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1 Introduction

The intention of this paper is to survey some extensions (the P function
method) and applications of the classical maximum principle for elliptic
operators.

It is well-known that every subharmonic function in a bounded domain
Ω (i.e. ∆u ≥ 0 in Ω) satisfies the classical maximum principle

max
Ω

u = max
∂Ω

u.
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The subbiharmonic function u(x) = −x41−|x|2 in the ball Ω = {(x1, . . . ,
xn)| |x| < R} (i.e. ∆2u ≤ 0 in Ω) shows that there are no classical maximum
principles for the biharmonic operator ∆2u (and for higher-order elliptic
operators at all). Still some results can be proven.

The first proof of a maximum principle for an elliptic equation of higher-
order that has a similar form to the classical maximum principle was given
by Miranda [33].

Miranda showed that for the biharmonic equation ∆2u = 0, where u is a
smooth function defined on a plane domain the function |∇u|2 − u∆u takes
its maximum value on the boundary of the domain. Later, in [37], Payne
uses functionals containing the square of the second gradient of the solution
to semilinear equations of the form

∆2u = f(u)

to deduce integral bounds on (∆2u)2.
Since then many authors have extended the Miranda’s result. For exam-

ple, maximum principles for fourth order equations containing nonlinearities
in u or ∆u can be found in works of Payne [37], Schaefer [57], [60], [61].
Similar results are proved by Zhang [72], Mareno [30], [31] (studied some
equations from plate theory), Danet [5], [6], [7], [9], Tseng and Lin [68], etc.
(see the references cited here).

Most recently the authors in [9] obtain maximum principles results for
the more general variable coefficient m- metaharmonic equation

∆mu− am−1(x)∆
m−1u+ am−2(x)∆

m−2u− · · ·+ a0(x)u = 0 in Ω. (1)

using P functions containing terms of the form (∆iu). Here Ω is a bounded
domain in IRn.

The survey paper [8] is devoted to the P function method and gives a
presentation of research of the past years on applications of the P function
method in second order elliptic problems. Historical notes and an extensive
survey of the literature is added. The present paper intends to continue our
previous work [8] by presenting contributions to the P function method for
higher order elliptic equations.

2 Main Results

2.1 The general case (m arbitrary)

First we present a maximum principle for the general equation of order
2m.
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Theorem 2.1 ([9]) Let u be a classical solution of (1), i.e. C2m(Ω) ∩
C2m−2(Ω). We consider the function P1

P1 = (∆m−1u)2 + 2am−2(∆
m−2u)2 + (∆m−3u)2 + · · ·+ u2.

Suppose that am−1, am−2 > 0 and ∆(1/am−2) ≤ 0 in Ω. If

sup
Ω

{
a20

2am−1 + 1

}
<

4n+ 4

(diamΩ)2
,

a20
2am−1

> max
{
1 + sup

Ω
a1, . . . , 1 + sup

Ω
am−3

}
,

a20
2am−1 + 1

> sup
{
|a1|+ · · ·+ |am−3|

}
,

and (
a20

2am−1
+ 1

)
am−2 > 1 in Ω

then, either there exists a constant k ∈ IR such that P1/w1 ≡ k in Ω
or P1/w1 does not attain a nonnegative maximum in Ω. Here w1(x) =
1− α(x21 + · · ·+ x2n) ∈ C∞(IRn), andα is a positive constant.

Remark. The coefficient a0 can be replaced by am−j , j = 4, . . . ,m− 1
if there exists a j = 4, . . . ,m− 1 such that

a2m−j

2am−1
> max

k=3,...,m

{
2 + sup

Ω
ak
}
,

a2m−j

2am−1
+ 2 > sup

Ω

{
|a0|+ · · · |am−j−1|+ |am−j+1|+ · · ·+ |am−3|

}
,

and (
a2m−j

2am−2
+ 1

)
am−2 > 1 in Ω.

We now show that the uniqueness result and the maximum principle
holds ([9]).
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Theorem 2.2 There is at most one classical solution of the boundary value
problem

{
∆mu− am−1(x)∆

m−1u+ am−2(x)∆
m−2u+ · · ·+ (−1)ma0(x)u = f in Ω

u = g1, ∆u = g2, . . . , ∆
m−1u = gm on ∂Ω,

(2)
provided the coefficients am−1, . . . , a0 satisfy the conditions imposed in The-
orem 2.1.

Remark. The boundary value problem{
∆mu+ 2mu = 0 in Ω = (0, π)× (0, π)
u = ∆u = · · · = ∆m−1u = 0 on ∂Ω,

has (at least) the solutions u1(x, y) ≡ 0 and u2(x, y) = sinx sin y in Ω. This
example shows that if we do not impose some restrictions on the coefficients
am−1, . . . , a0, then the uniqueness result might be violated.

In [2] the authors pose an interesting open problem: If f = 0 in Ω, g2 =
· · · = gm = 0 on ∂Ω,m ≥ 3, n ≥ 2, am−1 = · · · = a1 = 0 in Ω do all
the solutions of (2) satisfy the maximum principle (3) where C > 1 is a
constant? This problem, as it turns out, can be solved when Ω is a class C2

domain ([63]). Here we present a version for arbitrary domains ([9]).

Theorem 2.3 We consider the boundary value problem (2), where f = 0
in Ω and g2 = · · · = gm = 0 on ∂Ω.
Then

max
Ω

|u| ≤ Cmax
∂Ω

|u|, (3)

holds for all solutions of (2) provided the coefficients am−1, . . . , a0 are subject
to one of the conditions imposed in theorem 2.1.

Theorem 2.4 ([32])

Suppose that u ∈ C2m+1(Ω)∩C2m−1(Ω) is a solution of (1). Furthermore
for n > 4 one defines

P2 = ∇2(∆m−2u) · ∇2(∆m−2u)−∇(∆m−2u) · ∇(∆m−1u)+

+
am−1

2
∇(∆m−2u) · ∇(∆m−2u) +

am−3

2
∇(∆m−3u) · ∇(∆m−3u)
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+ am−2

[
n− 4

n+ 2

]
(∆m−2u)2 −

[
4− n

2(n+ 2)

]
(∆m−1u)2 +

m−2∑
i=0

ϕi(∆
iu)2,

where the functions ϕ0, . . . , ϕm−2 ∈ C0(Ω) ∩ C2(Ω) satisfy
∑m−2

i=0 ϕ2
i + 1 ≤

α for some positive constant α, and |∇2u|2 = u,ij u,ij . Additionally, one
imposes the conditions

m−3∑
i=0

a2i ≤ β,

m−1∑
i=0

∇ai · ∇ai ≤ γ,

for constants γ ≥ 0, β > 0.

ϕi ≥
β

2

am−2 ≥ 1, am−1 −
1

2
≥ γ(n+ 2)

2(n− 4)
,

∆ai
2

− ∇am−i · ∇am−i

am−i
≥ 0, i = 1, 3,

∆am−2 − 4
∇am−2 · ∇am−2

am−2
≥ 0,

∆ϕi ≥ 3max

{
β(n− 4)

2(n+ 2)
+

γ

2
, α, 4

∇ϕi · ∇ϕi

ϕi

}
, i = 0, . . . ,m− 2.

Then, P2 is subharmonic in Ω.

We briefly indicate how theorem 2.4 can be used to obtain integral
bounds on the square of the second gradient of ∆m−2u. Suppose that the
hypotheses of theorem 2.4 are satisfied and the m conditions

∆iu = 0, i = 0, . . . ,m− 5,

∆m−2u =
∆m−2u

∂n
= 0, ∆m−3u =

∆m−3u

∂n
= 0,

hold on ∂Ω. Let A denote the area of Ω. Using theorem 2.4 and integration
by parts we get
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∫
Ω
|∇2(∆m−2u)|2dx ≤ A

2
max
∂Ω

{
|∇2(∆m−2u)|2 + ϕm−4(x)(∆

m−4u)2+

n− 4

2(n+ 2)
(∆((∆m−2u)))2

}
.

Before treating some particular cases, we shift our attention from n di-
mensional to one dimensional case and mention the following result (Ω de-
notes an open interval (α, β)) ([5])

Theorem 2.5 There can be at most one classical solution of the problem{
u(2m) − du(6) + c(x)u(4) − b(x)u′′ + a(x)u = f in Ω

u = g1, u
′′ = g2, u

′′′ = g3, . . . , u
(m) = gm on ∂Ω,

where m ≥ 6 is even, d ≥ 0 and b ≥ 0, a, c > 0, (1/a)′′, (1/c)′′ ≤ 0 in Ω.

The result follows since the function

P3 = u′′u(2m−2) − 2u′′′u(2m−3) + 3u(4)u(2m−4) − · · ·+ (m− 3)u(m−2)u(m+2)

−(m− 3)u(m−1)u(m+1)/2− ((m− 3)/2 + 1)[ (u(m))2 − u(m−1)u(m+1)]

+[(u
′′′
)2 − du

′′
u(4)] + c(x)(u′′)2/2 + a(x)u2/2

assumes its maximum value on ∂Ω, where u is a solution of

u(2m) − du(6) + c(x)u(4) − b(x)u′′ + a(x)u = 0 in Ω.

Similarly, we can treat the problem

{
u(2m) + du(6) − c(x)u(4) + b(x)u′′ − a(x)u = f in Ω

u = g1, u
′′ = g2, u

′′′ = g3, . . . , u
(m) = gm on ∂Ω,

where m ≥ 5 is odd.
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2.2 The particular case m = 4

In this section we consider classical solutions (i.e., C8(Ω) ∩ C6(Ω)) of

∆4u− a(x)∆3u+ b(x)∆2u− c(x)∆u+ du = 0, (4)

in the bounded plane domain Ω, and present ([5]) a maximum principle for a
certain function defined on the solutions of (4). Then we use the maximum
principle to prove a uniqueness result for the corresponding boundary value
problem.

Theorem 2.6 Let u be a classical solution of (4). Assume that

a > 0, ∆(1/a) ≤ 0 in Ω,

b ≥ 0 in Ω,

c > 0, ∆(1/c) ≤ 0 in Ω,

and

d > 0

are satisfied. Then the functional

P4 =
c(x)

2
(∆u)2 +

a(x)

2
(∆2u)

2
+ d(|∇u|2 − u∆u) + |∇(∆2u)|2 −∆2u∆3u

assumes its maximum value on ∂Ω. The result also holds if a and c are
nonnegative constants.

An important application of the above presented maximum principle is
the following uniqueness result:

Theorem 2.7 There is at most one classical solution of the boundary value
problem {

∆4u− a∆3u+ b(x)∆2u− c∆u+ du = f in Ω,
u = g, ∆u = h, ∆2u = i, ∆3u = j on ∂Ω,

(5)

where a, c ≥ 0, b and d satisfy the hypotheses of theorem 2.6, and the cur-
vature k of ∂Ω (Ω is a smooth plane domain ) is strictly positive.
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We suppose that u1 and u2 are two solutions of (5). Defining v = u1−u2,
we see that v satisfies (4) and

v = ∆v = ∆2v = ∆3v = 0 on ∂Ω. (6)

By virtue of theorem 2.6

P4 ≤ max
∂Ω

P4 in Ω. (7)

Since v = ∆2v = 0 on ∂Ω, we have

|∇v| =
∣∣∣∂v
∂n

∣∣∣ on ∂Ω (8)

and

|∇(∆2v)| =
∣∣∣∂(∆2v)

∂n

∣∣∣ on ∂Ω, (9)

where ∂/∂n denotes the outward directed normal derivative operator.
It can be shown that (introducing a normal coordinate system)

∂v

∂n
=

∂(∆2v)

∂n
= 0 on ∂Ω. (10)

By (6), (7), (8), (9) and (10) we get

P4 ≤ 0 in Ω,

which gives
−v∆v −∆2v∆3v ≤ 0 in Ω. (11)

Integrating (11) over Ω and using Green’s identity we obtain∫
Ω
|∇v|2 +

∫
Ω
|∇(∆2v)|2 ≤ 0.

Hence v ≡ 0 in Ω by continuity.

It is known that once we have a maximum principle for an equation, the
nonexistence of a nontrivial solution of the zero-boundary problem will be
a consequence.
An inverse result, of establishing a maximum principle from some nonexis-
tence results was carried out by Schaefer and Walter (Theorem 2, [63]).
Using their result and our theorem 2.7, we obtain the following maximum
principle
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Corollary 2.1 Suppose that u is a classical solution of the boundary value
problem {

∆4u− a∆3u+ b∆2u− c∆u+ du = 0 in Ω,
∆u = 0, ∆2u = 0, ∆3u = 0 on ∂Ω,

where a, b, c ≥ 0, d satisfy the hypotheses of theorem 2.6, and the curvature
k of ∂Ω (Ω is a smooth domain ) is strictly positive. Then there exists a
constant K > 0 such that

max
Ω

|u| ≤ Kmax
∂Ω

|u|.

Remark.

1. Similar uniqueness results can be inferred using theorem 2.6. It can be
shown (see [5]) that there is at most one classical solution of the boundary
value problem{

∆4u− a∆3u+ b(x)∆2u− c∆u+ du = f in Ω

u = g, ∆u = h, ∆2u = i, ∂(∆2u)
∂n = j on ∂Ω,

2. We note that Dunninger [11] developed a maximum principle from
which follows the uniqueness for the classical solution of the boundary value
problem {

∆2u+ cu = f in Ω ⊂ IRn,
u = g,∆u = h on ∂Ω,

where c > 0 is a constant.

An uniqueness result for solutions of a more general fourth-order elliptic
equation, under the same boundary conditions follows from Corollary 1, [72].

The uniqueness question for solutions of the boundary value problem
(here a, b ≥ 0 and c > 0 in Ω){

∆3u− a(x)∆2u+ b(x)∆u− c(x)u = f in Ω ⊂ IRn,
u = g, ∆u = h, ∆2u = i on ∂Ω,

has been settled in a satisfactory way by Schaefer [58] (the constant coeffi-
cient case with n=2) and Goyal and Goyal [17] (the constant and variable
coefficient case).

We see that our uniqueness result (theorem 2.7) is a generalization of
results of Dunninger, Goyal and Schaefer.
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2.3 The particular case m = 3.

This subsection is dedicated to maximum principles for a class of linear
equations of sixth order. As a consequence of these maximum principles we
will obtain uniqueness results for boundary value problems of sixth order.
This section is based on the paper [7].

Schaefer [58] investigated the uniqueness of the solution for the boundary
value problems{

∆3u− a(x)∆2u+ b(x)∆u− c(x)u = f in Ω ⊂ IRn

u = g, ∆u = h, ∆2u = i on ∂Ω,
(12)

where a, b,≥ 0, c > 0 are constants, and the curvature of ∂Ω is positive.

Our aim here is to remove via the P function method dimension and
geometry conditions (convexity and smoothness) with, of course, further
conditions on the coefficients a, b and c.

We deal with classical solutions (i.e. u ∈ C6(Ω) ∩ C4(Ω)) of

∆3u− a(x)∆2u+ b(x)∆u− c(x)u = 0 in Ω ⊂ IRn, n ≥ 2. (13)

The uniqueness results can be inferred from the following maximum prin-
ciples.

Theorem 2.8 Let u be a classical solution of (13) and suppose that

a(b+ c)2

b2(a− 1)
<

8n+ 8

(diamΩ)2
, (14)

holds, where a > 1, b, c are constants. We consider the function P5 given by

P5 = (a∆2u+ bu)2 + ab(a− 1)(∆u)2 + b2(a− 1)u2.

Then, either there exists a constant k ∈ IR such that P5/w1 ≡ k in Ω or
P5/w1 does not attain a nonnegative maximum in Ω.

By computation and using equation (13) we have in Ω

∆
(
(a∆2u+ bu)2

)
≥ 2(a∆2u+ bu)(a∆3u+ b∆u)

= 2
(
a3(∆2u)2 + abcu2 + a2(b+ c)u∆2u+

ab(1− a)∆u∆2u+ b2(1− a)u∆u
)
,

∆
(
ab(a− 1)(∆u)2

)
≥ 2ab(a− 1)∆u∆2u,
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∆
(
b2(a− 1)u2

)
≥ 2b2(a− 1)u∆u.

That means that

∆P5 ≥ 2a
(
a2(∆2u)2u+ a(b+ c)u∆2u+ bcu2

)
= 2a

(
a∆2u+

b+ c

2
u

)2

+ 2a

(
bc− (b+ c)2

4

)
u2 (15)

≥ −a(b+ c)2

2
u2.

Hence P5 satisfies the differential inequality

∆P5 +
a(b+ c)2

2b2(a− 1)
P5 ≥ 0 in Ω.

Since (14) holds, we can use a version of the generalized maximum prin-
ciple (lemma 2.1, [7] ) to obtain the desired result.

Theorem 2.9 Let u be a classical solution of (13) and suppose that

sup
Ω

(a+ c)2

a(b− 1)
<

8n+ 8

(diamΩ)2
, (16)

b > 1 in Ω, ∆(1/(b− 1)) ≤ 0 in Ω

holds.

If

P6 = (∆2u+ u)2 + (b− 1)(∆u)2 + (b− 1)u2

then, either there exists a constant k ∈ IR such that P6/w1 ≡ k in Ω or
P6/w1 does not attain a nonnegative maximum in Ω.

If a = c in Ω then, P6 attains its maximum value on ∂Ω (the restriction
(16) is not needed).

Theorem 2.10 Let u be a classical solution of (13), where a > 0 in Ω, and
c is of arbitrary sign in Ω. Suppose that

sup
Ω

c2

2a
+ 1 <

4n+ 4

(diamΩ)2
,

b > 0, ∆(1/b) ≤ 0 in Ω,
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b

(
c2

2a
+ 1

)
≥ 1 in Ω

holds.

If

P7 = (∆2u)2 + b(∆u)2 + u2

then, either there exists a constant k ∈ IR such that P7/w1 ≡ k in Ω or
P7/w1 does not attain a nonnegative maximum in Ω.

Theorem 2.11 Let u be a classical solution of (13) and suppose that

sup
Ω

1

a

(
c+

(c+ 1)2

4(a− 1)

)
<

2n+ 2

(diamΩ)2
,

b = 0, a > 1 in Ω, ∆(1/a) ≤ 0 in Ω,

c > 0, ∆(1/c) ≤ 0 in Ω

holds.

We consider the function P8 given by

P8 = (∆2u−∆u)2 + c(∆u− u)2 + a(∆u)2.

Then, either there exists a constant k ∈ IR such that P8/w1 ≡ k in Ω or
P8/w1 does not attain a nonnegative maximum in Ω.

Now an uniqueness result follows from the above mentioned maximum
principles.

Theorem 2.12 There is at most one classical solution of the boundary
value problem (12), where a, b and c satisfy the conditions of Theorem 2.8
or Theorem 2.9 or Theorem 2.10 or Theorem 2.11.

For various uniqueness results for sixth order boundary value problems
the reader is referred to [7].
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2.4 The particular case m = 2.

In 1971, J. Serrin [65] and H. Weinberger [71] proved that if Ω is a
bounded domain in IRn with smooth boundary

∆u = −1 in Ω,
u = 0 on ∂Ω,
∂u
∂n = c on ∂Ω,

(where c is a constant) then Ω is a ball of radius |nc| and the solution is
radially symmetric about the center.
Serrin’s proof is based on the classical maximum principle and on the method
of moving parallel planes.Weinberger’s method is more elementary. It also
uses the maximum principle but relies on Green’s theorem to establish cer-
tain identities. Unfortunately, Weinberger’s argument does not extend to
more general results.

Using the following maximum principle Benett [1] was able to show that
an analogous result holds for a fourth order problem.

Theorem 2.13 The function

P9 =

n∑
i,j=1

∂2u

∂ui∂uj
−∇u · ∇(∆u) +

n− 4

n+ 2

∫ u

0
f(y)dy +

n− 4

2(n+ 2)
(∆u)2

assumes its maximum value on ∂Ω, where u is a solution of ∆2u+ f(u) = 0
in Ω ⊂ IRn, f

′ ≤ 0 in IR.

Corollary 2.2 ([1]) Let Ω be a bounded domain in IRn with C4+ε boundary,
and suppose that the following overdetermined problem has a solution in
u ∈ C4(∂Ω) 

∆2u = −1 in Ω,
∂u
∂n = 0 on ∂Ω,
∆u ≡ c on ∂Ω (c - constant).

Then Ω is an open ball of radius [|c|(n2 + 2n)]
1
2 and u is radially symetric.

The above mentioned result allows a characterization of open balls in
IRn by means of an integral identity:
Let Ω be a smooth bounded domain in IRn and suppose that there is a real
constant M so that ∫

Ω
Bdx = M

∫
∂Ω

∂B

∂n
ds
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holds for any function B in C4(Ω) satisfying{
∆2B = 0 in Ω,
B = 0 on ∂Ω.

Then Ω is an open ball.

Finally, we state our last maximum principle for an fourth order equa-
tion.

Theorem 2.14 ([7])
Let u be a classical solution of

∆2u− a1∆u+ a0(x)u = 0 in Ω ⊂ IRn, (17)

where a1 ≡ const. > 0, a0 > 0 in Ω.
Suppose that

sup
Ω

(
a1 −

1

a1

(
a0 − 1

a0

)2)
<

2n+ 2

(diamΩ)2
. (18)

Let

P10 =
1

2
(∆u− au)2 +

1

2
(∆u)2 + u2.

Then, either there exists a constant k ∈ IR such that P10/w1 ≡ k in Ω or
P10/w1 does not attain a nonnegative maximum in Ω.

If

a21 ≥
(
a0 − 1

a0

)2

in Ω, (19)

then the function P10 attains its maximum value on ∂Ω (here the assumption
(18) is not needed).

Remark. A classical result ([2]) tells us that the boundary value prob-
lem {

∆2u− a1(x)∆u+ a0(x)u = f in Ω ⊂ IRn

u = g, ∆u = h on ∂Ω,
(20)

has a unique solution if a1, a0 > 0 and if ∆a0 < 0 or ∆(1/a0) < 0 in Ω.
Theorem 2.14 tells us that if a1 ≥ 1 and a0 > 0 then the boundary value

problem (20) has a unique solution. We see that no smoothness restrictions
are needed on the coefficient a0.
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