valued map G : I → P(X) with nonempty compact convex values
is said to be measurable if for any x ∈ X the function t → d(x,G(t)) is
measurable.

A set-valued map F (., .) : I × X → P(X) is said to be Carathéodory
if t → F (t, x) is measurable for any x ∈ X and x → F (t, x) is upper
semicontinuous for almost all t ∈ I.

Moreover, F (., .) is said to be L1-Carathéodory if for any l > 0 there
exists hl(.) ∈ L1(I,R) such that sup{|v|; v ∈ F (t, x)} ≤ hl(t) a.e. (I),
∀x ∈ Bl(0).

Theorem 2.5. ([7]) Let X be a Banach space, let F (., .) : I×X → P(X)
be a L1-Carathéodory set-valued map with SF (x) 6= ∅ for all x(.) ∈ C(I,X)
and let Γ : L1(I,X)→ C(I,X) be a linear continuous mapping.
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Then the set-valued map Γ ◦ SF : C(I,X)→ P(C(I,X)) defined by

(Γ ◦ SF )(x) = Γ(SF (x))

has compact convex values and has a closed graph in C(I,X)× C(I,X).

Note that if dimX <∞, and F (., .) is as in Theorem 2.5, then SF (x) 6= ∅
for any x(.) ∈ C(I,X) (e.g., [7]).

In what follows I = [0, 1], V 1 = {x ∈ W 2,1(I,Rn);x(0) = x′(0) = 0}
with the norm ||x||V 1 = ||x′′||1 and V 2 = {x ∈ W 4,1(I,Rn);x(0) = x′(0) =
x′′(0) = x′′′(0) = 0} with the norm ||x||V 2 = ||x′′′′||1

Through our paper we shall assume that the matrices A,B,C ∈ Rn×n

are nonsingular, B,C are commutative with B2 − C2 nonsingular.
By a solution of problem (1.1) we mean a function x(.) ∈ V 1 for which

there exists a function f(.) ∈ L1(I,Rn) with f(t) ∈ F (t, x(t)), a.e. (I) such
that x′′(t)−A2x(t) = f(t) a.e. (I). Similarly, a solution of problem (1.2) is
a function x(.) ∈ V 2 for which there exists a function f(.) ∈ L1(I,Rn) with
f(t) ∈ F (t, x(t)), a.e. (I) such that x′′′′(t)−(B2+C2)x′′(t)+B2C2x(t) = f(t)
a.e. (I).

The next two technical results are proved in [2], respectively, [3]. Similar
considerations may be found in [6].

Lemma 2.6. If f(.) : [0, 1] → Rn is an integrable function, then the
solution of the Cauchy problem

x′′ −A2x = f(t) a.e. (I), x(0) = x′(0) = 0

is given by

x(t) = A−1
∫ t

0
sinh((t− s)A)f(s)ds.

Lemma 2.7. If f(.) : [0, 1] → Rn is an integrable function, then the
solution of the Cauchy problem

x′′′′ − (B2 + C2)x′′ +B2C2x = f(t), a.e. ([0, 1]),
x(0) = x′(0) = x′′(0) = x′′′(0) = 0,

is given by

x(t) = (B2 − C2)−1
∫ t

0
[B−1 sinh((t− s)B)− C−1 sinh((t− s)C)]f(s)ds.
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Finally, we recall that if A = (aij)i,j=1,n ∈ Rn×n is a given matrix ||A|| =
maxi=1,n[

∑n
j=1 |aij |], sinh(A) =

∑∞
n=0

A2n+1

(2n+1)! and || sinh(A)|| ≤ sin(||A||) ≤
1.

Therefore, if we denote K1(t, s) = A−1 sinh((t − s)A) and K2(t, s) =
(B2 −C2)−1[B−1 sinh((t− s)B)−C−1 sinh((t− s)C)], then for any t, s ∈ I
one has

||K1(t, s)|| ≤
sin(t||A||)
||A||

≤ 1

||A||
=: M1,

||K2(t, s)|| ≤ ||(B2 − C2)−1||[ 1

||B||
+

1

||C||
] =: M2.

3 The main results

We are able now to present the existence results for problems (1.1) and
(1.2). We consider first the case when F (., .) is convex valued.

Hypothesis 3.1. i) F (., .) : I ×Rn → P(Rn) has nonempty compact
convex values and is Carathéodory.

ii) There exist ϕ(.) ∈ L1(I,R) with ϕ(t) > 0 a.e. (I) and there exists a
nondecreasing function ψ : [0,∞)→ (0,∞) such that

sup{|v|; v ∈ F (t, x)} ≤ ϕ(t)ψ(|x|) a.e. (I), ∀x ∈ Rn.

Theorem 3.2. Assume that Hypothesis 3.1 is satisfied and there exists
r > 0 such that

r > M1|ϕ|1ψ(r). (3.1)

Then problem (1.1) has at least one solution x(.) such that |x(.)|C < r.

Proof. Let X = W 2,1(I,Rn) and consider r > 0 as in (3.1). It is obvious
that the existence of solutions to problem (1.1) reduces to the existence of
the solutions of the integral inclusion

x(t) ∈
∫ t

0
K1(t, s)F (s, x(s))ds, t ∈ I. (3.2)

Consider the set-valued map T : Br(0)→ P(W 2,1(I,Rn)) defined by

T (x) := {v(.) ∈W 2,1(I,Rn); v(t) :=

∫ t

0
K1(t, s)f(s)ds, f ∈ SF (x)}. (3.3)

We show that T (.) satisfies the hypotheses of Corollary 2.2. First, we
show that T (x) ⊂W 2,1(I,Rn) is convex for any x ∈W 2,1(I,Rn).
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If v1, v2 ∈ T (x) then there exist f1, f2 ∈ SF (x) such that for any t ∈ I
one has

vi(t) =

∫ t

0
K1(t, s)fi(s)ds, i = 1, 2.

Let 0 ≤ α ≤ 1. Then for any t ∈ I we have

(αv1 + (1− α)v2)(t) =

∫ t

0
K1(t, s)[αf1(s) + (1− α)f2(s)]ds.

The values of F (., .) are convex, thus SF (x) is a convex set and hence
αf1 + (1− α)f2 ∈ T (x).

Secondly, we show that T (.) is bounded on bounded sets of W 2,1(I,Rn).

Let B ⊂ W 2,1(I,Rn) be a bounded set. Then there exist m > 0 such
that |x|C ≤ m ∀x ∈ B.

If v ∈ T (x) there exists f ∈ SF (x) such that v(t) =
∫ t
0 K1(t, s)f(s)ds.

One may write for any t ∈ I

|v(t)| ≤
∫ t

0
|K1(t, s)|.|f(s)|ds ≤

∫ t

0
|K1(t, s)|ϕ(s)ψ(|x(t)|)ds

and therefore

|v|C ≤M1|ϕ|1ψ(m) ∀v ∈ T (x),

i.e., T (B) is bounded.

We show next that T (.) maps bounded sets into equi-continuous sets.

Let B ⊂W 2,1(I,Rn) be a bounded set as before and v ∈ T (x) for some
x ∈ B. There exists f ∈ SF (x) such that v(t) =

∫ t
0 K1(t, s)f(s)ds. Then for

any t, τ ∈ I we have

|v(t)− v(τ)| ≤ |
∫ t

0
K1(t, s)f(s)ds−

∫ t

0
K1(τ, s)f(s)ds| ≤

∫ t

0
|K1(t, s)−K1(τ, s)|.|f(s)|ds ≤

∫ t

0
|K1(t, s)−K1(τ, s)|ϕ(s)ψ(m)ds.

It follows that |v(t) − v(τ)| → 0 as t → τ . Therefore, T (B) is an equi-
continuous set in W 2,1(I,Rn).

We apply now Arzela-Ascoli’s theorem we deduce that T (.) is completely
continuous on W 2,1(I,Rn).

In the next step of the proof we prove that T (.) has a closed graph.

Let xn ∈ W 2,1(I,Rn) be a sequence such that xn → x∗ and vn ∈ T (xn)
∀n ∈ N such that vn → v∗. We prove that v∗ ∈ T (x∗).



Some matrix differential inclusions 11

Since vn ∈ T (xn), there exists fn ∈ SF (xn) such that vn(t) =
∫ t
0 K1(t, s)

fn(s)ds.
Define Γ : L1(I,Rn) → W 2,1(I,Rn) by (Γ(f))(t) :=

∫ t
0 K1(t, s)f(s)ds.

One has maxt∈I |vn(t)− v∗(t)| = |vn(.)− v∗(.)|C → 0 as n→∞
We apply Theorem 2.5 to find that Γ◦SF has closed graph and from the

definition of Γ we get vn ∈ Γ ◦ SF (xn). Since xn → x∗, vn → v∗ it follows
the existence of f∗ ∈ SF (x∗) such that v∗(t) =

∫ t
0 K1(t, s)f

∗(s)ds.

Therefore, T (.) is upper semicontinuous and compact on Br(0). We
apply Corollary 2.2 to deduce that either i) the inclusion x ∈ T (x) has a
solution in Br(0), or ii) there exists x ∈ X with |x|C = r and λx ∈ T (x) for
some λ > 1.

Assume that ii) is true. With the same arguments as in the second step
of our proof we get r = |x(.)|C ≤M1|ϕ|1ψ(r) which contradicts (3.1). Hence
only i) is valid and theorem is proved.

Theorem 3.3. Assume that Hypothesis 3.1 is satisfied and there exists
r > 0 such that

r > M2|ϕ|1ψ(r).

Then problem (1.2) has at least one solution x(.) such that |x(.)|C < r.

Proof. The proof is similar to the proof of Theorem 3.2.

We consider now the case when F (., .) is not necessarily convex valued.
Our existence result in this case is based on the Leray-Schauder alternative
for single valued maps and on Bressan Colombo selection theorem.

Hypothesis 3.4. i) F (., .) : I × Rn → P(Rn) has compact values,
F (., .) is L(I)⊗B(Rn) measurable and x→ F (t, x) is lower semicontinuous
for almost all t ∈ I.

ii) There exist ϕ(.) ∈ L1(I,R) with ϕ(t) > 0 a.e. (I) and there exists a
nondecreasing function ψ : [0,∞)→ (0,∞) such that

sup{|v|; v ∈ F (t, x)} ≤ ϕ(t)ψ(|x|) a.e. (I), ∀x ∈ Rn.

Theorem 3.5. Assume that Hypothesis 3.4 is satisfied and there exists
r > 0 such that condition (3.1) is satisfied.

Then problem (1.1) has at least one solution on I.

Proof. We note first that if Hypothesis 3.4 is satisfied then F (., .) is of
lower semicontinuous type (e.g., [5]). Therefore, we apply Theorem 2.4 with
S = W 2,1(I,Rn) and G(.) = SF (.) to deduce that there exists a continuous
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mapping f(.) : W 2,1(I,Rn) → L1(I,Rn) such that f(x) ∈ SF (x) ∀x ∈
W 2,1(I,Rn).

We consider the corresponding problem

x(t) =

∫ t

0
K1(t, s)f(x(s))ds, t ∈ I (3.4)

in the space X = W 2,1(I,Rn). It is clear that if x(.) ∈ W 2,1(I,Rn) is a
solution of the problem (3.4) then x(.) is a solution to problem (1.1).

Let r > 0 that satisfies condition (3.1) and define the set-valued map
T : Br(0)→ P(W 2,1(I,Rn)) by

(T (x))(t) :=

∫ t

0
K1(t, s)f(x(s))ds.

Obviously, the integral equation (3.4) is equivalent with the operator
equation

x(t) = (T (x))(t), t ∈ I. (3.5)

It remains to show that T (.) satisfies the hypotheses of Corollary 2.3.

We show that T (.) is continuous on Br(0). From Hypotheses 3.4. ii) we
have

|f(x(t))| ≤ ϕ(t)ψ(|x(t)|) a.e. (I)

for all x(.) ∈W 2,1(I,Rn). Let xn, x ∈ Br(0) such that xn → x. Then

|f(xn(t))| ≤ ϕ(t)ψ(r) a.e. (I).

From Lebesgue’s dominated convergence theorem and the continuity of
f(.) we obtain, for all t ∈ I

lim
n→∞

(T (xn))(t) =

∫ t

0
K1(t, s)f(xn(s))ds =

∫ t

0
K1(t, s)f(x(s))ds = (T (x))(t)

i.e., T (.) is continuous on Br(0).

Repeating the arguments in the proof of Theorem 3.2 with corresponding
modifications it follows that T (.) is compact on Br(0). We apply Corollary
2.3 and we find that either i) the equation x = T (x) has a solution in Br(0),
or ii) there exists x ∈ X with |x|C = r and x = λT (x) for some λ < 1.

As in the proof of Theorem 3.2 if the statement ii) holds true, then
we obtain a contradiction to (3.1). Thus only the statement i) is true and
problem (1.1) has a solution x(.) ∈W 2,1(I,Rn) with |x(.)|C < r.
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Theorem 3.6. Assume that Hypothesis 3.4 is satisfied and there exists
r > 0 such that r > M2|ϕ|1ψ(r).

Then problem (1.2) has at least one solution on I.

Proof. The proof is similar to the proof of Theorem 3.5.
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