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Higher Order Boundary Value Problem

for Impulsive Differential Inclusions∗

Johnny Henderson† Abdelghani Ouahab‡ Samia Youcefi§

Abstract

In this paper, we present some existence results for the higher order
impulsive differential inclusion:

x(n)(t) ∈ F (t, x(t), x′(t), . . . , x(n−1)(t)), a.e. t ∈ J = [0,∞), t 6= tk,
k = 1, . . . ,

∆x(i)|t=tk = Iik(x(tk), x′(tk), . . . , x(n−1)(tk)), i = 0, 1, . . . , n− 1,
k = 1, . . . ,

x(i)(0) = x0i, (i = 0, 1, . . . , n− 2), x(n−1)(∞) = βx(n−1)(0),

where F : R+ × E × E × · · · × E → P(E) is a multifunction, x0i ∈
E, i = 0, 1, . . . , n − 1, 0 = t0 < t1 < · · · < tm < · · · , lim

k→∞
tk =

∞, Iki ∈ C(E × · · · × E,E) (i = 1, . . . , n− 1, k = 1, . . . , ), ∆x|t=tk =
x(t+k ) − x(t−k ), x(t+k ) = lim

h→0+
x(tk + h) and x(t−k ) = lim

h→0+
x(tk − h)

represent the right and left limits of x(t) at t = tk, respectively,
x(n−1)(∞) = lim

t→∞
x(n−1)(t), and (E, |·|) is real separable Banach space.

We present some existence results when the right-hand side multi-
valued nonlinearity can be either convex or nonconvex.
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1 Introduction

Differential equations with impulses were considered for the first time in
the 1960’s by Milman and Myshkis [20]. Their work was followed by a period
of active research, mostly in Eastern Europe during 1960-1970, culminating
with the monograph by Halanay and Wexler [15].

The dynamics of many evolving processes are subject to abrupt changes,
such as shocks, harvesting and natural disasters. These phenomena involve
short-term perturbations from continuous and smooth dynamics, whose du-
ration is negligible in comparison with the duration of an entire evolution.
In models involving such perturbations, it is natural to assume these pertur-
bations act instantaneously or in the form of “impulses”. As a consequence,
impulsive differential equations have been developed in modeling impulsive
problems in physics, population dynamics, ecology, biotechnology, industrial
robotics, pharmcokinetics, optimal control, and so forth. Again, associated
with this development, a theory of impulsive differential equations has been
given extensive attention. Works recognized as landmark contributions in-
clude [14, 21]. The existence theory of impulsive differential equations in
Banach space was studied by Guo [11, 12, 13]. There are also many differ-
ent studies in biology and medicine for which impulsive differential equations
are good models (see for instance, [2] and the references therein).

In recent years, many examples of differential equations with impulses
with fixed moments have flourished in several contexts. In the periodic
treatment of some diseases, impulses correspond to administration of a drug
treatment or a missing product. In environmental sciences, seasonal changes
of the water level of artificial reservoirs are often considered as impulses.

More precisely, we will consider nth order impulsive differential inclu-
sions of the form,

x(n)(t) ∈ F (t, x(t), x′(t), . . . , x(n−1)(t)), a.e. t ∈ J = [0,∞)\{t1, . . .} (1.1)

∆x(i)|t=tk = Iik(x(tk), x
′(tk), . . . , x

(n−1)(tk)), i = 0, 1, . . . , n− 1, k = 1, . . . ,
(1.2)

x(i)(0) = x0i, (i = 0, 1, . . . , n− 2, ), x(n−1)(∞) = βx(n−1)(0), (1.3)

where F : R+ × E × E × · · · × E → P(E) is a multifunction, x0i ∈ E, i =
0, 1, . . . , n − 1, 0 = t0 < t1 < · · · < tm < · · · , lim

k→∞
tk = ∞, Iik ∈ C(E ×
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· · · × E,E) (i = 1, . . . , n − 1, k = 1, . . . , ), ∆x(i)|t=tk = x(i)(t+k ) − x(i)(t−k ),

where x(i)(t+k ) = lim
h→0+

x(i)(tk + h) and x(i)(t−k ) = lim
h→0+

x(i)(tk − h) repre-

sent the right and left limits of x(i)(t) at t = tk, respectively, x(n−1)(∞) =
lim
t→∞

x(n−1)(t), and (E, | · |) is real separable Banach space.

Our goal in this work is to give some existence results when the right-
hand side multi-valued nonlinearity can be either convex or nonconvex.
Some auxiliary results from multi-valued analysis are gathered together in
Section 2. In the Section 3, we give an existence result based on nonlin-
ear alternative of Leray-Schauder type for condensing maps (in the convex
case). In Section 4, some existence results are obtained based on the nonlin-
ear alternative of Leray-Schauder type and on the Covitz and Nadler fixed
point theorem for contractive multi-valued maps (in the nonconvex case).

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts
from multivalued analysis which are used throughout this paper.

Let (X, d) be a metric space and Y be a subset of X. We denote:

• P(X) = {Y ⊂ X : Y 6= ∅} and

• Pp(X) = {Y ∈ P(X) : Y has the property “p”}, where p could be:
cl=closed, b=bounded, cp=copmact, cv=convex, etc.

Thus

• Pcl(X) = {Y ∈ P(X) : Y closed},

• Pb(X) = {Y ∈ P(X) : Y bounded},

• Pcv(X) = {Y ∈ P(X) : Y convex}, where X is a Banach space

• Pcp(X) = {Y ∈ P(X) : Y compact},

• Pcv,cp(X) = Pcv(X) ∩ Pcp(X), etc.

In what follows, by E we shall denote a separable Banach space over the
field of real numbers R, and by J̄ a closed bounded interval in R. We let

C(J̄ , E) = {x : J̄ → E | x is continuous}.
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We consider the Tchebyshev norm:

‖ · ‖∞ : C(J̄ , E)→ [0,∞)

defined as follows:
‖x‖∞ = max{|x(t)| : t ∈ J̄},

where | · | stands for the norm in E. Then (C(J̄ , E), ‖ · ‖∞) is a Banach
space.

The following are classical concepts:
A function x : R+ → E is called measurable provided for every open

U ⊂ E the set:
x−1(U) = {t ∈ R+ | x(t) ∈ U}

is Lebesgue measurable.
We shall say that a measurable function x : R+ → E is Bochner in-

tegrable provided the function |x| : R+ → [0,∞) is Lebesgue integrable
function.

We let:

L1(R+, E) = {x : R+ → E | x is Bochner integrable}.

Let us add that two functions x1, x2 : J → E such that the set {x1(t) 6=
x2(t) | t ∈ R+} has Lebesgue measure equal to zero are considered as equal.

Then, we are able to define on L1,

‖x‖L1 =

∫ ∞
0
|x(t)| dt.

It is well-known that:
(L1(R+, E), ‖ · ‖L1)

is a Banach space.

Definition 1. Let (Ω,Σ, µ) be a finite measure space. A subset C in L1(Ω,Σ,
µ) is called uniformly integrable if, for each ε > 0 there exists δ(ε) > 0 such
that, for each measurable subset R ⊂ Σ whose µ(R) < δ(ε), we have∫

R
|f(ω)|dµ(ω) < ε.

Remark 1. Let C ⊂ L1(Ω,Σ, µ), then:

(i) if µ(Ω) < ∞ and C is bounded in Lp(Ω,Σ, µ) where p > 1, then C is
uniformly integrable.
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(ii) if there exist p ∈ L1(Ω, µ,R+) such that

|f(ω)| ≤ p(ω), for each f ∈ C and a.e. ω ∈ Ω,

then C is uniformly integrable.

Let K ⊂ X. We define K by

K = {f ∈ L1(Ω,Σ, µ) : f(ω) ∈ K a.e. ω ∈ Ω}.

Theorem 1. [8] Let (Ω,Σ, µ) be a finite measure space and X a Banach
space, and let K be a bounded uniformly integrable subset of L1(Ω,Σ, µ).
Suppose that given ε > 0 there exists a measurable set Ωε and a weakly
compact set Kε ⊂ X such that µ(Ω\Ωε) < ε and for each f ∈ K, f(ω) ∈ Kε

for almost all ω ∈ Ωε. Then K is a relatively weakly compact subset of
L1(Ω,Σ, µ).

Next we present a new result due to Vrabie [23].

Theorem 2. Let (Ω,
∑
, µ) be a σ−finite measure space, let {Ωk : k ∈ N}

be a subfamily of
∑

such that
µ(Ωk) <∞ for k = 0, 1, . . . ,
Ωk ⊂ Ωk+1 for k = 0, 1, . . . ,
∪∞k=0Ωk = Ω,

and let X be a Banach space. Let K ⊂ L1(Ω, µ,X) be bounded and uniformly
integrable in L1(Ωk, µ,X), for k = 0, 1, . . ., and

lim
k→∞

∫
Ω\Ωk

|f(ω)|dµ(ω) = 0

uniformly for f ∈ K. If for each γ > 0 and each k ∈ N, there exist a
weakly compact subset Cγ,k ⊂ X and a measurable subset Ωγ,k ⊂ Ωk with
µ(Ω\Ωγ,k) ≤ γ and f(Ωγ,k) ⊂ Cγ,k for all f ∈ K, then K is weakly relatively
compact in L1(Ω,

∑
, µ).

2.1 Multi-valued analysis

Let (X, ‖·‖) be a Banach space. A multi-valued map G : X → P(X) has
convex (closed) values if G(x) is convex (closed) for all x ∈ X. We say that
G is bounded on bounded sets if G(B) is bounded in X for each bounded
set B of X, i.e., sup

x∈B
{sup{‖y‖ : y ∈ G(x)}} < ∞). The map G is called
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upper semi-continuous (u.s.c.) on X if for each x0 ∈ X the set G(x0) is a
nonempty, subset of X and if for each open set N of X containing G(x0),
there exists an open neighborhood M of x0 such that G(M) ⊆ N. Also, G
is said to be completely continuous if G(B) is relatively compact for every
bounded subset B ⊆ X. If the multi-valued map G is completely continuous
with nonempty compact values, then G is u.s.c. if and only if G has a closed
graph (i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)). Finally, we
say that G has a fixed point if there exists x ∈ X such that x ∈ G(x).

A multi-valued map G : R+ → Pcl(X) is said to be measurable if for
each x ∈ E, the function Y : R+ → X defined by

Y (t) = dist(x,G(t)) = inf{‖x− z‖ : z ∈ G(t)},

is Lebesgue measurable.

Definition 2. A measure of noncompactness β is called

(a) Monotone if Ω0,Ω1 ∈ P(X) Ω0 ⊂ Ω1 implies β(Ω0) ≤ β(Ω1).

(b) Nonsingular if β({a} ∪ Ω) = β(Ω) for every a ∈ X,Ω ∈ P(X).

(c) Invariant with respect to the union with compact sets if β(K ∪ Ω) =
β(Ω) for every relatively compact set K ⊂ X and Ω ∈ P(X).

(d) Real if A=R+ = [0,∞] and β(Ω) <∞ for every bounded Ω.

(e) Semi-additive if β(Ω0 ∪ Ω1) = max(β(Ω0), β(Ω1)) for every Ω0,Ω1 ∈
P(X).

(f) Lower-additive if β is real and β(Ω0 + Ω1) ≤ β(Ω0) + β(Ω1) for every
Ω0,Ω1 ∈ P(X).

(g) Regular if the condition β(Ω) = 0 is equivalent to the relative compact-
ness of Ω.

Definition 3. A sequence {vn}n∈N ⊂ L1([a, b], X) is said to be semi-compact
if

(a) it is integrably bounded, i.e. if there exists ψ ∈ L1([a, b],R+) such that

‖vn(t)‖ ≤ ψ(t), for a.e. t ∈ [a, b] and every n ∈ N,

(b) the image sequence {vn(t)}n∈N is relatively compact in X for a.e. t ∈
[a, b].
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Lemma 1. [18] Every semi-compact sequence in L1([a, b], X) is weakly com-
pact in L1([a, b], X).

Lemma 2. [18] If F : X → P(Y ) is u.s.c., then Gr(F) is a closed subset of
X×Y Conversely, if F is locally compact and has nonempty compact values
and a closed graph, then it is u.s.c.

Next we state the nonlinear alternative of Leray-Schauder type for con-
densing maps.

Lemma 3. [18] Let V ⊂ X be a bounded open neighborhood of zero and
N : V →Pcp,cv(X) a β−condensing u.s.c. multi-map, where β is a nonsin-
gular measure of noncompactness defied on subsets of X. If N satisfies the
boundary condition

x 6∈ N(x)

for all x ∈ ∂V and 0 < λ < 1, then the set Fix(N) = {x ∈ V, x ∈ N(x)} is
nonempty.

Lemma 4. [18] Let W be a closed bounded convex subset of a Banach space
X and F :W →Pcp(W ) be a closed

β−condensing multi-map where β is a monotone MNC on X. Then
Fix(F) is nonempty and compact.

For more details on multi-valued maps we refer to the books Hu and
Papageorgiou [17] and Kamenskii et al [18].

3 Convex case

Before stating the results of this section we consider the following spaces.

PC =
{
x : R+ → E | x(t−k ), x(t+k ) exist with x(tk) = x(t−k ),

xk ∈ C(Jk, E), k = 1, . . .
}
,

where xk is the restriction of x to Jk = (tk, tk+1], k = 0, . . . .

DPC(R+, E) = {x ∈ PC : sup
t∈J

e−t|x(t)| <∞},

It is clear that DPC(R+, E) is a Banach space with norm

‖x‖B = sup
t∈R+

e−t|x(t)|.
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PC(n−1) =
{
x ∈ PC(R+, E) | x(i) exist and it is continuous at t 6= tk,

i = 1, . . . , n− 1, and x(i)(t−k ), x(i)(t+k ) exist with

x(i)(t−k ) = x(i)(tk), k = 1, . . .
}
,

DPCn−1(R+, E) = {y ∈ PC(n−1) : sup
t∈J

e−t|x(i)(t)| < ∞ i = 1, . . . , n − 1}

is a Banach space with the norm

‖x‖D = max(‖x‖B, ‖x′‖B, . . . , ‖x(n−1)‖B).

Set

AC(J,E) = {y : [a, b]→ E absolutely continuous,

y(t) = y(a) +

∫ t

a
y′(s)ds, and y′ ∈ L1([a, b], E)}.

in general, on interval [a, b], there need not exist y′(t), for almost all t ∈ [a, b]
with y′ ∈ L1([a, b], E) and

y(t) = y(a) +

∫ t

a
y′(s)ds.

It is so if E satisfies the Radon-Nikodym property, in particular, if E is
reflexive. Moreover, we have the following.

Lemma 5. [1] Suppose y : [a, b]→ E is absolutely continuous, y′ exists a.e.,
and

|y′(t)| ≤ l(t) a.e. for some l ∈ L1([a, b], E).

Then y′ ∈ L1([a, b], E)∫ t

τ
y′(s)ds = y(t)− (τ), t, τ ∈ [a, b].

Let us start by defining what we mean by a solution of problem (1.1)-
(1.3).

Definition 4. We say that the function x ∈ PC(n−1) is a solution of the
system (1.1)-(1.3) if x0i = x(i)(0), i = 0 , . . . , n − 1 and there exists v(·) ∈
L1([0,∞), E), such that v(t) ∈ F (t, x(t), x′(t), . . . , x(n−1)(t)) a.e [0,∞), and
such that x(n)(t) = v(t), and the impulsive systems ∆x(i)|t=tk = Iki(x(tk)),
i = 0, 1, . . . , n− 1, k = 1, 2, . . . , are satisfied.
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A fundamental notation for a solution of problem (1.1)-(1.3) is given by
the following auxiliary result.

Lemma 6. [13]. Let f ∈ L1(R+, E) and β ∈ R\{1}. Then x is the unique
solution of the impulsive boundary value problem,

x(n)(t) = f(t), t ∈ J := [0,∞), t 6= tk, k = 1, . . . , (3.1)

∆x(i)|t=tk = Iki(x(t−k ), x′(tk), . . . , x
(n−1)(tk)), i = 0, . . . , n− 1, k = 1, . . . ,

(3.2)
x(i)(0) = x0i, i = 0, . . . , n− 1, x(n−1)(∞) = βx(n−1)(0), (3.3)

if and only if x is a solution of impulsive integral differential equation

x(t) =



n−2∑
j=0

tj

j!
x0i +

tn−1

(β − 1)(n− 1)!

∫ ∞
0

f(s)ds

+
tn−1

(β − 1)(n− 1)!

∞∑
k=1

In−1k(x(tk), x
′(tk), . . . , x

(n−1)(tk))

+
1

(n− 1)!

∫ t

0
(t− s)n−1f(s)ds

∑
0<tk<t

n−1∑
j=0

(t− tk)j

j!
Ijk(x(tk), x

′(tk), . . . , x
(n−1)(tk)) if t ∈ [0,∞).

(3.4)

Let F : J ×E× . . .×E → Pcp,cv(E) be a Carathéodory multimap which
satisfies the following assumptions:

(H1) There exist functions a, bj ∈ L1(J,R+), j = 0, . . . , n− 1, such that

‖F (t, z0, z1, . . . , zn−1)‖P ≤ a(t) +

n−1∑
j=0

bj(t)|zj |

for a.e. t ∈ J, zj ∈ E, (j = 0, . . . , n− 1),

a∗ =

∫ ∞
0

a(t)dt <∞, b∗j =

∫ ∞
0

bj(t)e
tdt <∞, j = 0, . . . , n− 1,

and F has a measurable selection.
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(H2) There exist nonnegative constants cikj , dik (i, j = 0, . . . , n − 1; k =
1, 2, . . .) such that

|Iik(z0, z1, . . . , z(n−1))| ≤ dik +

n−1∑
j=0

cikj |zj |,

∀zj ∈ E, (i, j = 0, . . . , n− 1; k = 1, 2, . . .),

d∗ =
∞∑
k=1

d∗k, c∗ =
∞∑
k=1

etk(
n−1∑
j=0

c∗kj) <∞,

where

d∗k = max{dik, i = 0, . . . , n− 1}, c∗kj = max{cikj , i = 0, . . . , n− 1}.

(H3) There exists p ∈ L1(J,R+) such that, for every bounded subset D in
DPCn−1(J,E),

χ(F (t,D(i)(t))) ≤ p(t)χD(D), ∀t ∈ J ; (i = 0, . . . , n− 1),

with

p∗ =

∫ ∞
0

p(t)etdt <∞,

where D(i)(t) = {x(i)(t), x ∈ D}, and χ is the Hausdorff MNC.

(H4) There exists lik > 0 such that, for every bounded subset D in
DPCn−1(J,E),

χ(Ik(D
(i)(t))) ≤ likχD(D), (i = 0, . . . , n− 1; k = 1, 2, . . .),

l∗ =
∞∑
k=1

l∗k, l∗∗ =
∞∑
k=1

n−1∑
j=0

ljk <∞,

where
l∗k = max{lik, i = 0, . . . , n− 1},

and
χD(D) = max{sup

t∈J
(χ(D(i)(t))), i = 0, . . . , n− 1}.

(H5) There exists a nonnegative constant q such that

q :=
1

β − 1
(p∗ + l∗) + l∗∗ + ‖p‖L1 < 1.
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Lemma 7. [11] Let D ⊂ DPC(n−1) be bounded set such that D(i) is equicon-
tinous and limt→+∞ e

−t|u(i)(t)| = 0 uniformly for every u ∈ D. Then

αD(D) = max{sup
t∈J

e−tα(D(i)(t)) : i = 0, 1, . . . , n− 1}

is a measure of noncompactness in DPC(n−1), where α is the Kurataowski
measure of noncompactness on bounded sets in E.

Theorem 3. [3] Let E be a Banach space. The Kuratowski and Hausdorff
MNCs are related by the inequalities

χ(B) ≤ α(B) ≤ 2χ(B), for every B ∈ Pb(E).

Theorem 4. Assume that hypotheses (H1) − (H5) hold. Then the BVP
(1.1)–(1.3) has at least one solution.

Proof. Let N : DPC(n−1)(J,E)→ P(DPC(n−1)(J,E)) be defined by

N(x) =



h ∈ DPC(n−1) : h(t) =



n−2∑
j=0

tj

j!
x0i

+ tn−1

(β−1)(n−1)!

∫ ∞
0

v(s)ds

+ tn−1

(β−1)(n−1)!

∞∑
k=1

In−1k(x(tk), x
′(tk),

. . . , x(n−1)(tk)))

+ 1
(n−1)!

∫ t

0
(t− s)n−1v(s)ds

+
∑

0<tk<t

n−1∑
j=0

(t− tk)j

j!
Ijk(x(tk), x

′(tk),

. . . , xn−1(tk))
if t ∈ [0,∞),


where

v ∈ SF,x = {v ∈ L1(J,E) : v(t) ∈ F (t, x(t), x′(t), . . . , x(n−1)(t)), a.e t ∈ R+}.

(H1) implies that the set SF,x is nonempty. Since for each x ∈ DPCn−1

the nonlinearity F takes convex values, the selection set SF,x is convex and
therefore N has convex values. Under assumptions (H1), (H2), N sends
bounded sets into bounded and equicontinuous sets.
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Step 1. For bounded D ⊂ DPCn−1, we show that for all h ∈ N(D),

e−t|h(i)(t)| → 0 as t→∞,

independent of y ∈ D. Let h ∈ N(y). Then there exists v ∈ SF,y such that

h(i)(t) =



n−2∑
j=i

tj−i

(j − i)!
x0i +

tn−i−1

(β − 1)(n− i− 1)!

∫ ∞
0

v(s)ds

+ tn−i−1

(β−1)(n−i−1)!

∞∑
k=1

In−1k(x(tk), x
′(tk), . . . , x

(n−1)(tk))

+ 1
(n−i−1)!

∫ t

0
(t− s)n−i−1v(s)ds

+
∑

0<tk<t

n−1∑
j=i

(t− tk)j−i

(j − i)!
Ijk(x(tk), x

′(tk), . . . , x
n−1))), t ∈ [0,∞).

Thus

e−t|h(i)(t)| ≤ e−t

n−2∑
j=i

tj−i

(j − i)!

max{|x0i| : i = 0, . . . , n− 1}

+
e−ttn−i−1

(β − 1)(n− i− 1)!

a∗ +

n∑
j=0

b∗jR


+

e−ttn−i−1

(β − 1)(n− i− 1)!

∞∑
k=1

(dn−1k + etk
n−1∑
i=0

ckiR)

+
e−ttn−i−1

(n− i− 1)!

a∗ +

n∑
j=0

b∗jR


+te−t

∑
0<tk<t

n−1∑
j=i

(dik + etk
n−1∑
i=0

ckiR)

→ 0 as t→∞.

Step 2. To see that N is a β−condensing operator for a suitable MNC β,
let modC(D) the modulus of quasi-equicontinuity of the set of functions D
defined by

modC(D) = max{lim
δ→0

sup
x∈D

max |x(i)(τ1)− x(i)(τ2)|, i = 0, . . . , n− 1}.
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Then modC(D) defines an MNC in DPCn−1 which satisfies all of the prop-
erties in Definition 2 except regularity. Given the Hausdorff MNC χ, let γ
be the real MNC defined on bounded subsets on DPCn−1 by

γ(D) = sup
t∈J

e−tχD(D(t)).

Let D ∈ DPCn−1 be bounded and define the following MNC on bounded
subsets of DPCn−1 by

β(D) = max
D∈∆(DPCn−1)

(γ(D),modC(D)),

where ∆(DPCn−1) is the collection of all denumerable bounded subsets of
D. Then the MNC β is monotone, regular, and nonsingular. To show that
N is β−condensing, let D ∈ DPCn−1 be bounded set and

β(D) ≤ β(N i(D)). (3.5)

We will show that D is relatively compact. Let {xm,m ∈ N} ⊂ D and let

N = L1 + L2 ◦ Γ1 ◦ SF + Γ ◦ SF ,

where L1 : DPCn−1 → DPCn−1 is defined by

(L1x)(t) =

n−2∑
j=0

tj−i

(j − i)!
x0i +

tn−i−1

(β − 1)(n− i− 1)!
×

∞∑
k=1

In−1k(x(tk), x
′(tk), . . . , x

(n−1)(tk))

+
∑

0<tk<t

n−1∑
j=i

(t− tk)j−i

(j − i)!
Ijk(x(tk), x

′(tk), . . . , x
(n−1)(tk)).

L2 : R+ → B(E) is defined by

L2(x) =
tn−i−1

(β − 1)(n− i− 1)!
x.

SF : DPCn−1(J,E)→ L1(J,E) is defined by

SF (x) = {v ∈ L1(J,E) : v ∈ F (t, x(t), x′(t), . . . , xn−1(t)), a.e t ∈ J}.

Γ1 : L1(J,E)→ DPCn−1(J,E) is defined by

Γ1(g)(t) =

∫ ∞
0

g(s)ds, t ∈ [0,∞),
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and

Γ(g)(t) =

∫ t

0

(t− s)n−i−1

(n− i− 1)!
g(s)ds.

Then

|Γg1(t)− Γg2(t)| ≤
∫ t

0
et−s|g1(s)− g2(s)|ds.

Moreover, each element hm ∈ N(xm) can be represented as

h(i)
m = L1(xm) +

tn−i−1

(β − 1)(n− i− 1)
Γ1(gm) + Γ(gm), (3.6)

with some gm ∈ SF (xm) and (3.5) yields

β({hm,m ∈ N}) ≥ β({xm,m ∈ N}). (3.7)

From hypothesis (H3), for a.e. t ∈ J , we have

χ({gm(t),m ∈ N}) ≤ etp(t)γ({xm}∞m=1), (3.8)

and then,
e−tχ({gm(t),m ∈ N}) ≤ p(t)γ({xm}∞m=1).

We have

χ({Γ(gm)(t)}∞m=1) ≤ etγ({xm}∞m=1)

∫ t

0
p(s)ds,

then

e−tχ({Γ(gm)(t)}∞m=1) ≤ γ({xm}∞m=1)

∫ t

0
p(s)ds,

χ({ tn−i−1

(β−1)(n−i−1)Γ1(gm)(t)}∞m=1) ≤ et

β − 1
γ({xm}∞m=0)p∗.

And so,

e−tχ({ tn−i−1

(β − 1)(n− i− 1)
Γ1(gm)(t)}∞m=1) ≤ p∗

β − 1
γ({xm}∞m=1),

and

χ(L1{xm(t)}∞m=1) ≤ et(
l∗

β − 1
+ l∗∗)γ({xm}∞m=1),

so that,

e−tχ(L1{xm(t)}∞m=1) ≤ (
l∗

β − 1
+ l∗∗)γ({xm}∞m=1).
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(3.6) and the lower additivity of γ yield

γ({hm}∞m=1) ≤
[

1

β − 1
(p∗ + l∗) + l∗∗ + ‖p‖L1

]
γ({xm}∞m=1). (3.9)

Therefore
γ({xm}∞m=1) ≤ γ({hm}∞m=1) ≤ qγ({xm}∞m=1). (3.10)

Since 0 < q < 1, we infer that

γ({xm}∞m=1) = 0. (3.11)

Next, we show that modC(B) = 0 i.e, the set B is equicontinuous. This
is equivalent to showing that every {him} ⊂ N i(B) satisfies this property.
Given a sequence {hm}, there exist sequences {xm} ⊂ B and {gm} ⊂ SF,xm
such that

him = L1(xm) +
tn−i−1

(β − 1)(n− i− 1)
Γ1(gm) + Γ(gm).

From (3.11), we infer that

χD({xm(t)} = 0, for a.e.t ∈ [0,∞).

Hypothesis (H1) in turn implies that

χ({gm(t)} = 0, for a.e.t ∈ [0,∞).

From (H1), the sequence {gm} is integrable bounded, hence semi-compact
in L1(Ωk, E), k ∈ N, Ωk = [0, k]. Given γ ∈ (0, 1) and Kγ a measurable set
of R+ such that λ(Kγ) ≤ γ, then λ(Ωk \ Ωγ,k) ≤ γ, where Ωγ,k = Ωk \Kγ ,

gn(Ωγ,k) ⊆ Cγ,k := {gm(t) : t ∈ Ωk \Kγ , m ∈ N}, n ∈ N,

and

lim
k→∞

∫
Ω\Ωk

|gm(t)|dλ(t) ≤ lim
k→∞

∫ ∞
k

p(t)dλ(t) = 0, Ω = [0,∞).

Hence {gm : m ∈ N} is weakly compact in L1([0,∞), E). Using Mazur’s
lemma, we deduce that, up to a subsequence, {hm} is relatively compact.
Therefore β({hm}∞m=1) = 0 which implies that β({xm}∞m=1) = 0. We have
proved that B is relatively compact and so the map N is β−condensing.

Step 3. By essentially the same method used in [14, Theorem 10.2], it can
be proved that N has a closed graph and is a locally compact operator.
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Step 4. A priori bounds on solutions.
Let x ∈ DPCn−1 be such that x ∈ N(x). Then there exists v ∈ SF,x such
that

x(t) =



n−2∑
j=0

tj

j!
x0i

+ tn−1

(β−1)(n−1)!

∫ ∞
0

v(s)ds

+ tn−1

(β−1)(n−1)!

∞∑
k=1

In−1k(x(tk), x
′(tk), . . . , x

(n−1)(tk)))

+ 1
(n−1)!

∫ t

0
(t− s)n−1v(s)ds

+
∑

0<tk<t

n−1∑
j=0

(t− tk)j

j!
Ijk(x(tk), x

′(tk), . . . , x
n−1(tk))

if t ∈ [0,∞).

We have

x(i)(t) =



n−2∑
j=i

tj−i

(j − i)!
x0i +

tn−i−1

(β − 1)(n− i− 1)!

∫ ∞
0

v(s)ds

+ tn−i−1

(β−1)(n−i−1)!

∞∑
k=1

In−1k(x(tk), x
′(tk), . . . , x

(n−1)(tk))

+ 1
(n−i−1)!

∫ t

0
(t− s)n−i−1v(s)ds

+
∑

0<tk<t

n−1∑
j=i

(t− tk)j−i

(j − i)!
Ijk(x(tk), x

′(tk), . . . , x
(n−1)(tk)),

if t ∈ [0,∞).

Then

e−t|xi(t)| ≤
n−2∑
j=i

|x0i|+
(

1

|β − 1|
+ 1

)
(a∗ + d∗)

+

(
1

|β − 1|
+ 1

)
(c∗ +

n−1∑
j=0

b∗j )‖x‖D.

Hence

‖x‖D ≤
∑n−2

j=i |x0i|+ ( 1
|β−1| + 1)(a∗ + d∗)

1− ( 1
|β−1| + 1)(c∗ +

∑n−1
j=0 b

∗
j )

:= Mi, (i = 0, . . . , n− 1).
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Finally

‖x‖D ≤ max(Mi, i = 0, . . . , n− 1) := M.

From Lemma 3, we deduce that N has at least one fixed point denoted by x.
Moreover since Fix(N) is bounded, by Lemma 4, Fix(N) is compact.

4 Nonconvex case

In this section we present a second existence result for problem (1.1)–
(1.3) when the multi-valued nonlinearity is not necessarily convex. In the
proof, we will make use of the nonlinear alternative of Leray-Schauder type
for condensing map, combined with a selection theorem due to Bressan and
Colombo [6], for lower semicontinious multi-valued maps with decomposable
values. Also, another result is presented as an application of the fixed point
theorem for contractive multi-valued operators. Let A be a subset of J ×B.
A is L ⊗ B measurable if A belongs to the σ-algebra generated by all sets
of the form N × D where N is Lebesgue measurable in J and D is Borel
measurable in B. A subset A of L1(J,E) is decomposable if, for all u, v ∈ A
and N ⊂ L1(J,E) measurable, the function uχ̃N + vχ̃J\N ∈ A, where χ̃
stands for the characteristic function of the set A. Let X be a nonempty
closed subset of E and G : X → P(E) be a multivalued operator with
nonempty closed values. G is lower semi-continuous (l.s.c.) if the set {x ∈
X : G(x) ∩B 6= ∅} is open for any open set B in E.

Definition 5. Let Y be a separable metric space and let N : Y → P(L1(J,E))
be a multivalued operator. We say that N has property (BC) if

1) N is lower semi-continuous (l.s.c.);

2) N has nonempty closed and decomposable values.

Let F : J × E → P(E) be a multivalued map with nonempty compact
values. Assign to F the multivalued operator

F : C(J,E)→ P(L1(J,E))

by letting

F(y) = {v ∈ L1(J,E) : v(t) ∈ F (t, y(t)) for a.e. t ∈ J}.

The operator F is called the Niemytzki operator associated to F.
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Definition 6. Let F : J × E → P(E) be a multivalued function with
nonempty compact values. We say that F is of lower semi-continuous type
(l.s.c. type) if its associated Niemytzki operator F is lower semi-continous
and has nonempty closed and decomposable values.

Next we state a selection theorem due to Bressan and Colombo. let Y
be a Banach space. Then every l.s.c. multi-valued operator decomposable
values has a continuous selection.

Theorem 5. [6] Let Y be separable metric space and let N : Y → P(L1(J,E))
be a multivalued operator which has property (BC). Then N has a con-
tinuous selection, i.e. there exists a continuous function (single-valued)
f : Y → L1(J,E) such that f(x) ∈ N(x) for every x ∈ Y.

Lemma 8. [10] Let F : J×Y → Pcp(Y ) be an integrably bounded multimap
satisfying

(Hlsc) F : J ×Y → P(Y ) is a nonempty compact valued multi-map such that

(a) the mapping (t, y) 7→ F (t, y) is L ⊗ B measurable;

(b) the mapping y 7→ F (t, y) is l.s.c. for a.e. t ∈ J .

Then F is of lower semi-continuous type.

Theorem 6. Suppose that hypotheses (H1)− (H5) and the conditions

(A1) F : J × E × E . . .× E −→ Pcl(E) is a multi-valued map such that:
a) (t, x0, x1, . . . , xn) 7→ F (t, x0, x1, . . . , xn) is L ⊗ B measurable;
b) (x, u) 7→ F (t, x0, x1, . . . , xn) is lower semi-continuous for a.e. t ∈ J ;

(A2) F (t, x0, x1, . . . , xn) ⊂ G(t) for a.e t ∈ J and for all (x0, x1, . . . , xn) ∈
E × E . . .× E and with G : J → Pw,cp,c(E) integral bounded;

are satisfied. Then the impulsive boundary value problem (1.1)–(1.3) has at
least one solution.

Proof. First, let F : DPC(n−1) → P(DPC(n−1)) be defined by

F(x) = {v ∈ L1([0,∞), E) : v(t) ∈ F (t, x(t), x′(t), . . . , x(n−1)(t))),

a.e. t ∈ [0,∞)}.

Now, we establish the properties of F(·). Analogous results can be found in
Halidias and Papageorgiou [16]. We prove that F(·) has nonempty, closed,
decomposable values and is l.s.c.
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For the nonempty part, from hypothesis (A2) we have F (·, x(·), x′(·), . . . ,
x(n−1)(·)) is a measurable multifunction. Then there exists a sequence of
measurable selections {fm(t) : m ≥ 1} of F such that

F (t, x(t), x′(t), . . . , x(n−1)(t)) = {fm(t) : m ≥ 1}.

From (A2), we have fm(·) ∈ G(·). Using the fact that G has weakly compact
values, we pass to a subsequence if necessary to get fmk

(·) converges weakly
to f(·) in E. Since {fmk

: k ≥ 1} ⊆ {fm : m ≥ 1}, then f ∈ {fm : m ≥ 1}. By
Mazur’s Lemma there exists vm(t) ∈ conv{fmk

(t) : m ≥ 1} such that vm(·)
converges strongly to f(·) in E. So f(t) ∈ F (t, x(t), x′(t), . . . , x(n−1)(t)), for
a.e. t ∈ [0,∞). Therefore, for every x ∈ DPCn−1, F(x) 6= ∅. The closedness
and decomposability of the values of F(·) are easy to check.

To prove that F(·) is l.s.c., (H1) and (A1) imply by Lemma 8 that F is of
lower semi-continuous type. Using the Theorem 5 of Bressan and Colombo
[6], we get that there is a continuous selection

f : DPC(n−1) → L1([0,∞), E)

such that f(x) ∈ F(x) for every x ∈ DPCn−1. We consider the following
problem:

x(n)(t) = f(x)(t), a.e. t ∈ J\{t1, . . . , tm} (4.1)

∆x(i)|t=tk = Iik(x(tk), x
′(tk), . . . , x

(n−1)(tk)), i = 0, 1, . . . , n− 1, k = 1, . . . ,
(4.2)

x(i)(t) = x0i, (i = 0, 1, . . . , n− 2), x(n−1)(∞) = βx(n−1)(0), (4.3)

Transform the problem (4.1)-(4.3) into a fixed point problem. Consider the
operator P i : DPC(n−1) → DPC(n−1) defined by

P i(x) =



n−2∑
j=i

tj−i

(j − i)!
x0i +

tn−i−1

(β − 1)(n− i− 1)!

∫ ∞
0

f(x(s))ds

+ tn−i−1

(β−1)(n−i−1)!

∞∑
k=1

In−1k(x(tk), x
′(tk), . . . , x

(n−1)(tk))

+ 1
(n−i−1)!

∫ t

0
(t− s)n−i−1f(x(s))ds

+
∑

0<tk<t

n−1∑
j=i

(t− tk)j−i

(j − i)!
Ijk(x(tk), x

′(tk), . . . , x
(n−1)(tk)),

if t ∈ [0,∞).
(4.4)
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We shall show that the single-valued operator P i is completely continuous.
From Step 1 through Step 3 of the proof Theorem 4, we can check that P i

maps bounded sets into bounded sets in DPCn−1 and P i is condensing.
Then P i is a completely continuous. There exists b∗ > 0 such that, for

every solution x of the problem (4.1)–(4.3), we have

‖x‖D ≤ b∗.

Let
U = {x ∈ DPC(n−1) : ‖x‖D < b∗ + 1}.

From the choice of U there is no x ∈ ∂U such that x = λP i(x) for some
λ ∈ (0, 1). As a consequence of the nonlinear alternative of Leray Schauder
type, we deduce that P i has a fixed point x in U is a solution of the problem
(4.1)–(4.2). Then there exists x which is a solution to problem (1.1)–(1.3)
on [0,∞).

In this next part we present a second result for the problem (1.1)–(1.3)
with a non-convex valued right-hand side. Let (X, d) be a metric space
induced from the normed space (X, ‖ · ‖). Consider the Hausdorff-Pompeiu
metric [5, 22]

Hd : P(X)× P(X) −→ R+ ∪ {∞}, given by

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}
,

where d(A, b) = inf
a∈A

d(a, b), d(a,B) = inf
b∈B

d(a, b).

Then (Pb,cl(X), Hd) is a metric space and (Pcl(X), Hd) is a generalized (com-
plete) metric space (see [19]).

Definition 7. A multivalued operator G : X → Pcl(X) is called

a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(G(x), G(y)) ≤ γd(x, y), for each x, y ∈ X,

b) a contraction if and only if it is γ-Lipschitz with γ < 1.

Our considerations are based on the following fixed point theorem for
contractive multivalued operators given by Covitz and Nadler

Lemma 9. [19] Let (X, d) be a complete metric space. If G : X → Pcl(X)
is a contraction, then FixN 6= ∅.
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Let us introduce the following hypotheses:

(A3) F : J × B × E −→ Pcp(E); (t, x0, x1, . . . , xn) 7−→ F (t, x0, x1, . . . , xn)
is measurable for each (x0, x1, . . . , xn) ∈ E × E × · · · × E.

(A4) There exists a function l ∈ L1(J,R+) such that, for a.e. t ∈ J

and all (x0, x1, . . . , xn), (x̄0, x̄1, . . . , x̄n) ∈ E × E × · · · × E,

Hd(F (t, x0, x1, . . . , xn), F (t, x̄0, x̄1, . . . , x̄n) ≤ l(t)
n∑
j=0

|xj − x̄j |

and

Hd(0, F (t, 0, 0, . . . , 0)) ≤ l(t) for a.e. t ∈ J,

with ∫ ∞
0

l(s)esds <∞.

(A5) There exist constants cik such that

|Iik(x0, x1, . . . , xn)− Iik(x̄0, x̄1, . . . , x̄n)| ≤
∞∑
k=1

cike
−tk |xi − x̄i|

with

∞∑
k=1

cik <∞ and

∞∑
k=1

n−1∑
j=i

cike
−tk <∞, i = 0, 1, . . . , n− 1.

Theorem 7. Let Assumptions (A3)–(A6) be satisfied. If, in addition,

∫ ∞
0

l(s)esds+ ‖l‖L1 +

∞∑
k=1

cjk +
∑

0<tk<t

n−1∑
j=i

cjke
−tk < 1,

then the BVP (1.1)-(1.3) has at least one solution.

Proof. In order to transform problem (1.1)-(1.3) into a fixed point problem,
let the multi-valued operator N : DPCn−1 → P(DPCn−1) be as defined in
Theorem 4. We shall show that N satisfies all the assumptions of Lemma
9. The proof will be given in one step.
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Step 1. N(x) ∈ Pcl(DPCn−1) for each x ∈ DPCn−1.

Indeed, let (xm)m≥0 ∈ N(x) such that xm −→ x̃ in DPCn−1. Then
there exists vm ∈ SF,x such that for each t ∈ [0,∞)

x(i)
m (t) =



n−2∑
j=i

tj−i

(j − i)!
x0i +

tn−i−1

(β − 1)(n− i− 1)!

∫ ∞
0

vm(s)ds

+ tn−i−1

(β−1)(n−i−1)!

∞∑
k=1

In−1k(xm(tk), x
′
m(tk), . . . , x

(n−1)
m (tk))

+ 1
(n−i−1)!

∫ t

0
(t− s)n−i−1vm(s)ds

+
∑

0<tk<t

n−1∑
j=i

(t− tk)j−i

(j − i)!
Ijk(xm(tk), x

′
m(tk), . . . , x

(n−1)
m (tk)).

Since vm(t) ∈ F (t, x(t), x′(t), . . . , x(n−1)(t)),we may pass to a subse-
quence if necessary to get that vm converges almost everywhere to
some v in E. From (A4), we have

|vm(t)| ≤ etl(t)(M + 1), ‖x‖D ≤M.

Also by (A4), we get

v(t) ∈ F (t, x̃(t), x̃′(t), . . . , x̃(n−1)(t)), a.e. t ∈ [0,∞).

Thus

x̃(i)(t) =



n−2∑
j=i

tj−i

(j − i)!
x0i +

tn−i−1

(β − 1)(n− i− 1)!

∫ ∞
0

v(s))ds

+ tn−i−1

(β−1)(n−i−1)!

∞∑
k=1

In−1k(x̃(tk), x̃
′(tk), . . . , x̃

(n−1)(tk))

+ 1
(n−i−1)!

∫ t

0
(t− s)n−i−1v(s))ds

+
∑

0<tk<t

n−1∑
j=i

(t− tk)j−i

(j − i)!
Ijk(x̃(tk), x̃

′(tk), . . . , x̃
(n−1)(tk)).

So x̃ ∈ N(x). By the same method used in [14] Theorem 9.61, we can
easily prove that

Hd(N(x), N(x∗)) ≤
[ ∫ ∞

0
l(s)esds+ ‖l‖L1 +

Σ∞k=1cjk + Σ0<tk<tΣ
n−1
j=i cjke

−tk
]
‖x− x∗‖D.
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So N i is a contraction and thus, by Lemma 9, N has a fixed point x
which is a solution of the problem (1.1)–(1.3) on [0,∞).

5 Concluding remarks

In this work, we have established the existence of solutions for Problem
(1.1)–(1.3) in both the convex case and the nonconvex case for the nonlin-
earity. In particular, in each case, the Problem is formulated as a fixed point
problem for a multi-valued operator, and then applications have been made
from multi-valued analysis, topological fixed point theory, and measure of
noncompactness in obtaining solutions.

While in this paper, we have focused on the existence of solutions for
impulsive boundary value problems for higher order differential inclusions
on the half-line, results concerning boundary value problems for first order
impulsive differential equations and inclusions on bounded intervals can be
found in [4, 9] and the references therein

Moreover, existence results for nth order impulsive integrodifferential
equations on the half-line can be found, to name a few, in [11, 12, 13] and
the references therein.

Acknowledgement. The authors would like to thank anonymous referees
for their careful reading of the manuscript and pertinent comments; their
constructive suggestions substantially improved the quality of the work.
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[9] S. Djebali, L. Gòrniewicz, and A. Ouahab, First order periodic im-
pulsive semi- linear differential inclusions: existence and structure of
solution sets, Math. and Comput. Mod., 52, (2010), 683− 714.
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différentielles sans convexité, C. R. Acad. Sci. Paris, Ser. I, 310, (1990),
819− 822.

[11] D. Guo, Existence of solutions for nth order impulsive integro-
differential equations in a Banach space, Proceedings of the Third
World Congress of Nonlinear Analysts, Part 2 (Catania, 2000), Nonlin-
ear Anal. 47, (2001), No. 2, 741− 752.

[12] D. Guo, A class of nth-order impulsive integrodifferential equations in
Banach spaces, Comput. Math. Appl. 44 (2002), No. 10 − 11, 1339 −
1356.

[13] D. Guo, Multiple positive solutions of a boundary value problem for nth-
order impulsive integro-differential equations in Banach spaces, Nonlin-
ear Anal. 63, (2005), No. 4, 618− 641.

[14] J. R. Graef, J. Henderson and A. Ouahab, Impulsive Differential Inclu-
sions A Fixed Point Approach, De Gruyter Series in Nonlinear Analysis
and Applications 20, de Gruyter, Berlin, 2013.

[15] A. Halanay and D. Wexler, Teoria calitativa a systeme cu impulsuri,
Editura Republicii Socialiste Romania, Bucharest, 1968.



Impulsive Differential Inclusions 309

[16] N. Halidias and N. Papageorgiou, Existence and relaxation results for
nonlinear second order multivalued boundary value problems in RN , J.
Differential Equations 147, (1998), 123− 154.

[17] Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Vol-
ume I: Theory, Kluwer, Dordrecht, 1997.

[18] M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multival-
ued Maps and Semilinear Differential Inclusions in Banach Spaces, de
Gruyter, Berlin, 2001.

[19] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer,
Dordrecht, The Netherlands, 1991.

[20] V. D. Milman and A. A. Myshkis, Random impulses in linear dynamical
systems, in “Approximante Methods for Solving Differential Equations,
Publishing house of the Academy of Sciences of Ukainian SSR, Kiev, in
Russian, (1963), 64− 81.

[21] N. A. Perestyuk, V. A. Plotnikov, A. M. Samoilenko and N. V. Skrip-
nik, Differential Equations with Impulse Effects. Multivalued Right-
hand Sides with Discontinuities, de Gruyter, Berlin, 2011.
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