
ISSN 2066-6594

Ann. Acad. Rom. Sci.
Ser. Math. Appl.
Vol. 7, No. 1/2015

UNILATERAL CONDITIONS ON THE

BOUNDARY FOR SOME SECOND

ORDER DIFFERENTIAL EQUATIONS∗

Dan TIBA†

Dedicated to the memory of Prof. Dr. Viorel Arnăutu

Abstract

Sufficient conditions for the existence of solutions in strongly non-
linear boundary value problems of elliptic and parabolic type, inclu-
ding ordinary differential equations with unilateral conditions on the
boundary, are derived by means of an abstract scheme for continuous
perturbations of accretive operators in Banach spaces.
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1 Introduction

This paper is concerned with strongly nonlinear boundary value prob-
lems of elliptic type

Au+ f(x, u, grad u) = 0, a.e. Ω (1)
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−∂u

∂ν
∈ β(u) a.e. Γ (2)

and parabolic type

∂u

∂t
= Au+ f(x, u, grad u) = 0 a.e. ]0, T [×Ω (3)

u(0) = u0 a.e Ω (4)

−∂u

∂ν
∈ β(u) a.e. [0, T ]× Γ.

We also prove some existence results for the two points and the periodic
problem associated with ordinary differential equations

−u′′(s) + f(s, u(s), u′(s)) = 0 a.e. [0, 1], (5)

which can be compared with the classical result of Bernstein [7].

Above A denotes a second order elliptic operator, f is function satisfying
the Caratheodory assumptions, β is the subdifferential of a convex, lower-
semicontinuous, proper function j : R →] − ∞,+∞] and Ω is a bounded
domain in RN with sufficiently smooth boundary Γ.

The following notation will be used throughout this paper. If E is a Ba-
nach space, we shall denote by Lp(0, T ;E), 1 ≤ p ≤ ∞, the space of all p -
integrable, E - valued functions on [0, T ] and by C(0, T ;E) the Banach space
of all continuous functions from [0, T ] to E. We shall denote byW 1,p(0, T ;E)
the space of all p - integrable, E - valued distributions y with derivative y′

taken in the sense of vectorial distributions on ]0, T [, p - integrable. Equiva-
lently, y′ ∈ W 1,p(0, T ;E) means that y : [0, T ] → E is absolutely continuous,
almost everywhere differentiable on ]0, T [ and y′ ∈ Lp(0, T ;E). By W k,p(Ω)
we mean the usual Sobolev space of real distributions in Ω. We shall use
the symbols || · ||p, || · ||k,p for the norms in Lp(Ω), W k,p(Ω) respectively. In
the case p = 2, we put Hk(Ω) instead of W k,p(Ω).

We assume familiarity with concepts and methods of nonlinear monotone
equations and we refer to Barbu [2], Brezis [3], [4] for significant results in
this field. However, for easy references we recall some facts about sub-
differentials.

Let φ : E → ] − ∞,+∞] be a convex, lower semicontinuous, proper
function. We denote by ∂φ(x) the set of all z ∈ E′, the dual of E, such that

φ(x) ≤ φ(y) + (x− y, z) ∀ y ∈ E,
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and call it the subdifferential of φ at x, where (·, ·) is the pairing between E
and E′.

Conditions of type (2), (4) are called unilateral conditions on the bound-
ary and they arise in elasticity. See for instance Duvaut - Lions [10],
Goeleven [11], Goeleven et. al. [12].

Problems (1) - (4) are very much discussed in the literature. We mention
the papers for Brezis - Haraux [5], Brezis - Nirenberg [6], Vy Khoi Le [14]
that deal with the case when the nonlinear term f does not depend on
grad u or the elliptic operator is degenerate and with Landesman - Lazer
conditions.

Equations of form (1), (3) appear in the paper of Puel [16], but the
problem is the Dirichlet one with unilateral constraints in the interior of
Ω and certainly the methods are different. Our method of proof is similar
to that used in [19], [20]. Regularity results and various extensions are
discussed in [8], [9], [13], [18].

Our approach applies to a large class of problems and, in certain cases,
quadratic growth with respect to the gradient is allowed.

In the subsequent sections we introduce an abstract scheme based on
m - accretive operators and we apply it to elliptic, parabolic and ordinary
differential boundary value problems. An Appendix briefly analyzes some
properties of the Nemitsky operator.

2 An Abstract Perturbation Scheme

Let W be a Banach space, topologically and algebraically included in X,
another Banach space with dual X ′ uniformly convex.

Proposition 1. Let T : X → X be a m - accretive operator with
0 ∈ T0, D(T ) ⊂ W and (λI + T )−1 : X → W compact for some λ ≥ 0. Let
S : W → X be a bounded, demicontinuous mapping.

Then, for every m ∈ N , there is xm ∈ W , such that

λxm + Txm + Smxm ∋ 0. (6)

Here we have defined the truncate Sm of S − λI by

Smx =

{
Sx− λx, ||x||W ≤ m

S(
mx

||x||W
)− λ

mx

||x||W
, ||x||W > m .
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Proof.

The equation (6) can be written as

xm = (λI + T )−1(−Smxm).

The operator defined by the right hand side is compact in W because
(λI + T )−1 is and Sm is bounded. It maps a certain sphere with a suffi-
ciently large radius in itself because Sm is uniformly bounded on W and
(λI + T )−1 is compact from X in W .

It is continuous. Here is the argument
Let xn → x in W , then Smxn → Smx weakly in X because Sm is also

demicontinuous. It yields {Smxn}n to be bounded in X that is extract-
ing a convenient subsequence, denoted again by xn, we have (λI + T )−1 ·
(−Smxn) → y strongly in W . Hence (λI + T )−1(−Smxn) → y strongly in
X. Operator (λI + T )−1 is single-valued, demiclosed in X, so (λI + T )−1 ·
(−Smx) = y.

Therefore, one can use the Schauder fixed point theorem to obtain the
desired solution.

3 Elliptic Problems

Let A be the second order elliptic operator

Au = −
∑
i,j

∂

∂xj
(aij

∂u

∂xi
) + u (7)

with ∑
i,j

aij(x)ξiξj ≥ α|ξ|2 a.e. Ω, α > 0, ξ ∈ RN . (8)

Here aij ∈ C1(Ω), aij = aji and Ω is a bounded domain with a sufficiently
smooth boundary Γ.

We denote by
∂u

∂ν
the conormal derivative associated to A

∂u

∂ν
=

∑
i,j

aij
∂u

∂xi
cos(n̄, xj) (9)

where n̄ is the exterior normal to Ω.
Consider two real numbers 2 ≥ q ≥ 1, p > 1 such that W 1,q(Ω) ⊂ Lp(Ω)

topologically andW 2,p(Ω) ⊂ W 1,q(Ω) with compact inclusion. The existence
of these numbers is ensured by the wellknown Sobolev embedding theorem.
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Assume that f : Ω×R×RN → R satisfies the Caratheodory conditions
f(·, u, v1, . . . , vN ) is measurable for every u, v.
f(x, ·, ·) is continuous a.e. x ∈ Ω.

The Nemitsky operator S : W 1,q(Ω) → Lp(Ω) defined by

(Su)(x) = f(x, u(x), grad u(x)) a.e. Ω (10)

satisfies
S is bounded (11)

S is demicontinuous. (12)

See the Appendix for a discussion of such hypotheses. Moreover, the follow-
ing growth restriction is needed

f(x, u, v)u ≥ K|u|s − d|v|2 − γ(x) · u (13)

where K > 0, s > 1 is choosen such that W 1,q(Ω) ⊂ Ls(Ω), γ ∈ L∞(Ω) and
d is a small constant.

Remark 1. Condition W 2,p(Ω) ⊂ W 1,q(Ω), with compact inclusion,

shows that growth order of f(x, u, ·), which is
q

p
(see Appendix), cannot

exceed 2 when N = 2, cannot exceed
3

2
when N = 3 and so on, according

to the Sobolev inequalities.

Remark 2. We give a simple example of function f(x, u, v), where v =
(v1, . . . , vN ) ∈ RN

f(x, u, v) = |u|r · u+ |v|
q
p η(u) + γ(x)

Conditions (11), (12), (13) are fulfilled evidently for an appropriate r (see
the Appendix) under assumption that η : R → R is a monotone continuous
and bounded function.

Remark 3. The operator A can be more generally

A′u = −
∑
i,j

∂

∂xj
(aij

∂u

∂xi
) +

∑
i

bi
∂u

∂xi
+ cu.

The last two terms can be taken in f(x, u, v) and one can apply the present
results under appropriate conditions on bi, c > 0, [4], p. 6.
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Theorem 1. Under the above hypotheses, problem (1), (2) has at least
one solution u in W 2,p(Ω).

Proof.
We apply Proposition 1 with W 1,q(Ω) and X = Lp(Ω).
Operator T : Lp(Ω) → Lp(Ω) defined by

Tu = Au

D(T ) = {u ∈ W 2,p(Ω);Au ∈ Lp(Ω),−∂u

∂ν
∈ β(u)}

is m - accretive and (T +λI)−1 is bounded from Lp(Ω) in W 2,p(Ω) for λ > 0
large enough, according to Brezis [4], Proposition I.13 and Remark I.22.
It yields that (T + λI)−1 is compact operator from Lp(Ω) in W 1,q(Ω).

Then for every natural number m, there is um in W 2,p(Ω) such that

λum + Tum + Smum ∋ 0. (14)

We assume that ||um||1,q > m, otherwise um satisfies (1), (2) and the
problem is solved.

Equation (14) becomes

λum +Aum + f(x,
mum

||um||1,q
,
m grad um
||um||1,q

)− λ
mum

||um||1,q
∋ 0. (15)

Multiply by um and integrate over Ω∫
Ω

Aum · umdx+

∫
Ω

f(x,
mum

||um||1,q
,
m grad um
||um||1,q

)umdx ≤ 0.

Integrating by parts, using (8) and (2) we get

α||um||1,2 +
∫
Ω

f(x,
mum

||um||1,q
,
m grad um
||um||1,q

)umdx ≤ 0.

From (13) one obtains {um} to be bounded in H1(Ω), that is for m large
enough um verifies (1), (2) and the proof is finished.

Remark 4. Not only classical problems, but many boundary problems
can be expressed in form (2).

Example 1. Let j : R → ]−∞,+∞] be a convex, lower semicontinuous,
proper function given by

j(s) =

{
0 if s = 0
+∞ otherwise

.
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Then β = ∂j is

β(s) =

{
R if s = 0
∅ otherwise

.

and condition (2) is the Dirichlet one.

Example 2. Let j(s) = 0 for every s. Then β(s) = 0 for every s and
condition (2) corresponds to the Neumann problem.

Example 3. Consider

j(s) =

{
0 s ≥ 0
+∞ s < 0

.

Then

β(s) =


0 s > 0
]−∞, 0] s = 0
∅ s < 0

.

We obtain for (2) the Signorini boundary conditions.

Example 4. Consider j(s) = |s|. In this case

β(s) = sgn(s) =


1 s > 0
[−1, 1] s = 0
−1 s < 0

.

The corresponding condition (2) appears in elasticity.

4 Parabolic Problems

For the sake of simplicity we take the problem

∂u

∂t
−∆u+ f(x, u, grad u) = 0 a.e. ]0, T [×Ω (16)

u(0, x) = u0(x) a.e. Ω (17)

−∂u(t, x)

∂n
∈ β(u(t, x)) a.e. [0, T ]× Γ. (18)

We start with the following lemma
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Lemma 1 The operator B : L2(0, T ;L2(Ω)) → L2(0, T ;L2(Ω)) defined
by

Bu =
∂u

∂t
−∆u

D(B) = {u ∈ H1(0, T ;H2(Ω));u(0, x) = u0(x),−
∂u(t, x)

∂n
∈ β(u(t, x))}

is maximal monotone and for u0 ∈ D(φ), B−1 is compact from L2(0, T ;L2(Ω))
in L2(0, T ;H1(Ω)).

Here φ : L2(Ω) → ] − ∞,+∞] is a proper, lower-semicontinuous, convex
function given by

φ(u) =


1

2

∫
Ω

|grad u|2dx+

∫
Γ

j(u)dτ if u ∈ H1(Ω), j(u) ∈ L1(Γ)

+∞ otherwise

and ∂φ = −∆ with

D(∂φ) = {u ∈ H2(Ω);−∂u

∂n
∈ β(u) a.e. Γ}.

Proof
One easily can check, using the Green formula, that operator B is mono-

tone. To obtain the maximality it suffices that problem

∂u

∂t
−∆u+ u(t, x) = f̃(t, x) a.e. Ω×]0, T [ (19)

u(0, x) = u0(x) a.e. Ω (20)

−∂u(t, x)

∂n
∈ β(u(t, x)) a.e. ]0, T [×Γ (21)

has at least one solution for every f̃ ∈ L2(0, T ;L2(Ω)).
Operator Cu = −∆u+ u with

D(C) = {u ∈ H2(Ω);−∂u

∂n
∈ β(u)}

is a subdifferential (see Barbu [2], p. 63).
Therefore, we can apply the smoothing effect on initial data and problem

(10) - (12) has at least one solution u for every f ∈ L2(0, T ;L2(Ω)) and
u0 ∈ L2(Ω) (see Barbu [2], p. 189).
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If u0 ∈ D(φ) then
∂u

∂t
∈ L2(0, T ;L2(Ω)), ∆u ∈ L2(0, T ;L2(Ω)) and the

mapping f̃ → u is compact from L2(0, T ;L2(Ω)) in L2(0, T ;W 1,2(Ω)) in the
case u0 ∈ D(φ) and the proof is finished.

Assume now that f : Ω × R × RN → R satisfies the Caratheodory
conditions and operator S : L2(0, T ;H1(Ω)) → L2(0, T ;L2(Ω)) defined by

(Su)(t, x) = f(x, u(t, x), gradxu(t, x))

satisfies hypotheses (11) - (13) with p = q = 2.
One can state

Theorem 2 Under the above hypotheses, problem (16) - (18) has at least
one solution u in H1(0, T ;H2(Ω)).

Proof
According to Lemma 1, we can apply Proposition 1 with λ = 0,

X = L2(0, T ;L2(Ω)), W = L2(0, T ;H1(Ω))) and obtain the approximate
equations

∂um
∂t

−∆um + Smum ∋ 0.

Suppose that the norm of um in L2(0, T ;H1(Ω)) denoted ||um||W strictly
exceeds m, for every natural number m.

The approximate equations become

∂um
∂t

−∆um + f(x,
mum

∥|um||W
,
m gradxum
||um||W

) ∋ 0. (22)

Multiply by um(s, x) and integrate over [0, t]

1

2
|um(t, x)|2 − 1

2
|u0(x)|2 −

t∫
0

∆um(s, x) · um(s, x)ds+

+

t∫
0

f(x,
mum

∥|um||W
,
m gradxum
||um||W

) · umds = 0.

Integrating over Ω, using the Green formula, we get

1

2

∫
Ω

|um(t, x)|2dx+

t∫
0

∫
Ω

|gradxum(s, x)|2dxds)+ (23)
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+

t∫
0

∫
Ω

f(x,
mum

∥|um||W
,
m gradxum
||um||W

) · umdxds ≤ C.

From condition (13), when t = T it yields um to be bounded in L2(0, T ;H1(Ω))
and using again (23) we see that um is bounded in C(0, T ;H1(Ω)). Then
for large m we have ||um||W ≤ m, that is um satisfies problem (16) - (18).
The regularity is obtained as in (19) - (21).

5 Ordinary Differential Equations

We take into account the two point boundary value problem:

−u′′(t) + f(t, u(t), u′(t)) = 0 a.e. t ∈ [0, 1] (24)

u(0) = a, u(1) = b (25)

where f is Caratheodory:

- f(t, u, v) measurable in t for every u, v

- f(t, u, v) continuous in u, v a.e. t ∈ [0, 1]

and a, b are real numbers.

We assume that

|f(t, u, v)| ≤ g(t, u) + h(t, u)|v|2 (26)

with

sup
|u|≤r

|g(t, u)| ∈ L2(0, 1)

sup
|u|≤r

|h(t, u)| ∈ L∞(0, 1)

for every r > 0, and

f(t, u, v) · u ≥ K(u) · v − α|u|2 + γ, α < 1 (27)

where K is a continuous, d - homogeneous function, that is

K(λu) = λdK(u), λ > 0, d ≥ 0.

Theorem 3 Under the above hypotheses, problem (24), (25) has at least
one solution u in W 2,1(0, 1).
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Proof
Shifting the domain of f in u, v one can suppose instead of (25)

u(0) = u(1) = 0 (28)

(null Dirichlet boundary conditions).
Operator T : L2(0, 1) → L2(0, 1) defined by
Tu = −u′′

D(T ) = {u ∈ H2(0, 1);u(0) = u(1) = 0}
is maximal monotone and (I + T )−1 is compact from L2(0, 1) in W 1,4(0, 1).

Under condition (26) operator S : W 1,4(0, 1) → L2(0, 1) defined by
(Su)(t) = f(t, u(t), u′(t)) is bounded and continuous (see the Appendix).

We can use Proposition 1 with λ = 1, X = L2(0, 1), W = W 1,4(0, 1) to
derive the existence of approximating solutions

um(t)− u′′m(t) + Smum(t) = 0.

Assume that ||um||1,4 > m for every m. Then

um(t)− u′′m(t) + f(t,
mum(t)

∥|um||1,4
,
mu′m(t)

||um||1,4
)− mum(t)

||um||1,4
= 0. (29)

Multiply by um(t) and integrate over [0, 1]

1∫
0

|u′m(t)|2dt+
1∫
0

f(t,
mum(t)

∥|um||1,4
,
mu′m(t)

||um||1,4
)um(t)dt ≤ 0.

From condition (27) one gets

1∫
0

|u′m(t)|2dt+
1∫
0

||um||1,4
m

{K(
mum(t)

||um||1,4
)× mu′m(t)

||um||1,4
− (30)

−α

∣∣∣∣mum(t)

||um||1,4

∣∣∣∣2 + γ}dt ≤ 0

that is
1∫
0

|u′m(t)|2dt− α

1∫
0

|um(t)|2dt+ (31)

+
md

||um||d1,4

1∫
0

K(um(t)) · u′m(t)dt ≤ C.
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Let H be the indefinite integral of K. Then H(um(t)) is the indefinite
integral of K(um(t)) · u′m(t) and from (28), (31) we infer

1∫
0

|u′m(t)|2dt− α

1∫
0

|um(t)|2dt ≤ C.

From the inequality

1∫
0

|um(t)|2dt ≤
1∫
0

|u′m(t)|2dt (32)

it yields {u′m} to be bounded in L2(0, 1), which combined with (28) gives
{um} bounded in H1(0, 1) and in C(0, 1).

Now from (29) and (26) we get {um} to be bounded in W 2,1(0, 1) that
is, for instance, {um} is bounded in W 1,4(0, 1) too.

So for a sufficiently large m we have ||um||1,4 ≤ m and um verifies (24),
(25) which finishes the proof.

Corollary 1 Under the same hypotheses as Theorem 4, with α < 0 in
(27), the periodic problem

−u′′m(t) + f(t, u(t), u′(t)) = 0 a.e. [0, 1]

u(0) = u(1), u′(0) = u′(1)

has at least one solution u ∈ W 2,1(0, 1).

The proof follows the same lines as in Theorem 4 because the co-
rresponding operators T and S, defined in this case, have the same properties
and the estimations can be derived in a similar way.

Remark 5 The classical result of Bernstein [7] ensures the existence of a

solution for the two point problem, provided f(t, u, v),
∂f

∂u
(t, u, v),

∂f

∂v
(t, u, v)

continuous on (0, 1)×R×R and

∂f

∂u
(t, u, v) ≥ K > 0 (33)

and (26) with g(t, u), h(t, u) continuous in (0, 1)×R.
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We use the Lagrange theorem

f(t, u, v)− f(t, 0, v) =
∂f

∂u
(t, ũ, v) · u

where ũ is some point between u and 0.
Multiply by u

f(t, u, v) · u =
∂f

∂u
(t, ũ, v) · u2 + f(t, 0, v) · u ≥ Ku2 + f(t, 0, v) · u

which may be more restrictive than (27).

Example 5 Let f(t, u, v) = a(t)u+b(t)v+c(t). Then (33) requires a(t) ≥
K > 0, while (27) with K(u) = u is fulfilled when a(t) ≥ 0 only.

Example 6 We give now an example when f has quadratic growth in v

f(t, u, v) = a(t)u2n+1 + b(t)upv + c(t)v2u+ d(t).

Then f(t, u, v)u ≥ b(t)up+1 · v + d(t) · u in case a(t) ≥ 0, c(t) ≥ 0 and (27)
is fulfilled.
Condition (33) gives

(2n+ 1)a(t)u2n + pb(t)up−1 · v + c(t)v2 ≥ K > 0

which fails for u = v = 0 for any a(t), b(t), c(t).

6 Appendix

We give a result concerning the Nemitsky operator in Sobolev spaces.
See also Marcus and Mizel [15] or Pascali and Sburlan [17], p. 165.

Let s, p, q be real numbers such that W 1,q(Ω) ⊂ Lp(Ω) continuously i.e.

1

s
≥ 1

q
− 1

N
.

Proposition 2 Operator S : W 1,q(Ω) → Lp(Ω) defined by

(Su)(x) = f(x, u(x), grad u(x))

where f satisfies the assumptions
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f(x, ·, ·) is continuous a.e. x ∈ Ω (34)

f(·, u, v) is measurable for. every u, v (35)

|f(x, u, v)| ≤ l(x) + h(x)|u|
s
p +K(x)|v|

q
p (36)

with l ∈ Lp(Ω), h,K ∈ L∞(Ω), is bounded and continuous.

Proof
Using an argument with simple functions we see that S maps measurable

functions in measurable functions. From condition (36) and W 1,q(Ω) ⊂
Ls(Ω) continuously it yields that operator S is well-defined and bounded.

Consider now a sequence {un} ⊂ W 1,q(Ω) such that un → u in W 1,q(Ω),
that is un → u in Ls(Ω) and grad un → grad u in Lq(Ω). To show that S
is continuous it suffices to show that there is an infinite subsequence such
that S(uj) → S(u) strongly in Lp(Ω).

We choose an infinite subsequence of {un}, which we denote {uj}, such
that

grad uj → grad u a.e. Ω.

Then, by (34) S(uj) → S(u) a.e. in Ω.
From (36) it follows that functions |f(x, uj(x), grad uj(x))|p are equi-
integrable over Ω, so the almost everywhere convergence of S(uj) to S(u)
implies that S(uj) → S(u) strongly in Lp(Ω) and the proof is finished.

Corollary 2 Operator S : W 1,q(Ω) → Lp(Ω) defined by

(Su)(x) = g(x, u(x))

where g satisfies the assumptions

g(x, ·) is continuous a.e. x ∈ Ω (37)

g(·, u) is measurable for every u (38)

|g(x, u)| ≤ l(x) + h(x)|u|
S
p (39)

with l ∈ Lp(Ω), h ∈ L∞(Ω), is bounded and continuous.
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