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Abstract

Sufficient conditions for the existence of solutions in strongly non-
linear boundary value problems of elliptic and parabolic type, inclu-
ding ordinary differential equations with unilateral conditions on the
boundary, are derived by means of an abstract scheme for continuous
perturbations of accretive operators in Banach spaces.
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1 Introduction

This paper is concerned with strongly nonlinear boundary value prob-
lems of elliptic type

Au+ f(z,u,grad u) =0, a.e.Q (1)
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ou
~5 B(u) a.e.T (2)
and parabolic type
ou
i Au+ f(z,u,grad u) =0 a.e. |0, T[x (3)
u(0) =uy a.eQ (4)

_Ou
ov

We also prove some existence results for the two points and the periodic
problem associated with ordinary differential equations

€ B(u) ae. [0,T] xT.

—u"(s) + f(s,u(s),u'(s)) =0 a.e.[0,1], (5)

which can be compared with the classical result of Bernstein [7].

Above A denotes a second order elliptic operator, f is function satisfying
the Caratheodory assumptions, g is the subdifferential of a convex, lower-
semicontinuous, proper function j : R —] — oo, +oo] and  is a bounded
domain in RY with sufficiently smooth boundary T.

The following notation will be used throughout this paper. If E is a Ba-
nach space, we shall denote by LP(0,T; E), 1 < p < oo, the space of all p -
integrable, E - valued functions on [0, 7] and by C'(0,T’; E') the Banach space
of all continuous functions from [0, 7] to E. We shall denote by WP (0, T; E)
the space of all p - integrable, E - valued distributions y with derivative 3’
taken in the sense of vectorial distributions on 0,7, p - integrable. Equiva-
lently, ' € W1P(0,T; E) means that y : [0, T] — E is absolutely continuous,
almost everywhere differentiable on ]0, T[ and ' € L?(0,T; E). By W*»?(Q)
we mean the usual Sobolev space of real distributions in 2. We shall use
the symbols || - [|p, || ||k for the norms in LP(Q2), WHP(Q) respectively. In
the case p = 2, we put H¥(Q) instead of W"P(9).

We assume familiarity with concepts and methods of nonlinear monotone
equations and we refer to Barbu [2], Brezis [3], [4] for significant results in
this field. However, for easy references we recall some facts about sub-
differentials.

Let ¢ : E — ] — 00,+00] be a convex, lower semicontinuous, proper
function. We denote by dp(z) the set of all z € E’; the dual of E, such that

pr) <y +(r—y,2) YVyeE,
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and call it the subdifferential of ¢ at x, where (-, -) is the pairing between E
and F'.

Conditions of type (2), (4) are called unilateral conditions on the bound-
ary and they arise in elasticity. See for instance Duvaut - Lions [10],
Goeleven [11], Goeleven et. al. [12].

Problems (1) - (4) are very much discussed in the literature. We mention
the papers for Brezis - Haraux [5], Brezis - Nirenberg [6], Vy Khoi Le [14]
that deal with the case when the nonlinear term f does not depend on
grad u or the elliptic operator is degenerate and with Landesman - Lazer
conditions.

Equations of form (1), (3) appear in the paper of Puel [16], but the
problem is the Dirichlet one with unilateral constraints in the interior of
Q) and certainly the methods are different. Our method of proof is similar
to that used in [19], [20]. Regularity results and various extensions are
discussed in [8], [9], [13], [18].

Our approach applies to a large class of problems and, in certain cases,
quadratic growth with respect to the gradient is allowed.

In the subsequent sections we introduce an abstract scheme based on
m - accretive operators and we apply it to elliptic, parabolic and ordinary
differential boundary value problems. An Appendix briefly analyzes some
properties of the Nemitsky operator.

2 An Abstract Perturbation Scheme

Let W be a Banach space, topologically and algebraically included in X,
another Banach space with dual X’ uniformly convex.

Proposition 1. Let T : X — X be a m - accretive operator with
0€T0, D(T)CW and M +T)~': X — W compact for some X\ > 0. Let
S: W — X be a bounded, demicontinuous mapping.

Then, for every m € N, there is x,, € W, such that

A + T + S 2 0. (6)

Here we have defined the truncate S,, of S — AI by

— mx mx
Sm® =9 gy A gy >
elfw’ " Tellw
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Proof.
The equation (6) can be written as
T = A+ T) " H(=Smzm).

The operator defined by the right hand side is compact in W because
(M + T)7! is and S, is bounded. It maps a certain sphere with a suffi-
ciently large radius in itself because S, is uniformly bounded on W and
(AL +T)~! is compact from X in W.

It is continuous. Here is the argument

Let x, — x in W, then Sp,x, — S weakly in X because S, is also
demicontinuous. It yields {S,,z,}, to be bounded in X that is extract-
ing a convenient subsequence, denoted again by z,, we have (A 4+ T)~! -
(—Smxn) — y strongly in W. Hence (M + T)~Y(—S,,z,) — y strongly in
X. Operator (M + T)~! is single-valued, demiclosed in X, so (Al +T)~!-
(—Smz) =¥.

Therefore, one can use the Schauder fixed point theorem to obtain the
desired solution.

3 Elliptic Problems

Let A be the second order elliptic operator

0 ou
AUZ—ZZJ:%(%‘]‘M)JFU (7)
with
Zaij(x)ﬁifj > alé? ae Q, a>0, e RN (8)
i7j

Here a;; € C(9), a;; = aj; and € is a bounded domain with a sufficiently
smooth boundary I'.

ou
We denote by % the conormal derivative associated to A
v

ou ou B
5, = D i, cos( 1)) (9)
i v

where 7 is the exterior normal to (2.

Consider two real numbers 2 > ¢ > 1, p > 1 such that W14(Q) C LP(9)
topologically and W2P(Q) C W14(Q) with compact inclusion. The existence
of these numbers is ensured by the wellknown Sobolev embedding theorem.
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Assume that f: Q x R x RN — R satisfies the Caratheodory conditions
f( u,v1,...,uN) is measurable for every u,v.
f(x,-,-) is continuous a.e. = € .

The Nemitsky operator S : WH4(Q2) — LP(Q2) defined by

(Su)(x) = f(x,u(x),grad u(z)) a.e. Q (10)

satisfies
S is bounded (11)
S is demicontinuous. (12)

See the Appendix for a discussion of such hypotheses. Moreover, the follow-
ing growth restriction is needed

fla,u,v)u > Klul* = dlv]* = y(z) - u (13)

where K > 0, s > 1 is choosen such that W4(Q2) C L*(£2), v € L*>(Q) and
d is a small constant.

Remark 1. Condition W2P(Q) c W19(Q), with compact inclusion,
shows that growth order of f(x,u,-), which is 4 (see Appendix), cannot
p

exceed 2 when N = 2, cannot exceed 3 when N = 3 and so on, according

to the Sobolev inequalities.

Remark 2. We give a simple example of function f(z,u,v), where v =
(v,...,uy) € RN

F o) = Jul” -t fol n(u) + ()
Conditions (11), (12), (13) are fulfilled evidently for an appropriate r (see

the Appendix) under assumption that n : R — R is a monotone continuous
and bounded function.

Remark 3. The operator A can be more generally
0 ou ou
Al =— ;j P (a;; 8:c,~) + % b oz, + cu.

The last two terms can be taken in f(z,u,v) and one can apply the present
results under appropriate conditions on b;, ¢ > 0, [4], p. 6.
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Theorem 1. Under the above hypotheses, problem (1), (2) has at least
one solution u in W*P(Q).

Proof.

We apply Proposition 1 with Wh4(Q2) and X = LP(Q).

Operator T': LP(Q2) — LP(Q2) defined by

Tu = Au 5

D(T) = {u € W2P(Q); Au € LM(Q), — 5= € B(w)}
is m - accretive and (T +\I)~! is bounded from LP() in W?2P(Q2) for A > 0
large enough, according to Brezis [4], Proposition 1.13 and Remark 1.22.
It yields that (7' + AI)~! is compact operator from LP(Q) in W14(Q).

Then for every natural number m, there is u,, in W2P(Q) such that

Ay + T + Sum 2 0. (14)

We assume that ||um,|[1,4 > m, otherwise u,, satisfies (1), (2) and the
problem is solved.
Equation (14) becomes
muy,  m grad un, MUy,

>\um+Aum+f(xv s )_)‘

> 0. (15)
||um||1,q |[tm |1,q [[tm

L,q
Multiply by wu,, and integrate over 2

d
/Aum U dx + /f tm , m gt um)umdx <0.
5 HumHl,q |[um|[1,q

Integrating by parts, using (8) and (2) we get

al!umhz+/f tm

'l mlh,q’ [t

m grad u,

Jumdx < 0.

1,9

From (13) one obtains {u,,} to be bounded in H(f2), that is for m large
enough u,, verifies (1), (2) and the proof is finished.

Remark 4. Not only classical problems, but many boundary problems
can be expressed in form (2).

Ezample 1. Let j: R — | — 00, +00] be a convex, lower semicontinuous,
proper function given by

i(s) = 0 ifs=0
J | +o0 otherwise ’
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Then 8 = 95 is

otherwise °

MQ—{ﬁiMZO

and condition (2) is the Dirichlet one.

Ezample 2. Let j(s) = 0 for every s. Then f(s) = 0 for every s and
condition (2) corresponds to the Neumann problem.

Ezxample 3. Consider

io={ % 22

400 s<0°
Then
0 s>0
B(s)=4q ]—00,00 s=0.
0 s<0

We obtain for (2) the Signorini boundary conditions.

Ezample 4. Consider j(s) = |s|. In this case

1 s>0
B(s) = sgn(s) = { [~L,1] s=0.
-1 s<0

The corresponding condition (2) appears in elasticity.

4 Parabolic Problems

For the sake of simplicity we take the problem

% — Au+ f(z,u,grad u) =0 a.e. 0, T[x (16)
u(0,2) = up(z) a.e. Q (17)
_8ug;;x) € B(u(t,x)) ae. [0,T]x T, (18)

We start with the following lemma
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Lemma 1 The operator B : L*(0,T; L*(Q2)) — L?(0,T; L?(Q)) defined
by

BUZE—AU

ou(t, x)
R )

is mazimal monotone and for ug € D(p), B! is compact from L?(0,T; L*(Q))
in L?(0,T; H'()).

D(B)={ue HY0,T; HQ(Q));U(O,LE) = up(x), —

Here ¢ : L?(Q2) — ] — oo, +o0] is a proper, lower-semicontinuous, convex
function given by

W ;/lgrad u\Qda:—i—/j(u)dT if u e HY(Q), j(u) € LY(T)
plu)=q <,

T
+00 otherwise

and d¢p = —A with
2 ou
D(0¢) = {u € H*(Q); ~5, € B(u) a.e. T'}.
Proof

One easily can check, using the Green formula, that operator B is mono-
tone. To obtain the maximality it suffices that problem

ou 7
T Au+u(t,z) = f(t,z) a.e. Qx]0,T] (19)
u(0,z) = up(z) a.e. Q (20)
_f’“;;x) € Blult,)) ae.]0,T|xT (21)

has at least one solution for every f € L?(0,T; L*(Q)).
Operator Cu = —Au + u with

D(O) = {u e H(Q): 22 < f(u))

is a subdifferential (see Barbu [2], p. 63).

Therefore, we can apply the smoothing effect on initial data and problem
(10) - (12) has at least one solution u for every f € L?(0,T;L?(Q2)) and
ug € L*(Q) (see Barbu [2], p. 189).
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If up € D(p) then ?; € L*(0,T; L*(Q)), Au € L*(0,T; L*(2)) and the
mapping f — u is compact from L2(0,T; L2(2)) in L2(0,T; WhH2(Q)) in the
case ug € D(p) and the proof is finished.

Assume now that f : Q x R x RN — R satisfies the Caratheodory
conditions and operator S : L?(0,T; H'(Q2)) — L?(0,T; L*(Q)) defined by

(Su)(t,z) = f(z,u(t, x), grad,u(t,x))

satisfies hypotheses (11) - (13) with p = ¢ = 2.
One can state

Theorem 2 Under the above hypotheses, problem (16) - (18) has at least
one solution u in H(0,T; H*(Q2)).

Proof

According to Lemma 1, we can apply Proposition 1 with A = 0,
X = L*0,T;L?()), W = L?(0,T; H*(2))) and obtain the approximate
equations

8(;‘—? — Ay, + Syt 3 0.

Suppose that the norm of u,, in L?(0, T; H(Q)) denoted ||u,||w strictly
exceeds m, for every natural number m.
The approximate equations become

Oupm, = Aup + f( MUy, m grad, up,

ot

s y 3 0. 22
Tl Tamllw (22)

Multiply by u,(s,z) and integrate over [0, t]

t
%|um(t,x)|2 - %\uo(x)|2 - /Aum(s,x) (5, 7)ds+
0

t

d

+/f(x, Tm 7mgra xum)-umds:o.
A lumllw ™ [lum|lw

Integrating over €2, using the Green formula, we get
t

1
2/|um(t,x)|2dx+//]gradxum(s,a:)|2dxds)+ (23)
9) Q

0
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t

d

—i—//f(x, Ttm 7mgra wum)-umd:cdsga
- [umllw ™ [lumllw

From condition (13), when ¢ = T it yields u,, to be bounded in L?(0, T; H(Q2))
and using again (23) we see that u,, is bounded in C(0,7; H'(£2)). Then
for large m we have ||up||lw < m, that is u,, satisfies problem (16) - (18).
The regularity is obtained as in (19) - (21).

5 Ordinary Differential Equations
We take into account the two point boundary value problem:
—u"(t) + f(t,u(t),u'(t)) =0 ae. te]0,1] (24)

u(0) =a, u(l) =05 (25)

where f is Caratheodory:
- f(t,u,v) measurable in t for every u,v
- f(t,u,v) continuous in u,v a.e. t € [0, 1]
and a, b are real numbers.
We assume that

£ (t,u,0)| < g(t,u) + h(t,u)v]? (26)
with

sup |g(t, w)| € L*(0,1)

Ju|<r

sup |h(t,u)| € L=(0,1)
Ju|<r

for every r > 0, and
ft,u,v)-u>Ku) - -v—oaluf>+7v, a<l (27)
where K is a continuous, d - homogeneous function, that is
K(wu) = MK (u), A>0, d>0.

Theorem 3 Under the above hypotheses, problem (24), (25) has at least
one solution u in W21(0,1).
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Proof
Shifting the domain of f in u,v one can suppose instead of (25)

uw(0) =u(l) =0 (28)

(null Dirichlet boundary conditions).
Operator T : L?(0,1) — L?(0,1) defined by
Tu=—u"
D(T) = {u € H?(0,1);u(0) = u(1) = 0}
is maximal monotone and (I +7)~! is compact from L2(0,1) in W4(0,1).
Under condition (26) operator S : W14(0,1) — L2(0,1) defined by
(Su)(t) = f(t,u(t),u(t)) is bounded and continuous (see the Appendix).
We can use Proposition 1 with A =1, X = L2(0,1), W = W4(0,1) to
derive the existence of approximating solutions

Um () — up () + Spum(t) = 0.
Assume that [|up|[1,4 > m for every m. Then

MU (t)  mug, (t) . mum(t)

U () — s () + £ (2, =0.  (29)

[[tm]l1.4

Multiply by unm,(t) and integrate over [0, 1]

/ t)| dt+/f i (¢ mu/ <t) )um(t)dt <0.

From condition (27) one gets

1
MUy, (1) mul, (t)
dt + K — 30
/| HI? e (30)
0
Mt (t) |2
+y}dt <0
||t ]]1,4
that is
1 1
/ ol (8)[2dt — o / i (1) 2+ (31)
0 0

1
+de /K(um(t)) ol (t)dt < C.

U
[
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Let H be the indefinite integral of K. Then H (u,,(t)) is the indefinite
integral of K (um,(t)) - u),(t) and from (28), (31) we infer
1

1
[Pt —a [ lunoae < c.
0

0

From the inequality

1 1
[um (O)2dt < [ [up, (1) *dt (32)
[t

it yields {u/,} to be bounded in L?(0,1), which combined with (28) gives
{umm} bounded in H'(0,1) and in C(0,1).

Now from (29) and (26) we get {u,,} to be bounded in W21(0,1) that
is, for instance, {u,,} is bounded in W14(0, 1) too.

So for a sufficiently large m we have ||up||[1.4 < m and w,, verifies (24),
(25) which finishes the proof.

Corollary 1 Under the same hypotheses as Theorem 4, with a < 0 in
(27), the periodic problem

—ttp, () + f(t,u(t), /() =0 a.e. [0,1]
u(0) = u(1), u'(0) = v'(1)
has at least one solution u € W21(0,1).

The proof follows the same lines as in Theorem 4 because the co-
rresponding operators 17" and S, defined in this case, have the same properties
and the estimations can be derived in a similar way.

Remark 5 The classical result of Bernstein [7] ensures the existence of a

0 0
solution for the two point problem, provided f (¢, u,v), a—i(t, u,v), 6—5@, u,v)
continuous on (0,1) x R x R and
%(t,ujv) >K>0 (33)

and (26) with g(t,u), h(t,u) continuous in (0,1) x R.
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We use the Lagrange theorem

of

flt,u,v) — f(t,0,v) = %(t,ﬂ,v) U
where 7 is some point between v and 0.
Multiply by u
of ., - 2 2
f(tvuav) U= %(uuvv) “UuT + f(ta()?U) ‘u > Ku +f(t>0>v) "u

which may be more restrictive than (27).

Ezample 5 Let f(t,u,v) = a(t)u+b(t)v+c(t). Then (33) requires a(t) >
K > 0, while (27) with K(u) = u is fulfilled when a(t) > 0 only.

Example 6 We give now an example when f has quadratic growth in v
F(t,u,0) = a(t)u® 4 b(t)uPv + e(t)v®u + d(t).

Then f(t,u,v)u > b(t)uP™ - v +d(t) - u in case a(t) > 0, c(t) > 0 and (27)
is fulfilled.
Condition (33) gives

(2n + Da(t)u®™ + pb(t)uP~ - v 4 ¢(t)o? > K > 0

which fails for v = v = 0 for any a(t), b(t), c(t).

6 Appendix

We give a result concerning the Nemitsky operator in Sobolev spaces.
See also Marcus and Mizel [15] or Pascali and Sburlan [17], p. 165.
Let s,p,q be real numbers such that W14(Q) C LP() continuously i.e.

1
N

®w | =

>

=

Proposition 2 Operator S : WH4(Q2) — LP(Q) defined by

(Su)(@) = f(z, u(z), grad u(z))

where [ satisfies the assumptions
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f(z,-,-) is continuous a.e. x € Q (34)
f(-,u,v) is measurable for. every u,v (35)
[ (,0,0)] < Uw) + h(@)[u]? + K (@)|o]» (36)

with | € LP(Q), h, K € L*(Q), is bounded and continuous.

Proof

Using an argument with simple functions we see that .S maps measurable
functions in measurable functions. From condition (36) and W4(Q) C
L#(Q) continuously it yields that operator S is well-defined and bounded.

Consider now a sequence {u, } C W14(Q2) such that u, — u in W4(Q),
that is up, — w in L*(Q2) and grad w, — grad w in L(€2). To show that S
is continuous it suffices to show that there is an infinite subsequence such
that S(uj) — S(u) strongly in LP(€2).

We choose an infinite subsequence of {u,}, which we denote {u;}, such
that

grad u; — grad u  a.e. €.

Then, by (34)  S(uj) = S(u) a.e. in €.

From (36) it follows that functions |f(z,u;(z),grad wu;(z))[P are equi-
integrable over (2, so the almost everywhere convergence of S(u;) to S(u)
implies that S(u;) — S(u) strongly in LP(€2) and the proof is finished.

Corollary 2 Operator S : Wh4(Q) — LP(Q) defined by

(Su)(x) = g(x, u(z))

where g satisfies the assumptions

g(x,) is continuous a.e. x € <) (37)

g(-,u) is measurable for every u (38)
S

lg(z, u)| < U(x) + h(z)[ul? (39)

with 1 € LP(Q), h € L*>(Q), is bounded and continuous.
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