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Abstract
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1 Introduction

As it is commonly known by meteorologists (see eg [12]), the water
droplets in the atmosphere fall with different velocities, (mainly determined
by the mass of each droplet) and contemporarily undergo the coagulation
and fragmentation process. There are several works in the mathematical
description of these process we cite here a few. The coagulation process was
given by Smoluchowski [14] and Müller [11], the equation of the coagulation-
fragmentation process has been studied by Melzak [9]. When the equation
of droplets which move and undergo the coagulation process, in [7], Galkin
proved the existence and the uniqueness of the solution (see also [4], [8]).
Also, in 2001 Dubovskii [3], demonstrated the existence and the uniqueness
of the global solution of the displacement and coagulation-fragmentation
equation of the droplets. To construct the solution, Dubovskii similarly to
Galkin used an essential way ”the maximum principale” to control the norm
L∞ of the solution.

In this work, we consider the equation of droplets which fall in the air
and undergo the coagulation-fragmentation process as in Dubovskii’s work
[3]. But to construct the solution, instead of following the time t ≥ 0, we
follow the trajectories of droplets and their position z ≤ 0, which permit us
to remove a condition posed in [3] (it’s about the condition (33) in [3]) on

the velocity of droplets u(m) which can lead to the relation du(m)
dm ≥ cmα,

α > 0 (see in [3] the formula (38) and it’s comments). Indeed, it seems
that this condition can be difficult to achieve in the case of droplets in the
atmosphere. More precisely, denoting by σ(m, t, z) the density of liquid
water contained in the droplets of mass m at time t and in position z, we
consider the equation with the entry condition σ(m, t, 0) = σ0(m, t) and
prove the existence and the uniqueness of the local solution (i.e in a domain
−L < z ≤ 0). To do this, using the Melzak’s method [9], we construct
approximate solutions, consisting of analytic functions in s = −z in each
interval [ νN ,

ν+1
N ], ν = 0, 1, 2, · · · ; N ∈ N\{0}, and prove their convergence

to the solution of the equation.

The density σ(m, t, z) of water liquid is a density with respect to the unit
volume of the air containing possible droplets. The equation can be written
with respect to the number (in the purely statistical sense) ñ(m, t, z) of
droplets that Dubovskii and Galkin use in their works. We see clearly that
the density σ(m, t, z) and the number ñ(m, t, z) are connected by the relation

ñ(m, t, z) = σ(m,t,z)
m .

We will use the density σ(m, t, z) to be conform with the symbolism of
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[2], [10] and the known literature of general modeling of weather phenomena
([1], [5], [6], [13]).

2 Position of the problem

We suppose that the drops undergo the coagulation and the fragmenta-
tion process and in the same time move in the air by the gravitational force
while undergoing also the friction effect with surrounding air. In this situ-
ation, we can formulate the coagulation-fragmentation process as Melzak’s
equation ([9]) and the displacement of drops by a velocity given by the fric-
tion coefficient between the drops and the air, as the meteorologists com-
monly use it (see for example [12]). These considerations lead us to the
equation (see[1], [2], [10] , [13])

∂tσ(m, t, z) + ∂z(σ(m, t, z)u(m)) = (1)

=
m

2

∫ m

0
β(m−m′,m′)σ(m′, t, z)σ(m−m′, t, z)dm′+

−m
∫ ∞
0

β(m,m′)σ(m, t, z)σ(m′, t, z)dm′−m
2
σ(m, t, z)

∫ m

0
ϑ(m−m′,m′)dm′+

+m

∫ ∞
0

ϑ(m,m′)σ(m+m′, t, z)dm′,

where β(m1,m2) represents the probability of meeting between two drops of
mass m1,m2 respectively whereas ϑ(m1,m2) is the probability of fragmen-
tation of a droplet of mass m = m1 +m2 into one of mass m1 and another
one of mass m2. In addition, u(m) indicate the velocity of drops with mass
m. The equation (1) will be considered for (m, t, z) ∈ R+×R× [−L, 0] with
L > 0 or possibly in R+ × R× ]−∞, 0] and with the entry condition

σ(m, t, 0) = σ0(m, t). (2)

The functions β(m1,m2) and ϑ(m1,m2), according to their physical na-
ture, are supposed

β(·, ·) ∈ C(R+ × R+), β(m1,m2) ≥ 0 ∀(m1,m2) ∈ R+ × R+, (3)

ϑ(·, ·) ∈ C(R+ × R+), ϑ(m1,m2) ≥ 0 ∀(m1,m2) ∈ R+ × R+, (4)

β(m1,m2) = β(m2,m1), ϑ(m1,m2) = ϑ(m2,m1)
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and we admit that u(m) is given by

u(m) = − g

α(m)
, (5)

where g is a positive constant representing the gravitational acceleration
and α(m) is the friction coefficient between drops and air. The relation (5)
corresponds, in a good approximation, to the real velocity of drops in the
atmosphere (see for example [1], [13]).

For the convenience of presentation, we will use the notation

w(m) := −u(m), (6)

so that w(m) > 0 for all m > 0. For w(m) we suppose that:

w(·) ∈ C(R+), 0 < w(m1) ≤ w(m2) si 0 < m1 ≤ m2; (7)

the growth of the function w(m) corresponds to the phenomena observed in
nature (see for example [12]).

Moreover, we suppose that there exists a positive constant C0 <∞ such
that:

sup
m∈R+,m′∈[0,m]

m

w(m)
β(m−m′,m′) ≤ C0, (8)

sup
m,m′∈R+

m

w(m)
β(m,m′) ≤ C0, (9)

sup
m∈R+

m

w(m)

∫ m

0
ϑ(m−m′,m′)dm′ ≤ C0, (10)

sup
m∈R+

∫ m

0

m′

w(m′)
ϑ(m−m′,m′)dm′ ≤ C0, (11)

sup
m,m′∈R+

m

w(m)
ϑ(m,m′) ≤ C0. (12)

It is clear that, if m
w(m) is an increasing function of m, then the conditions

(8) and (10) imply (9) and (11). The conditions on the function σ0(m, t)
will be specified in the following paragraphs (see (23), (71)-(72)).
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3 Preliminaries - characteristics and description
on them

To solve the equation (1) with conditions (2), firstly we define the family
of characteristics χm,t̃ by the equations system{

dz(s)
ds = −1,
dt(s)
ds = 1

w(m) ,
(13)

with the initial conditions

z(0) = 0, t(0) = t̃. (14)

The characteristics χm,t̃ as defined have, in the space R× ] − ∞, 0], the
expression:

χm,t̃ = {(t, z) ∈ R× ]−∞, 0] | t = t̃+
s

w(m)
, z = −s, s ∈ [0,∞[ }.

In the following, we will use the coordinates (m, t̃, s) ∈ R+ × R × R+ and
σ(m, t̃, s) instead of σ(m, t, z) ∈ R+ × R× ] − ∞, 0] and σ(m, t, z) when
t = t̃+ s

w(m) and z = −s.
Now we introduce, for each fixed s ≥ 0, the curves family given by:

γqs = {(m, t̃) ∈ R+ × R | t̃ = q − s

w(m)
}, q ∈ R. (15)

The curve γqs is none other than the set of points (m, t̃) (on the half-plane
{z = −s}) such as the characteristics χm,t̃ passes by the point t = q, z = −s
on the plan (t, z).

In a similar way to [10] and [2] we define a measure µγ = µγqs on the
curves γqs by PR+ the projection of γqs on R+(3 m), i.e. by the relations:

i) A′ ⊂ γqs is measurable if and only if PR+A
′ is measurable according to

Lebesgue on R+,

ii) µγ(A′) = µL,R+(PR+A
′), where µL,R+(·) is the Lebesgue’s measure on

R+.

The measure µγqs(·) enjoys a suitable properties for the calculus of inte-
grals on the curves γqs (for more details, see [10]).

In particular, we recall that, if ϕ and ψ are two functions belonging to
L1(γqs, µγqs), then we have ϕ ∗ ψ ∈ L1(γqs, µγqs) and

‖ϕ ∗ ψ‖L1(γqs,µγqs )
≤ ‖ϕ‖L1(γqs,µγqs )

‖ψ‖L1(γqs,µγqs )
, (16)
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where

(ϕ ∗ ψ)(m) =

∫
γqs

ϕ(m−m′)ψ(m′)µγqs(dm
′).

Let ϕ(·, ·) be a measurable function defined on R+ × R. We put

{ϕ}qs(m) = ϕ(m, q − s

w(m)
), (17)

which represents the values of ϕ(m, t̃) on the curve γqs expressed according
to m. Moreover, γqs(m,t̃) designate the curve γqs with q = t̃ + s

w(m) . It is

clear that, the curve γqs(m,t̃) passes by the point (m, t̃, s) and that

γqs(m,t̃) = {(m′, t̃′) ∈ R+ × R | t̃′ = t̃+
s

w(m)
− s

w(m′)
}. (18)

Let γ
[0,m]

qs(m,t̃)
be defined as:

γ
[0,m]

qs(m,t̃)
= γqs(m,t̃) ∩ ([0,m]× R).

Now, we define the operators Kγqs [ϕ,ψ] and Lγqs [ϕ] as follows:

Kγqs [ϕ,ψ](m, t̃) =
1

2

∫
γ
[0,m]

qs(m,t̃)

β(m−m′,m′){ϕ}qs(m−m′){ψ}qs(m′)µγ(dm′)+

(19)

−1

2
ϕ(m, t̃)

∫
γqs(m,t̃)

β(m,m′){ψ}qs(m′)µγ(dm′)+

−1

2
ψ(m, t̃)

∫
γqs(m,t̃)

β(m,m′){ϕ}qs(m′)µγ(dm′),

Lγqs [ϕ](m, t̃) = −1

2
ϕ(m, t̃)

∫
γ
[0,m]

qs(m,t̃)

ϑ(m−m′,m′)µγ(dm′)+ (20)

+

∫
γqs(m,t̃)

ϑ(m,m′){ϕ}qs(m+m′)µγ(dm′),

provided that all the integrals in the right sides are well defined. From
these relations, it results that Kγqs [ϕ,ψ] is a symmetric, bilinear operator
and Lγqs [ϕ] is a linear operator. If ϕ(m, t̃) and ψ(m, t̃) are continuous,
Kγqs [ϕ,ψ](m, t̃) and Lγqs [ϕ](m, t̃) are too .
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The operators Kγqs [·, ·] and Lγqs [·] being defined, we can transform the
equation (1) to

∂

∂s
σ(m, t̃, s) =

m

w(m)

(
Kγqs [σ(·, ·, s), σ(·, ·, s)](m, t̃) + Lγqs [σ(·, ·, s)](m, t̃)

)
,

(21)
in the coordinates (m, t̃, s) defined above. The equation (21) will be consid-
ered with the condition

σ(m, t̃, 0) = σ0(m, t̃), (22)

which is the transcription of the condition (2) in the coordinates (m, t̃, s).
We suppose that σ0(m, t̃) is continuous in (m, t̃) ∈ R+ × R and that

0 ≤ σ0(m, t̃), sup
(m,t̃)∈R+×R

σ0(m, t̃) <∞, sup
t̃∈R

∫ ∞
0

σ0(m, t̃)dm <∞.

(23)
In the case where σ0(m, t̃) depends on t̃, we need to construct a sequence

of approximate solutions. Indeed, for each N ∈ N\{0}, we introduce the par-
tition of R+ into [ νN ,

ν+1
N [, ν = 0, 1, 2, · · · , and we consider the approximate

equation

∂

∂s
σ(m, t̃, s) =

m

w(m)

(
Kγq sν [σ(·, ·, s), σ(·, ·, s)](m, t̃) + Lγq sν [σ(·, ·, s)](m, t̃)

)
(24)

for

sν =
ν

N
≤ s < ν + 1

N
, ν = 0, 1, 2, · · · .

Remark 1. In [ νN ,
ν+1
N [ the curves family {γq sν}q∈R is fixed and does not

depend on s. By solving (24) for 0 ≤ s < 1
N with the condition (22) and

using, if possible, σ(m, t̃, 1
N ) as entry condition of the equation (24) for 1

N ≤
s < 2

N , we will be solving it in [ 1
N ,

2
N [ ; by repeating this procedure for ν =

0, 1, 2, · · · , we construct the approximate solution σ(m, t̃, s) = σ[N ](m, t̃, s).

Before examining the equation (21) or (24), we recall the inequalities
concerning the operators Kγqs [·, ·] and Lγqs [·].

Lemma 1. For all s ≥ 0, we have

sup
(m,t̃)∈R+×R

m

w(m)
|Kγqs [ϕ,ψ](m, t̃)| ≤ (25)

≤ 3C0

4

[
sup

(m,t̃)∈R+×R
|ϕ(m, t̃)|

∫
γqs(m,t̃)

|{ψ}qs(m)|µγ(dm)+
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+ sup
(m,t̃)∈R+×R

|ψ(m, t̃)|
∫
γqs(m,t̃)

|{ϕ}qs(m)|µγ(dm)
]
,

sup
q∈R

∫
γqs

m

w(m)
|{Kγqs [ϕ,ψ]}qs(m)|µγ(dm) ≤ (26)

≤ 3C0

2
sup
q∈R

∫
γqs

|{ϕ}qs(m)|µγ(dm)

∫
γqs

|{ψ}qs(m)|µγ(dm),

sup
(m,t̃)∈R+×R

m

w(m)
|Lγqs [ϕ](m, t̃)| ≤ (27)

≤ C0

[1

2
sup

(m,t̃)∈R+×R
|ϕ(m, t̃)|+ sup

q∈R

∫
γqs

|{ϕ}qs(m)|µγ(dm)
]
,

sup
q∈R

∫
γqs

m

w(m)
|{Lγqs [ϕ]}qs(m)|µγ(dm) ≤ (28)

≤ 3C0

2
sup
q∈R

∫
γqs

|{ϕ}qs(m)|µγ(dm).

Proof. The inequalities (25) and (27) result immediately from the
definition (19) and (20) of operators Kγqs [·, ·] and Lγqs [·] and the conditions
(8)-(10), (12). On the other hand, the inequality (26) results from relations
(19), (8), (9) and the property of the convolution (16).

Last, let’s use the change of variables m′′ = m+m′. Hence, for any fixed
arbitrary curve γqs, we have:∫

γqs

m

w(m)

∫
γqs

ϑ(m,m′){ϕ}qs(m+m′)µγ(dm′)µγ(dm) = (29)

=

∫
γqs

∫
γ
[0,m′′]
qs

m′′ −m′

w(m′′ −m′)
ϑ(m′′ −m′,m′)µγ(dm′){ϕ}qs(m′′)µγ(dm′′).

Thus, taking into account the conditions (11), (12), we deduce from the
definition (20) of the operator Lγqs [·] the inequality (28). �

4 Local solution of the approximate equation

In this paragraph and in the following one, we consider the equation (24)

∂

∂s
σ(m, t̃, s) =

m

w(m)

(
Kγq sν [σ(·, ·, s), σ(·, ·, s)](m, t̃) + Lγq sν [σ(·, ·, s)](m, t̃)

)
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for s ≥ sν = ν
N with the condition

σ(m, t̃,
ν

N
) = σν(m, t̃),

by considering σν(m, t̃) as a given function.
As the curves γq sν depend only on q, we use the simplified notation for

this problem

γq = γq sν , γq(m,t̃) = γq sν(m,t̃), {ϕ}q = {ϕ}q sν . (30)

It would be enough to consider the equation in the interval [ νN ,
ν+1
N [ ,

but it will be more convenient to consider it in the interval [ νN ,∞[ . Still to
simplify the writing, we use the change of variables s′ = s− ν

N , to get [0,∞[
and we write s instead of s′. by these writing conventions, we can write the
problem in the form

∂

∂s
σ(m, t̃, s) =

m

w(m)

(
Kγq [σ(·, ·, s), σ(·, ·, s)](m, t̃) + Lγq [σ(·, ·, s)](m, t̃)

)
,

(31)
σ(m, t̃, 0) = σν(m, t̃). (32)

Consider the integrate form of the latter equation:

σ(m, t̃, s) = σν(m, t̃) +

∫ s

0

m

w(m)

(
Kγq [σ(·, ·, s′), σ(·, ·, s′)](m, t̃)

+ Lγq [σ(·, ·, s′)](m, t̃)
)
ds′.

We suppose that for each (m, t̃) ∈ R+×R the function σ(m, t̃, s) is analytic
in s, i.e. there exist the functions ak(m, t̃), k ∈ N, such as

σ(m, t̃, s) =
∞∑
k=0

ak(m, t̃)s
k. (33)

Thus,

∂

∂s
σ(m, t̃, s) =

∞∑
k=0

(k + 1)ak+1(m, t̃)s
k.

We recall the definitions (19), (20), and by equalizing the terms having the
same power of s, we deduce from the equality (31) that

ak+1(m, t̃) =
m

w(m)

1

k + 1

( ∑
i+j=k

Kγq [ai, aj ](m, t̃) + Lγq [ak](m, t̃)
)

(34)

for k = 0, 1, 2, · · · .
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Lemma 2. We suppose that β(·, ·), ϑ(·, ·) and w(·) satisfy the conditions
mentioned in paragraph 2, and that σν(m, t̃) is continuous in (m, t̃) ∈ R+×R
and satisfy the conditions

sup
q∈R

∫
γq

{σν}q(m)µγ(dm) ≡ A0 <∞, (35)

sup
(m,t̃)∈R+×R

σν(m, t̃) ≡ B0 <∞. (36)

Then, there exists a positive constant C0 < ∞ such as the power-series of
the second member of (33) converges in the interval [0, 1

M [ , where

M = C0

(3

2
(A0 + 1) +

A0

B0

)
. (37)

Proof. We put

Ak = sup
q∈R

∫
γq

|{ak}q(m)|µγ(dm), Bk = sup
(m,t̃)∈R+×R

|ak(m, t̃)|. (38)

We recall that, according to (32), the values of A0 and B0 given by (35) and
(36) coincide with those given by (38).

By (26), (28) and (34) we have∫
γq

|{ak+1}q(m)|µγ(dm) ≤

≤ 1

k + 1

∫
γq

m

w(m)

( ∑
i+j=k

|{Kγq [ai, aj ]}q(m)|+ |{Lγq [ak]}q(m)|
)
µγ(dm) ≤

≤ 1

k + 1

3C0

2

( ∑
i+j=k

∫
γq

|{ai}q(m)|µγ(dm)

∫
γq

|{aj}q(m)|µγ(dm)+

+

∫
γq

|{ak}q(m)|µγ(dm)
)
.

We deduce that

Ak+1 ≤
1

k + 1

3C0

2

( ∑
i+j=k

AiAj +Ak

)
. (39)

On the other hand, according to (25), (27), (34), we obtain

Bk+1 ≤
C0

k + 1

(3

2

∑
i+j=k

AiBj +
1

2
Bk +Ak

)
. (40)
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Now, we will prove by induction that the inequalities

Ak ≤ A0M
k, Bk ≤ B0M

k ∀ k ∈ N, (41)

hold, where M is defined in (37).

For k = 0 the inequalities (41) hold. Moreover, we suppose that they
are verified for every k ≤ n, and substitue the estimates of Ak and Bk in
(39) and (40) respectively, we get:

Ak+1 ≤
1

k + 1

3C0

2
A0M

k((k + 1)A0 + 1),

Bk+1 ≤
C0

k + 1
B0M

k
(3

2
(k + 1)A0 +

1

2
+
A0

B0

)
,

which means that

An+1 ≤ A0M
n+1, Bn+1 ≤ B0M

n+1.

We conclude that the relation (41) is satisfied for every k.

The proved inequalities (41) imply that

∞∑
k=0

|ak(m, t̃)|sk ≤
∞∑
k=0

B0M
ksk ∀ (m, t̃) ∈ R+ × R,

which means that, if Ms < 1, then the formal power-series of the second
member of (33) converges absolutely. �

Lemma 3. Let σ(m, t̃, s) be the solution of the problem (31)-(32) constructed
in lemma 2. Then for 0 ≤ s < 1

M we have:

|σ(m, t̃, s)| ≤ B0

1−Ms
, sup

q∈R

∫
γq

|{σ(·, ·, s)}q(m)|µγ(dm) ≤ A0

1−Ms
,

∣∣∣∂σ(m, t̃, s)

∂s

∣∣∣ ≤ B0M

(1−Ms)2
, sup

q∈R

∫
γq

∣∣∣{∂σ(·, ·, s)
∂s

}
q
(m)

∣∣∣µγ(dm)≤ A0M

(1−Ms)2
,

∣∣∣∂2σ(m, t̃, s)

∂s2

∣∣∣ ≤ 2B0M
2

(1−Ms)3
, sup
q∈R

∫
γq

∣∣∣{∂2σ(·, ·, s)
∂s2

}
q
(m)

∣∣∣µγ(dm)≤ 2A0M
2

(1−Ms)3
.

Proof. These inequalities result from (33), (38), (41) and elementary
calculus. �
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Lemma 4. Let σ(m, t̃, s) be the solution of the problem (31)-(32) constructed
in lemma 2. If

σν(m, t̃) ≥ 0 ∀(m, t̃) ∈ R+ × R, (42)

then we have

σ(m, t̃, s) ≥ 0 for 0 ≤ s < 1

M
.

Proof. The lemma is proved in a similar way to Lemma 2 of [9]. Indeed,
we choose a number τ ∈ ]0, 1

M [; in the following (see (52)) we will impose
a further restriction on τ . We will construct an approximation Gn(m, t̃, s)
(n ∈ N) of σ(m, t̃, s) in the interval 0 ≤ s < τ , putting

Gn(m, t̃, s) = gk n(m, t̃) for
kτ

n
≤ s < (k + 1)τ

n
, k = 0, 1, · · · , n− 1,

(43)
g0n(m, t̃) = σ(m, t̃, 0) = σν(m, t̃), (44)

gk+1n(m, t̃) = gk n(m, t̃) +
τ

n

m

w(m)

(
Kγq [gk n, gk n](m, t̃) + Lγq [gk n](m, t̃)

)
.

(45)
We put

Tk n = sup
q∈R

∫
γq

|{gk n}q(m)|µγ(dm), Lk n = sup
(m,t̃)∈R+×R

|gk n(m, t̃)|, (46)

from (35)-(36) we have

T0n = A0, L0n = B0.

On the other hand, according to (45) and the inequalities (25)-(28) we have

Tk+1n ≤
(
1 +

τ

n

3C0

2

)
Tk n +

τ

n

3C0

2
T 2
k n,

Lk+1n ≤
(
1 +

τ

n

C0

2

)
Lk n +

τ

n

3C0

2
Lk nTk n +

τ

n
C0Tk n.

In particular, if we put

Λk n = max(Tk n, Lk n), (47)

we get
Λ0n = max(A0, B0), (48)

Λk+1n ≤
(
1 +

τ

n

3C0

2

)
Λk n +

τ

n

3C0

2
Λ2
k n. (49)
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Let

a = 1 +
τ

n

3C0

2
, λk n =

1

a

τ

n

3C0

2
Λk n, (50)

so, we have
λk+1n ≤ aλk n(1 + λk n),

or, if we define the function h(x) = ax(1 + x),

λk+1n ≤ h(λk n),

and, in the following,

λk n ≤ h(k)(λ0n) ≤ h(n)(λ0n).

Now, it is not difficult to see, by induction on k = 1, 2, . . . that

0 < h(k)(x) ≤ akx

1− ak−1
a−1 x

, k = 1, 2, . . .

provided that ak−1
a−1 x < 1. So we have

λk n ≤
anλ0n

1− an−1
a−1 λ0n

, k = 0, 1, · · · , n,

provided that an−1
a−1 λ0n < 1. As

an =
(
1 +

τ

n

3C0

2

)n ≤ e 3τC0
2 ,

returning to the expression of Λk n (see (50)) and taking into account (47)-
(48) and from the expression of a (see (50)), we have

max(Tk n, Lk n) ≤ e
3τC0

2 max(A0, B0)

1− (e
3τC0

2 − 1) max(A0, B0)
, (51)

provided that

τ <
2

3C0
log
(
1 +

1

max(A0, B0)

)
, (52)

we also note that (52) ensures the condition an−1
a−1 λ0n < 1.

The inequality (51) (see also (46)) implies that the functions gk n(m, t̃) are
bounded and integrable on all the curves γq. Furthermore, if we recall the
formulas (44)-(45) which defined the functions gk n(m, t̃), we can see that
they are continuous in (m, t̃) ∈ R+ × R.
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On the other hand, recalling the explicit expressions of the operators
Kγq [·, ·] and Lγq [·] (see (19)-(20)), the definition of functions gk n(m, t̃) (see
(44)-(45)) and the conditions (3)-(4), imply that, if gk n(m, t̃) ≥ 0, ∀(m, t̃) ∈
R+ × R, then

gk+1n(m, t̃) ≥ gk n(m, t̃)
(

1− τ

n

m

w(m)

[ ∫
γq(m,t̃)

β(m,m′){gk n}q(m′)µγ(dm′)+

+
1

2

∫
γ
[0,m]

q(m,t̃)

ϑ(m−m′,m′)µγ(dm′)
])
.

Taking into account the relations (9), (10), (46) and (51), we see that, if n
is sufficiently large, then gk+1n(m, t̃) ≥ 0, which means that gk n(m, t̃) ≥ 0,
∀(m, t̃) ∈ R+ × R, ∀k = 0, 1, · · · , n, in other terms if n is sufficiently large
then

Gn(m, t̃, s) ≥ 0 ∀(m, t̃, s) ∈ R+ × R× [0, τ ]. (53)

Now we examine the difference

σ(m, t̃, s)−Gn(m, t̃, s)

in the interval [0, τ ]. For this, we pose

αk = sup
q∈R, kτ

n
≤s≤ (k+1)τ

n

∫
γq

|{σ(·, ·, s)−Gn(·, ·, s)}q(m)|µγ(dm) = (54)

= sup
q∈R, kτ

n
≤s≤ (k+1)τ

n

∫
γq

|{σ(·, ·, s)− gk n}q(m)|µγ(dm),

βk = sup
(m,t̃)∈R+×R, kτn ≤s≤

(k+1)τ
n

|σ(m, t̃, s)−Gn(m, t̃, s)| = (55)

= sup
(m,t̃)∈R+×R, kτn ≤s≤

(k+1)τ
n

|σ(m, t̃, s)− gk n(m, t̃)|.

Substituting (45) in the difference σ(m, t̃, s)− gk n(m, t̃), and by adding
0 = −σ(m, t̃, s− τ

n) + σ(m, t̃, s− τ
n), we have

σ(m, t̃, s)−gk n(m, t̃) = σ(m, t̃, s)−σ(m, t̃, s− τ
n

)+σ(m, t̃, s− τ
n

)−gk−1n(m, t̃)+

(56)

− τ
n

m

w(m)

(
Kγq [gk−1n, gk−1n](m, t̃) + Lγq [gk−1n](m, t̃)

)
.
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As

σ(m, t̃, s)− σ(m, t̃, s− τ

n
) =

τ

n

∂σ(m, t̃, s− τ
n)

∂s
+

1

2

τ2

n2
∂2σ(m, t̃, s− δ1)

∂s2

with 0 ≤ δ1 ≤ τ
n .

By substituting the expression (31) and using the symmetric propriety
of Kγq [ϕ,ψ] (see (19)) and the linearity of the operator Lγq [ϕ] (see (20)), by
(56) we deduce that

|σ(m, t̃, s)− gk n(m, t̃)| ≤ |σ(m, t̃, s− τ

n
)− gk−1n(m, t̃)|+ (57)

+
τ

n

m

w(m)
|Kγq [σ(·, ·, s− τ

n
) + gk−1n, σ(·, ·, s− τ

n
)− gk−1n](m, t̃)|+

+
τ

n

m

w(m)
|Lγq [σ(·, ·, s− τ

n
)− gk−1n](m, t̃)|+ 1

2

τ2

n2
∣∣∂2σ(m, t̃, s− δ1)

∂s2
∣∣.

As 0 ≤ s ≤ τ , according to Lemma 3 and from (51) (see also (46)) the
terms∫
γq

|{σ(·, ·, s− τ
n

)+gk−1n}q(m)|µγ(dm),
1

2

∫
γq

∣∣{∂2σ(·, ·, s− δ1)
∂s2

}
q
(m)

∣∣µγ(dm)

are uniformly bounded by some constant, that we denote by C1, and ac-
cording to (26), (28) (see also (54)), we deduce from (57) that

αk ≤
(
1 +

τ

n

3C0

2
(1 + C1)

)
αk−1 +

τ2

n2
C1. (58)

In a similar way, majoring the terms

|σ(m, t̃, s− τ

n
) + gk−1n(m, t̃)|, 1

2

∣∣∂2σ(m, t̃, s− δ1)
∂s2

∣∣
through a constant, that we denote by C2, and taking into account (25),
(27) (see also (55)), we have

βk ≤
(
1 +

τ

n
C0

(3C1

4
+

1

2

))
βk−1 +

τ

n
C0(

3C2

4
+ 1)αk−1 +

τ2

n2
C2. (59)

If we put

ζk = max(αk, βk), C3 = max(C1, C2), (60)



242 Mohamed Zine Aissaoui, Wahida Kaidouchi, Nesrine Kamouche

then from (58)-(59) we deduce that

ζk ≤
(
1 +

τ

n

3C0

2
(1 + C3)

)
ζk−1 +

τ2

n2
C3. (61)

By repeating the application of the inequality (61), we obtain

max
k=1,··· ,n−1

ζk ≤
(
1+

τ

n

3C0

2
(1+C3)

)n−1
ζ0 +

τ2

n2
C3

n−2∑
k=0

(
1+

τ

n

3C0

2
(1+C3)

)k ≤
(62)

≤ eτ
3C0
2

(1+C3) max(α0, β0) +
τ

n
C3
eτ

3C0
2

(1+C3) − 1
3C0
2 (1 + C3)

.

As for α0 and β0, from (44), (54), (55) we deduce that

α0 ≤
τ

n
sup

q∈R,0≤s≤ τ
n

∫
γq

∣∣{∂σ(·, ·, s)
∂s

}
q
(m)

∣∣µγ(dm),

β0 ≤
τ

n
sup

(m,t̃)∈R+×R,0≤s≤ τn

∣∣∂σ(m, t̃, s)

∂s

∣∣.
Therefore, according to lemma 3 there is a constant C4 such as

max(α0, β0) ≤ C4
τ

n
,

that enables us to deduce from (62),

max
k=0,1,··· ,n−1

[
max(αk, βk)

]
≤ τ

n

[
eτ

3C0
2

(1+C3)C4 + C3
eτ

3C0
2

(1+C3) − 1
3C0
2 (1 + C3)

]
. (63)

Recalling (55), we see that (63) implies that, for 0 ≤ s ≤ τ , Gn(m, t̃, s)
converges uniformly to σ(m, t̃, s) . Therefore, according to (53), we have
σ(m, t̃, s) ≥ 0 ∀(m, t̃, s) ∈ R+ × R× [0, τ ].

The non-negativity of σ(m, t̃, s) in [0, τ ] being proved, we construct
[τ1, τ2] (we take τ1 = 0, τ2 = τ) and, by repeating the procedure, to get
the successive intervals [τn, τn+1], n = 1, 2, · · · . In a similar way to (52),
which gives the restriction of the choice of τ , we can take τn+1 such that

τn+1 − τn <
2

3C0
log
(
1 +

1

max(A
[n]
0 , B

[n]
0 )

)
,
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where

A
[n]
0 = sup

q∈R

∫
γq

|{σ(·, ·, τn)}q(m)|µγ(dm), B
[n]
0 = sup

(m,t̃)∈R+×R
|σ(m, t̃, τn)|.

The previous Lemma 3 implies that we can construct a sequence of intervals
[τn, τn+1], n = 0, 1, · · · , such that

[0,
1

M
[ ⊂

⋃
n∈N

[τn, τn+1],

which completes the proof of Lemma.
To summarize things up, we proved the existence of a solution in the

interval [0, 1
M [, solution which is analytic in s, non-negative, continuous,

bounded and integrable on each γq = γq sν , q ∈ R.

5 Global solution of the approximate equation

Being established the existence of a local solution, now we will prove
that we can extend it on the interval [0,∞[ .

Proposition 1. Under the conditions of the lemma 2 and 4 the problem
(31)-(32) admits, in the interval [0,∞[ , a solution σ(m, t̃, s), which is ana-
lytic in s, continuous, non-negative and integrable on each curve γq = γq sν .

Proof. the proposition 1 is proved in a similar way to lemma 3 of
[9]. More precisely, the first interval is considered [0, D1] with D1 = 1

2M ,

M = C0

(
3
2(A0+1)+A0

B0

)
(see (37)), then successively the intervals [Dn, Dn+1]

with

Dn+1 −Dn =
1

C0(3(A(Dn) + 1) + 2A(Dn)B(Dn)
)
, (64)

where

A(s) = sup
q∈R

∫
γq

|{σ(·, ·, s)}q(m)|µγ(dm), B(s) = sup
(m,t̃)∈R+×R

|σ(m, t̃, s)|.

The lemmas 2, 3 and 4, reformulated with the initial data σ(m, t̃,Dn), give
the solution in the interval [Dn, Dn+1].

We return to equation (31) and integrate it on γq. To examine the term∫
γq

m
w(m){(Kγq [σ(·, ·, s), σ(·, ·, s)]}q(m)µγ(dm) (recall the expression (19)), we

note that∫
γq

1

2

m

w(m)

∫
γ
[0,m]
q

β(m−m′,m′){σ(·, ·, s)}q(m−m′){σ(·, ·, s)}q(m′)
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µγ(dm′)µγ(dm) =

=

∫
γq

∫
γq

1

2

m+m′

w(m+m′)
β(m,m′){σ(·, ·, s)}q(m){σ(·, ·, s)}q(m′)µγ(dm)µγ(dm′).

Therefore, according to the symmetry of the function β(m,m′), the condi-
tion (7), and the non-negativity of σ(m, t̃, s) , we have∫
γq

m

w(m)

{
Kγq [σ(·, ·, s), σ(·, ·, s)]

}
q
(m)µγ(dm)=

∫
γq

∫
γq

( m

w(m+m′)
− m

w(m)

)
×

×β(m,m′){σ(·, ·, s)}q(m){σ(·, ·, s)}q(m′)µγ(dm′)µγ(dm) ≤ 0.

On one hand, similarly to the proof of (28) (see in particular (29)), and
taking account the sign of each term, we deduce from the expression of (20)
that∫

γq

m

w(m)

{
Lγq [σ(·, ·, s)]

}
q
(m)µγ(dm) ≤ C0

∫
γq

{σ(·, ·, s)}q(m)µγ(dm).

Using these inequalities, from the integral form of (31), we obtain

A(s) = sup
q∈R

∫
γq

{σ(·, ·, s)}q(m)µγ(dm) ≤

≤ sup
q∈R

∫
γq

{σ(·, ·, 0)}q(m)µγ(dm) + C0

∫ s

0
sup
q∈R

∫
γq

{σ(·, ·, s′)}q(m)µγ(dm)ds′,

from where it results that

A(s) ≤ A(0)eC0s. (65)

On the other hand, according to (19), (20) and from the non-negativity
of σ(m, t̃, s), we deduce from (31) that

∂

∂s
σ(m, t̃, s) ≥ −σ(m, t̃, s)

[ ∫
γq

m

w(m)
β(m,m′){σ(·, ·, s)}q(m′)µγ(dm′)+

+
1

2

∫
γ
[0,m]
q

m

w(m)
ϑ(m−m′,m′)µγ(dm′)

]
,

from where, according to conditions (9), (10), we obtain

B(s) ≥ B(0)− C0

∫ s

0
B(s′)(A(s′) +

1

2
)ds′,

therefore
B(s) ≥ B(0)e−C0

∫ s
0 (A(s

′)+ 1
2
)ds′ . (66)

The relations (64)-(66) implies that the sequence {Dn}∞n=0 can’t converge
to a finite value, i.e. it is necessary that limn→∞Dn =∞. �
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Proposition 2. Under the same hypothesis of the proposition 1, the solution
of the problem (31)-(32) is unique in the class Φ which satisfy the conditions:

i) ϕ(m, t̃, s) is continuous in R+ × R× R+,

ii) ϕ(m, t̃, s) is integrable on each curve γq (q ∈ R),

iii) for all s1 ∈ [0,∞[, we have supq∈R,s∈[0,s1]
∫
γq
|{ϕ(·, ·, s}q(m)|µγ(dm) <

∞.

Proof. Let ϕ1 and ϕ2 two solutions of the problem (31)-(32) belonging
to the class Φ. As ϕ1(m, t̃, 0) − ϕ2(m, t̃, 0) = 0, using the symmetry of the
operator Kγq [ϕ,ψ] and the linearity of Lγq [ϕ], we have

ϕ1(m, t̃, s)− ϕ2(m, t̃, s) =

=

∫ s

0

m

w(m)
(Kγq [ϕ1(·, ·, s′) + ϕ2(·, ·, s′), ϕ1(·, ·, s′)− ϕ2(·, ·, s′)]+

+Lγq [ϕ1(·, ·, s)− ϕ2(·, ·, s)])ds′.

Therefore, from (26) and (28) we have∫
γq

|ϕ1(m, t̃, s)− ϕ2(m, t̃, s)| ≤ (67)

≤ 3C0

2

∫ s

0
sup
q∈R

∫
γq

|{ϕ1(·, ·, s′) + ϕ2(·, ·, s′)}q(m)|µγ(dm)×

× sup
q∈R

∫
γq

|{ϕ1(·, ·, s′)− ϕ2(·, ·, s′)}q(m)|µγ(dm)ds′+

+
3C0

2

∫ s

0
sup
q∈R

∫
γq

|{ϕ1(·, ·, s′)− ϕ2(·, ·, s′)}q(m)|µγ(dm)ds′.

We choose s1 such that s1 < ∞. Hence, according to the condition iii) we
have

sup
q∈R,s∈[0,s1]

∫
γq

|{ϕ1(·, ·, s′) + ϕ2(·, ·, s′)}q(m)|µγ(dm) ≡M1 <∞. (68)

Therefore, if we put

g(s) = sup
q∈R

∫
γq

|{ϕ1(·, ·, s)− ϕ2(·, ·, s)}q(m)|µγ(dm),

then it results from (67) that

g(s) ≤ 3C0

2
(M1 + 1)

∫ s

0
g(s′)ds′,
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which implies that
g(s) = 0 ∀s ∈ [0, s1].

Or, from iii), to have the relation (68), we can choose any s1 <∞ (even if
M1 can be different, but always M1 < ∞), so that, by repeating the same
reasoning, we can prove g(s) = 0 for all s ∈ R+, which completes the proof.
�

6 Estimates of the approximate solutions

We note that, if σν(m, t̃) is continuous in (m, t̃) and satisfies the con-
ditions (35), (36) and (42), then from the propositions 1 and 2, there ex-
ists a unique solution σ(m, t̃, s) of the problem (31)-(32) for ν

N ≤ s < ∞
(here we return to the initial formulation of the variable s). Let’s put
σν+1(m, t̃) = σ(m, t̃, ν+1

N ), it satisfies the conditions (35), (36) and (42),
and it is continuous in (m, t̃) so that we can repeat the resolution of the
equation for ν+1

N ≤ s, with the entry condition σν+1(m, t̃) = σ(m, t̃, ν+1
N ).

Thus, by iterating this procedure on the intervals [ νN ,
ν+1
N ] for ν = 0, 1, 2, · · · ,

we construct on R+×R×R+ the solution of the equation (24) with the entry
condition (22); we indicate this solution by σ[N ](m, t̃, s). It is useful to recall
that this last solution is bounded, continuous in (m, t̃, s) and non-negative.

To solve the problem (21)-(22) in the field R+×R× [0, s] with s > 0, we
suppose that w(m) satisfies the additional condition

0 <
1

w(m)
≤ sup

m∈R+

1

w(m)
≡ Cw <∞ (69)

and that σ0(m, t̃) satisfies the condition (23), and the following ones∫ ∞
0

sup
t̃∈R

σ0(m, t̃)dm ≡ ω0 <∞, (70)

sup
m∈R+,t̃1,t̃2∈R,t̃1 6=t̃2

|σ0(m, t̃1)− σ0(m, t̃2)|
|t̃1 − t̃2|

≡ λ0 <∞, (71)

∫ ∞
0

sup
t̃1,t̃2∈R,t̃1 6=t̃2

|σ0(m, t̃1)− σ0(m, t̃2)|
|t̃1 − t̃2|

dm ≡ J0 <∞. (72)

In this paragraph, we are interested by some estimates for the values of
ω[N ](s), ψ[N ](s), J [N ](s) and λ[N ](s) defined by:

ω[N ](s) =

∫ ∞
0

u[N ](m, s)dm, u[N ](m, s) = sup
t̃∈R

σ[N ](m, t̃, s), (73)
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ψ[N ](s) = sup
(m,t̃)∈R+×R

σ[N ](m, t̃, s) = sup
m∈R+

u[N ](m, s), (74)

J [N ](s) =

∫ ∞
0

j[N ](m, s)dm, (75)

j[N ](m, s) = sup
t̃1,t̃2∈R,t̃1 6=t̃2

|σ[N ](m, t̃1, s)− σ[N ](m, t̃2, s)|
|t̃1 − t̃2|

,

λ[N ](s) = sup
m∈R+,t̃1,t̃2∈R,t̃1 6=t̃2

|σ[N ](m, t̃1, s)− σ[N ](m, t̃2, s)|
|t̃1 − t̃2|

= sup
m∈R+

j[N ](m, s).

(76)

Lemma 5. For all N ∈ N\{0}, we have

ω[N ](s) ≤ ω(s), ∀s ∈ [0, S1[, (77)

where

ω(s) =
1

( 1
ω0

+ 1
2)e−C0s − 1

2

, S1 =
1

C0
log
( 2

ω0
+ 1
)
. (78)

Proof. As σ[N ](m, t̃, s) ≥ 0, using (19), (20), we deduce from (24) that
for ν

N ≡ sν < s < ν+1
N we have

∂

∂s
σ[N ](m, t̃, s) ≤

≤ 1

2

m

w(m)

∫
γ
[0,m]
q sν

β(m−m′,m′){σ[N ](·, ·, s)}q sν (m−m′){σ[N ](·, ·, s)}q sν (m′)

µγ(dm′) +
m

w(m)

∫
γq sν

ϑ(m,m′){σ[N ](·, ·, s)}q sν (m+m′)µγ(dm′).

We deduce from it that

∂

∂s
σ[N ](m, t̃, s) ≤ 1

2

m

w(m)

∫ m

0
β(m−m′,m′)u[N ](m−m′, s)u[N ](m′, s)dm′+

+
m

w(m)

∫ ∞
0

ϑ(m,m′)u[N ](m+m′, s)dm′, ∀s ≥ 0, s 6= sν , ν ∈ N,

which, joined with the continuity of σ[N ](m, t̃, s), leads to

ω[N ](s) ≤ ω0+

+
1

2

∫ s

0

∫ ∞
0

m

w(m)

∫ m

0
β(m−m′,m′)u[N ](m−m′, s′)u[N ](m′, s′)dm′dmds′+
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+

∫ s

0

∫ ∞
0

m

w(m)

∫ ∞
0

ϑ(m,m′)u[N ](m+m′, s′)dm′dmds′.

Finally, with conditions (8), (11), (29) and from the convolution property,
we deduce that

ω[N ](s) ≤ ω0 +
C0

2

∫ s

0
(ω[N ](s′))2ds′ + C0

∫ s

0
ω[N ](s′)ds′. (79)

On the other hand, we see immediately that the function

ω(s) =
1

( 1
ω0

+ 1
2)e−C0s − 1

2

is the solution of the Cauchy problem

d

ds
ω(s) =

C0

2
(ω(s))2 + C0ω(s), ω(0) = ω0 (80)

and that its maximum interval of existence is [0, S1[ with S1 given in (78).
We get (77) by comparing (79) and (80). �

Lemma 6. For all N ∈ N\{0}, we have

ψ[N ](s) ≤ ψ(s) for 0 ≤ s < S1, (81)

where ψ(s) is the solution of the Cauchy problem

d

ds
ψ(s) =

C0

2

[
(3ω(s) + 1)ψ(s) + 2ω(s)

]
, ψ(0) = sup

(m,t̃)∈R+×R
σ0(m, t̃).

(82)

Proof. Applying (25) and (27) to the right side of (24) and by recalling
the definitions (73), (74) and (78), we have

ψ[N ](s) ≤ ψ[N ](
ν

N
) +

C0

2

∫ s

ν
N

[(3ω(s′) + 1)ψ(s′) + 2ω(s′)]ds′

for ν
N ≤ s ≤ ν+1

N , ν = 0, 1, 2, · · · . This leads, according (23) and by the
usual reasoning we obtain (81). �

Lemma 7. For all N ∈ N\{0}, we have

J [N ](s) ≤ J(s) for 0 ≤ s < S1, (83)

where J(s) is the solution of the Cauchy problem

d

ds
J(s) =

3C0

2
(2ω(s) + 1)J(s), J(0) = J0. (84)
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Proof. we consider t̃1, t̃2 ∈ R, t̃1 6= t̃2, m ∈ R+, s ∈ [ νN ,
ν+1
N ]. Then,

putting

sν =
ν

N
, q1 = t̃1 +

sν
w(m)

, q2 = t̃2 +
sν

w(m)
,

we have

|σ[N ](m, t̃1, s)− σ[N ](m, t̃2, s)| ≤ |σ[N ](m, t̃1,
ν

N
)− σ[N ](m, t̃2,

ν

N
)|+ (85)

+

∫ s

ν
N

m

w(m)
|D[N ]

K (m, t̃1, t̃2, s
′)|ds′ +

∫ s

ν
N

m

w(m)
|D[N ]

L (m, t̃1, t̃2, s
′)|ds′,

where

D
[N ]
K (m, t̃1, t̃2, s) =

= Kγq1sν
[σ[N ](·, ·, s), σ[N ](·, ·, s)](m, t̃1)−Kγq2sν

[σ[N ](·, ·, s′), σ[N ](·, ·, s)](m, t̃2),

D
[N ]
L (m, t̃1, t̃2, s) = Lγq1sν [σ[N ](·, ·, s)](m, t̃1)− Lγq2sν [σ[N ](·, ·, s)](m, t̃2).

Even if Kγq1sν
[·, ·] and Kγq2sν

[·, ·] are defined on two different curves γq1sν
and γq2sν , if we pay attention to the expression of the right hand side of (19),
we note that, once definite {σ[N ](·, ·, s)}q1sν (m) and {σ[N ](·, ·, s)}q2sν (m) (see

(17)), D
[N ]
K (m, t̃1, t̃2, s) can be written in the form

D
[N ]
K (m, t̃1, t̃2, s) = (86)

=
1

2

∫ m

0
β(m−m′,m′)({σ[N ]}q1(m−m′)− {σ[N ]}q2(m−m′))×

×({σ[N ]}q1(m′) + {σ[N ]}q2(m′))dm′+

−1

2
({σ[N ]}q1(m)−{σ[N ]}q2(m))

∫ ∞
0
β(m,m′)({σ[N ]}q1(m′)+{σ[N ]}q2(m′))dm′+

−1

2
({σ[N ]}q1(m)+{σ[N ]}q2(m))

∫ ∞
0
β(m,m′)({σ[N ]}q1(m′)−{σ[N ]}q2(m′))dm′,

where

{σ[N ]}q1(m) = {σ[N ](·, ·, s)}q1sν (m), {σ[N ]}q2(m) = {σ[N ](·, ·, s)}q2sν (m).

Using (8), (9) and definitions (73), (75), we deduce from (86) that

m

w(m)
sup

t̃1,t̃2∈R,t̃1 6=t̃2

|D[N ]
K (m, t̃1, t̃2, s)|
|t̃1 − t̃2|

≤ (87)
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≤ C0

∫ m

0
j[N ](m−m′, s)u[N ](m′, s)dm′ + C0ω

[N ](s)j[N ](m, s)+

C0u
[N ](m, s)J [N ](s).

On the other hand, for D
[N ]
L (m, t̃1, t̃2, s), from definition (20) we obtain

without difficulty

m

w(m)
sup

t̃1,t̃2∈R,t̃1 6=t̃2

|D[N ]
L (m, t̃1, t̃2, s)|
|t̃1 − t̃2|

≤ (88)

≤ C0

2
j[N ](m, s) +

m

w(m)

∫ ∞
0

ϑ(m,m′)j[N ](m+m′, s)dm′.

Using the relation∫ ∞
0

m

w(m)

∫ ∞
0

ϑ(m,m′)j[N ](m+m′, s)dm′dm =

=

∫ ∞
0

∫ m′′

0

m′′ −m′

w(m′′ −m′)
ϑ(m′′ −m′,m′)j[N ](m′′, s)dm′dm′′

joined with (11), we deduce from the last three estimates and from property
of the convolution that

J [N ](s) ≤ J [N ](
ν

N
) + 3C0

∫ s

ν
N

J [N ](s′)ω[N ](s′)ds′ +
3C0

2

∫ s

ν
N

J [N ](s′)ds′.

As this inequality has the same form in all intervals [ νN ,
ν+1
N ], ν = 0, 1, · · · ,

we obtain

J [N ](s) ≤ J [N ](0) + 3C0

∫ s

0
J [N ](s′)ω[N ](s′)ds′ +

3C0

2

∫ s

0
J [N ](s′)ds′,

or, taking into account (77) and from the relation J [N ](0) = J0,

J [N ](s) ≤ J0 + 3C0

∫ s

0
J [N ](s′)ω(s′)ds′ +

3C0

2

∫ s

0
J [N ](s′)ds′,

that implies (83) with (84). �

Lemma 8. For all N ∈ N\{0}, we have

λ[N ](s) ≤ λ(s) for 0 ≤ s < S1, (89)

where λ(s) is the solution of the Cauchy problem

d

ds
λ(s) = C0(2ω(s) +

1

2
)λ(s) + C0(ψ(s) + 1)J(s), λ(0) = λ0. (90)
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Proof. Using the relations

sup
m∈R+

u[N ](m, s) = ψ[N ](s) ≤ ψ(s), sup
m∈R+

j[N ](m, s) = λ[N ](s),

ω[N ](s) ≤ ω(s), J [N ](s) ≤ J(s),

we deduce from (85), (87), (88) and from the property of the convolution
that

λ[N ](s) ≤ λ[N ](
ν

N
) + 2C0

∫ s

ν
N

ω(s′)λ[N ](s′)ds′+

+C0

∫ s

ν
N

ψ(s′)J(s′)ds′ +
C0

2

∫ s

ν
N

λ[N ](s′)ds′ + C0

∫ s

ν
N

J(s′)ds′.

In a similar way to the proof of the previous lemma, from this inequality we
deduce (89) with (90). �

7 Convergence of the approximate solutions

To solve the problem (21)-(22), it is essential to prove the convergence of
the approximate solutions σ[N ](m, t̃, s). Thus, we will prove the convergence
of a subsequence of the approximate solutions in the interval [0, S1[ , which
will give us the solution of the problem in this interval.

Theorem 1. We suppose that β(·, ·), ϑ(·, ·) and w(·), satisfy the conditions
mentioned in paragraph 2 and the condition (69) and that σ0(m, t̃) is con-
tinuous in (m, t̃) ∈ R+ × R and satisfies the conditions (23), (70)-(72). Let
S1 the number given in (78). Then the problem (21)-(22) admits a solution
in the interval [0, S1[ . Moreover the solution is unique in the class of the
functions σ(m, t̃, s) which satisfy the conditions

i) σ(m, t̃, s) is continuous in R+ × R× [0, S1[ ,

ii) for all s ∈ [0, S1[ , u(m, s) = supt̃∈R |σ(m, t̃, s)| is integrable in m ∈ R+,

iii) for all s1 ∈ [0, S1[ , we have sups∈[0,s1]
∫∞
0 u(m, s)dm <∞.

Proof. We construct the sequence of approximate solutions σ[2
n],

n = 1, 2, · · · , which are the solutions of the problem (24), (22) with N = 2n.
For simplicity, we write σn instead of σ[2

n]. In the interval [ ν2n ,
2ν+1
2n+1 [ the

approximate solutions σn and σn+1 are defined by integral operators on the
same curves γq s1 , s1 = ν

2n , while in [2ν+1
2n+1 ,

ν+1
2n [ the approximate solutions

σn and σn+1 are defined on the different curves γq s1 , γq s2 , s2 = 2ν+1
2n+1 respec-

tively.
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We put
ηn(m, s) = sup

t̃∈R
|σn(m, t̃, s)− σn+1(m, t̃, s)|, (91)

αn(s) =

∫ ∞
0

ηn(m, s)dm, (92)

βn(s) = sup
(m,t̃)∈R+×R

|σn(m, t̃, s)− σn+1(m, t̃, s)| = sup
m∈R+

ηn(m, s). (93)

We will also write un(m, s), jn(m, s), ωn(s), ψn(s), Jn(s), λn(s) instead of
u[2

n](m, s), j[2
n](m, s), ω[2n](s), ψ[2n](s), J [2n](s), λ[2

n](s) (see (73)-(76)).
We recall that, for all q ∈ R and s ≥ 0, the definition of the operator

Kγq s [·, ·] gives us

Kγq s [σn(·, ·, s′), σn(·, ·, s′)](m, t̃)−Kγq s [σn+1(·, ·, s′), σn+1(·, ·, s′)](m, t̃) =

= Kγq s [σn(·, ·, s′) + σn+1(·, ·, s′), σn(·, ·, s′)− σn+1(·, ·, s′)](m, t̃).

Therefore, with the linearity of the operator Lγq s [ϕ], we get

σn(m, t̃, s)− σn+1(m, t̃, s) = σn(m, t̃,
ν

2n
)− σn+1(m, t̃,

ν

2n
)+ (94)

+
m

w(m)

∫ s

ν
2n

[
Kγq s1

[σn(·, ·, s′)+σn+1(·, ·, s′), σn(·, ·, s′)−σn+1(·, ·, s′)](m, t̃)+

+Lγq s1 [σn(·, ·, s′)− σn+1(·, ·, s′)](m, t̃)
]
ds′

for

s1 =
ν

2n
≤ s ≤ 2ν + 1

2n+1

and

σn(m, t̃, s)− σn+1(m, t̃, s) = σn(m, t̃,
2ν + 1

2n+1
)− σn+1(m, t̃,

2ν + 1

2n+1
)+ (95)

+
m

w(m)

∫ s

2ν+1

2n+1

[
Kγq s2

[σn(·, ·, s′)+σn+1(·, ·, s′), σn(·, ·, s′)−σn+1(·, ·, s′)](m, t̃)+

+Lγq s2 [σn(·, ·, s′)− σn+1(·, ·, s′)](m, t̃)
]
ds′ + ∆s1 s2(m, t̃)

for
2ν + 1

2n+1
≤ s ≤ ν + 1

2n
, s1 =

ν

2n
, s2 =

2ν + 1

2n+1
,

where
∆s1 s2(m, t̃) =
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=
m

w(m)

∫ s

2ν+1

2n+1

[
Kγq s1

[σn(·, ·, s′), σn(·, ·, s′)](m, t̃)−Kγq s2
[σn(·, ·, s′),

σn(·, ·, s′)](m, t̃) + Lγq s1 [σn(·, ·, s′)](m, t̃)− Lγq s2 [σn(·, ·, s′)](m, t̃)
]
ds′.

According to the conditions (8), (9), (10), it results from (19), (20) (see
also (77)) that, for all q ∈ R and s, s ∈ [0, S1[ , we have

sup
t̃∈R

m

w(m)
|Kγq s [σn(·, ·, s) + σn+1(·, ·, s), σn(·, ·, s)− σn+1(·, ·, s)](m, t̃)| ≤

(96)

≤ C0

2

∫ m

0
(un(m−m′, s) + un+1(m−m′, s))ηn(m′, s)dm′+

+C0ηn(m, s)ω(s) +
C0

2
(un(m, s) + un+1(m, s))αn(s),

sup
t̃∈R

m

w(m)
|Lγq s [σn(·, ·, s)− σn+1(·, ·, s)](m, t̃)| ≤ (97)

≤ C0

2
ηn(m, s) +

m

w(m)

∫ ∞
0

ϑ(m,m′)ηn(m+m′, s)dm′.

On the other hand, from the definitions (17) and (18) the values of
σn(m′, t̃′, s) on the curves γqs1(m,t̃) and γqs2(m,t̃) are given by:

{σn(·, ·, s)}qs1(m,t̃)(m
′) = σn(m′, t̃+

s1
w(m)

− s1
w(m′)

, s),

{σn(·, ·, s)}qs2(m,t̃)(m
′) = σn(m′, t̃+

s2
w(m)

− s2
w(m′)

, s).

Therefore, taking into account the relation s2 − s1 = 2ν+1
2n+1 − ν

2n = 1
2n+1 and

the hypothesis (69), we have

|{σn(·, ·, s)}qs1(m,t̃)(m
′)− {σn(·, ·, s)}qs2(m,t̃)(m

′)| ≤ (98)

≤ jn(m′, s)
∣∣ s1
w(m)

− s1
w(m′)

−
( s2
w(m)

− s2
w(m′)

)∣∣ ≤ jn(m′, s)
Cw
2n

.

With the information of (8), (9), and (10), we deduce from (19), (20) and
(98), in a similar manner to (86)) that

m

w(m)

∣∣Kγq s1
[σn(·, ·, s′), σn(·, ·, s′)](m, t̃)−Kγq s2

[σn(·, ·, s′), σn(·, ·, s′)](m, t̃)
∣∣ ≤

(99)
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≤ Cw
2n

C0

[ ∫ m

0
un(m−m′, s)jn(m′, s)dm′ + jn(m, s)ωn(s) + un(m, s)Jn(s)

]
,

m

w(m)

∣∣Lγq s1 [σn(·, ·, s′)](m, t̃)− Lγq s2 [σn(·, ·, s′)](m, t̃)
∣∣ ≤ (100)

≤ Cw
2n

[C0

2
jn(m, s) +

m

w(m)

∫ ∞
0

ϑ(m,m′)jn(m+m′, s)dm′
]
.

As∫ ∞
0

∫ m

0
(un(m−m′, s) + un+1(m−m′, s))ηn(m′, s)dm′dm ≤ 2ω(s)αn(s),

∫ ∞
0

m

w(m)

∫ ∞
0

ϑ(m,m′)ηn(m+m′, s)dm′dm ≤ C0αn(s),

and αn(0) = βn(0) = 0, and by using (96), (97), (99), (100) (see also (77),
(81), (83), (89)), we deduce from (94)-(95) that

αn(s) ≤ 3C0

2

∫ s

0
(2ω(s′) + 1)αn(s′)ds′ +

1

2n
3C0Cw

2

∫ s

0
(2ω(s′) + 1)J(s′)ds′,

(101)

βn(s) ≤ C0

∫ s

0
((2ψ(s′) + 1)αn(s′) + (ω(s′) +

1

2
)βn(s′))ds′+ (102)

+
1

2n
CwC0

∫ s

0

(
(2ψ(s′) + 1)J(s′) + (ω(s′) +

1

2
)λ(s′)

)
ds′.

It follows that

αn(s) ≤ y(s), βn(s) ≤ z(s),

where y(s) is the solution of the following Cauchy problem

d

ds
y(s) =

3C0

2
(2ω(s) + 1)y(s) +

1

2n
3CwC0

2
(2ω(s) + 1)J(s), y(0) = 0,

while z(s) is the solution of the following Cauchy problem

d

ds
z(s) = C0(ω(s) +

1

2
)z(s) + C0(2ψ(s) + 1)y(s)+

+
1

2n
CwC0

(
(2ψ(s) + 1)J(s) + (ω(s) +

1

2
)λ(s)

)
, z(0) = 0.
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To summarize, if we put

A(s) =
3C0Cw

2

∫ s

0
(2ω(s′) + 1)J(s′)e

3C0
2

∫ s
s′ (2ω(s

′′)+1)ds′′ds′, (103)

and

B(s) = C0

∫ s

0

[
(2ψ(s′)+1)A(s′)+Cw

(
(2ψ(s′)+1)J(s′)+(ω(s′)+

1

2
)λ(s′)

)]
×

(104)

×e
C0
2

∫ s
s′ (2ω(s

′′)+1)ds′′ds′,

we find that

αn(s) ≤ 1

2n
A(s), βn(s) ≤ 1

2n
B(s). (105)

As B(s) defined in (103)-(104) does not depend on n and it’s an increas-
ing function well defined on [0, S1[ , i.e.:

0 ≤ B(s1) ≤ B(s2) <∞ ∀s1, s2 ∈ [0, S1[ , s1 ≤ s2,

from (93) and (105) we deduce that

∀ε>0,∀s∈ [0, S1[,∃n ∈ N : n > ξ ⇒ sup
(m,t̃,s)∈R+×R×[0,s]

|σn1(m, t̃, s)−σn2(m, t̃, s)|<ε,

∀n1, n2 ≥ n, where n > 1
log 2(logB(s) + log 1

ε ) + 1.

This proves the uniform convergence of σn(m, t̃, s) in R+ × R× [0, s] as
n → ∞. Moreover, this result about the convergence remains valid for all
s ∈ [0, S1[ .

Let us provisionally designate by σ∞(m, t̃, s) limit of the sequence
{σn(m, t̃, s)}∞n=0, i.e.

σ∞(m, t̃, s) = lim
n→∞

σn(m, t̃, s).

As σn(m, t̃, s) converges uniformly to σ∞(m, t̃, s) in R+×R×[0, s] for any s ∈
]0, S1[ , it clear that σ∞(m, t̃, s) is also continuous and non-negative; more-
over, from the first inequality of (105) we deduce that supt̃∈R σ∞(m, t̃, s) is
integrable on R+(3 m) for all s ∈ [0, S1[ .

Let s ∈ ]0, S1[ . We put

∆∞ = sup
(m,t̃,s)∈R+×R×[0,s]

∣∣σ∞(m, t̃, s)− σ0(m, t̃)− I(m, t̃, s)
∣∣, (106)
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where

I(m, t̃, s) =

∫ s

0

m

w(m)

(
Kγqs [σ∞(·, ·, s′), σ∞(·, ·, s′)](m, t̃)

+ Lγqs [σ∞(·, ·, s′)](m, t̃)
)
ds′.

As

σn(m, t̃, s) = σ0(m, t̃) +

∫ s

0

m

w(m)

(
Kγqs̃ν (n,s)

[σn(·, ·, s′), σn(·, ·, s′)](m, t̃)+

Lγqs̃ν (n,s) [σn(·, ·, s′)](m, t̃)
)
ds′

with

s̃ν(n, s) =
ν

2n
for

ν

2n
≤ s < ν + 1

2n
,

we have
σ∞(m, t̃, s)− σ0(m, t̃)− I(m, t̃, s) = (107)

= σ∞(m, t̃, s)− σn(m, t̃, s)− I [1]n (m, t̃, s)− I [2]n (m, t̃, s),

I [1]n (m, t̃, s) =

∫ s

0

m

w(m)

(
Kγqs [σ∞(·, ·, s′), σ∞(·, ·, s′)](m, t̃)+

+Lγqs [σ∞(·, ·, s′)](m, t̃)−Kγqs [σn(·, ·, s′), σn(·, ·, s′)](m, t̃)+

−Lγqs [σn(·, ·, s′)](m, t̃)
)
ds′,

I [2]n (m, t̃, s) =

∫ s

0

m

w(m)

(
Kγqs [σn(·, ·, s′), σn(·, ·, s′)](m, t̃)+

+Lγqs [σn(·, ·, s′)](m, t̃)−Kγqs̃ν (n,s)
[σn(·, ·, s′), σn(·, ·, s′)](m, t̃)+

−Lγqs̃ν (n,s) [σn(·, ·, s′)](m, t̃)
)
ds′.

On one hand, the uniform convergence of σn(m, t̃, s) to σ∞(m, t̃, s) implies
that

lim
n→∞

(|σ∞(m, t̃, s)− σn(m, t̃, s)|+ |I [1]n (m, t̃, s)|) = 0.

On the other hand, recalling the reasoning used to obtain (99)-(100), there
is no difficulty to find that

∀ε > 0,∃nε ∈ N : n ≥ nε ⇒ sup
(m,t̃,s)∈R+×R×[0,s]

|I [2]n (m, t̃, s)| < ε.

We deduce that
∆∞ = 0



The coagulation-fragmentation equation 257

or
σ∞(m, t̃, s) = σ0(m, t̃)+ (108)

+

∫ s

0

m

w(m)

(
Kγqs [σ∞(·, ·, s′), σ∞(·, ·, s′)](m, t̃) + Lγqs [σ∞(·, ·, s′)](m, t̃)

)
ds′.

According to the continuity of σ∞(m, t̃, s), the derivative with respect
to s of the right hand side of (108) is well defined, which allows us to pass
from (108) to the differential version (21), i.e. σ∞(m, t̃, s) is a solution of
the problem (21)-(22).

To demonstrate the uniqueness, we consider two solutions σ and ϕ of the
problem (21)-(22) belonging to the class of functions defined in the statement
of the theorem. As σ(m, t̃, 0)− ϕ(m, t̃, 0) = 0 and

Kγqs [σ(·, ·, s), σ(·, ·, s)](m, t̃)−Kγqs [ϕ(·, ·, s), ϕ(·, ·, s)](m, t̃) =

= Kγqs [σ(·, ·, s) + ϕ(·, ·, s), σ(·, ·, s)− ϕ(·, ·, s)](m, t̃),

integrating (21) with respect to s with s ∈ ]0, S1[ , we have

σ(m, t̃, s)− ϕ(m, t̃, s) =

=

∫ s

0

m

w(m)

(
Kγqs′ [σ(·, ·, s′) + ϕ(·, ·, s′), σ(·, ·, s′)− ϕ(·, ·, s′)](m, t̃)+

+Lγqs′ [σ(·, ·, s′)− ϕ(·, ·, s′)](m, t̃)
)
ds′.

Therefore, putting

η(m, s) = sup
t̃∈R
|σ(m, t̃, s)−ϕ(m, t̃, s)|, u∗2(m, s) = sup

t̃∈R
|σ(m, t̃, s)+ϕ(m, t̃, s)|,

and in a similar way to (96)-(97), we obtain

η(m, s) ≤
∫ s

0

[C0

2

∫ m

0
u∗2(m−m′, s′)η(m′, s′)dm′+

C0

2
η(m, s′)

∫ ∞
0

u∗2(m
′, s′)dm′+

C0

2
u∗2(m, s

′)

∫ ∞
0

η(m′, s′)dm′+
C0

2
η(m, s′)+

+
m

w(m)

∫ ∞
0

ϑ(m,m′)η(m+m′, s′)dm′
]
ds′.

Consequently, if we put

g(s) =

∫ ∞
0

η(m, s)dm,
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in a similar way to (101), we have

g(s) ≤ 3C0

2

∫ s

0

(
1 +

∫ ∞
0

u∗2(m, s
′)dm

)
g(s′)ds′.

We deduce from the condition iii) that

g(s) = 0 ∀s ∈ [0, S1],

that proves the uniqueness of the solution. �

Remark 2. If the entry condition does not depend on time t̃ (i.e σ0(m, t̃) =
σ0(m)), we can directly construct the solution, which will be an analytic
function in s = −z; or rather, the equation with the homogeneous entry
rewritten on the trajectories will be a formal variant of equation studied by
Melzak in [9]. In addition, the result can be deduced almost immediately
from the proposition 1 and 2.
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