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Abstract

We consider a discrete-time periodic generalized Riccati equation.
We investigate a few iterative methods for computing the stabilizing
solution. The first method is the Kleinman algorithm which is a special
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method of consistent iterations and two new Stein iterations. The pro-
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1 Introduction

Since the pioneer Kalman’s work [15], the matrix Riccati differential (dif-
ference) equations played a central role in the derivation of the solution of
various robust linear quadratic control problems as well as H2 filtering and
H∞-filtering problems, see e.g. [2, 4, 17] for the continuous-time case, or
[3, 9] for the discrete-time case. In [20] where introduced the Riccati differen-
tial equations of stochastic control in the case of continuous-time stochastic
systems. In the case of discrete-time systems affected by sequences of in-
dependent random variables, the discrete-time Riccati equations (DTREs)
were introduced in [7, 8, 22].

To solve the linear quadratic optimal control problems on infinite time
horizon, a crucial role is played by the so called stabilizing solution of a
DTRE. An unified approach of the problem of the existence and uniqueness
of a wide class of discrete-time Riccati equations both from deterministic
and stochastic framework may be found in the Chapter 5 of [5] for the finite
dimensional case and in [19] for infinite dimensional case.

Lately, there is an increasing interest in investigation of several control
problems for systems with periodic coefficients. For the readers convenience
we refer to [1, 3, 6, 18] and the references therein. Based on the uniqueness
of the bounded and stabilizing solution one deduces that in the case of a
DTRE with periodic coefficients the bounded and stabilizing solution is also
a periodic sequence. This fact is important in the applications because it
is necessary finite memory for the offline computation of the gain matrix of
the optimal control.

It is worth mentioning that we do not know apriori neither an initial
value nor a boundary value of the stabilizing solution of a DTRE. Hence, the
existing methods for the computation of a solution with given initial values
or boundary values problem for a differential (difference) equation cannot be
applied to compute the bounded and stabilizing solution of a DTRE. In the
deterministic context there exist two important classes of numerical methods
to compute the stabilizing solution of a DTRE namely, the method based
on invariant subspaces of associated canonical system [1, 3, 18] and iterative
methods [16]. In the case of DTREs from stochastic control the methods
based on invariant subspaces are not applicable. Therefore, in this case only
iterative methods are mainly used to compute the stabilizing solution of a
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Riccati differential (difference) equation. The most popular iterative method
is an improved version of Kleinman algorithm. Even if the Kleinman type
algorithm is a fast convergent method it has the disadvantage that in the
stochastic case require that at each step to compute the unique bounded
solution (periodic solution in the periodic case) of a perturbed Lyapunov
equation. The numerical computation of such a solution becomes difficult
in the case of systems of high dimension of their state space and /or large
values of periods in the case of systems with periodic coefficients. That is
why in practice were proposed other iterative methods which can be easier
implementable (see e.g. Chapter 5 [5] or [14]).

In this paper we consider four iterative methods for computing the sta-
bilizing solution of the discrete-time generalized Riccati equations. There
are two Stein iterations which we apply for solving the problem. Similar al-
gorithms for solving the discrete-type algebraic Riccati equations have been
developed in our previous investigations [11, 12, 13, 14].

In the last part of the paper, we propose a method to compute the pe-
riodic solution occurring at each step of a Kleinman type algorithm. Our
method is based on the so called H-representation technique recently de-
veloped in [21]. This method allows us to reduce the computation of the
periodic solution of a Lyapunov type equation to the computation of the
periodic solution of a backward affine equation on an euclidian space of di-
mension n(n+ 1)/2, n being the dimension of the state space of controlled
system under consideration. In the last section of the paper, a comparison
between several types of numerical methods discussed in the paper is done.

2 A class of discrete-time Riccati equations of
stochastic control (DTRE)

2.1 On the stabilizing solution of DTRE

Consider the discrete-time Riccati equation (DTRE):

X(t) = G(X(t+ 1)) :=
∑r

j=0 AT
j (t)X(t+ 1)Aj(t)

−(
∑r

j=0 AT
j (t)X(t+ 1)Bj(t) + L(t))

×
(
R(t) +

∑r
j=0 BT

j (t)X(t+ 1)Bj(t)
)−1

×(
∑r

j=0 BT
j (t)X(t+ 1)Aj(t) + LT (t)) +M(t), t ∈ Z.

(1)
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This equation arising in connection with the linear quadratic optimization
problem described by the discrete-time linear stochastic system:

x(t+ 1) = [A0(t) +

r∑
j=1

wj(t)Aj(t)]x(t) + [B0(t) +

r∑
j=1

wj(t)Bj(t)]u(t) (2)

and the cost functional

J(u, x0) =

∞∑
t=0

E [

(
x(t)
u(t)

)T
(

M(t) L(t)

LT (t) R(t)

) (
x(t)

u(t)

)
] (3)

with M(t) = MT (t), R(t) = RT (t). In (2), w(t) = (w1(t), . . . , wr(t))
T , t ≥ 0

are independent random vector with zero mean and satisfying
E[w(t)wT (t)] = Ir for all t ≥ 0. In (2) and (3), x(t) ∈ Rn is the state of the
system and u(t) ∈ Rm are the control parameters.

We make the assumption:

H1) There exists an integer θ ≥ 1 such thatAj(t+θ) = Aj(t); Bj(t+θ) =
Bj(t); 0 ≤ j ≤ r;M(t+ θ) = M(t); L(t+ θ) = L(t);R(t+ θ) = R(t), t ∈ Z.

Definition 1 A solution {Xs(t)}t∈Z of DTRE (1) is named stabilizing so-
lution if the zero state equilibrium of the closed-loop system

x(t+ 1) = [A0(t) +B0(t)Fs(t) +
r∑

j=1

wj(t) (Aj(t) +Bj(t)Fs(t))]x(t) (4)

is exponentially stable in mean square (ESMS), where

Fs(t) = −
(
R(t) +

∑r
j=0 BT

j (t)Xs(t+ 1)Bj(t)
)−1

×(
∑r

j=0 BT
j (t)Xs(t)Aj(t) + LT (t)).

(5)

From the developments from Section 5.8 in [5] one deduces a set of neces-
sary and sufficient conditions which guarantee the existence and uniqueness
of the bounded and stabilizing solution of DTRE (1).

Proposition 2.1 Under the assumption H1), the following are equiva-
lent:

(i) DTRE (1) has a unique bounded and stabilizing solution {Xs(t)}t∈Z
with the properties:

(a) Xs(·) is periodic with period θ;
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(b)

R(t) +

r∑
j=0

BT
j (t)Xs(t+ 1)Bj(t) > 0, forall t ∈ Z ; (6)

(ii) the system (2) is stochastic stabilizable and there exist symmetric
matrices X̂(t), 0 ≤ t ≤ θ − 1, satisfying:(

M(t)− X̂(t) L(t)

LT (t) R(t)

)
+

r∑
j=0

(Aj(t) Bj(t))
T X̂(t+ 1)(Aj(t) Bj(t)) > 0

(7)
0 ≤ t ≤ θ − 1, with X̂(θ) = X̂(0).

Remark 2.1 a) Since any assumption regarding the sign of the quadratic
form from (3) was not made, it is not expected to obtain information about
the sign of the bounded and stabilizing solution Xs(·). The only relevant
information about the solution of the linear quadratic optimization problem
described by (2) and (3) is the sign condition (6). In this case, the quadratic
part of the discrete-time Riccati equation (1) has defined sign.

b) Even if the stabilizing solution Xs(·) is defined for all t ∈ Z, from
Proposition 2.1 one obtains that under the assumption H1) it is sufficient
to compute a finite number of values Xs(t), 0 ≤ t ≤ θ − 1.

The next result may be used to compute a stabilizing control in a state
feedback form for the system (2).

Proposition 2.2 Under the assumption H1) the following are equivalent:

(i) the system (2) is stochastically stabilizable;

(ii) there exist the matrices Y (t) = Y T (t) > 0 ∈ Rn×n,Γ(t) ∈ Rm×n, 0 ≤
t ≤ θ − 1, satisfying the following system of LMIs:

−Y (t) (Ã0(t))
T . . . (Ãr(t))

T

Ã0(t) −Y (t+ 1) . . . 0

. . . . . . . . . . . .

Ãr(t) 0 . . . −Y (t+ 1)

 < 0 (8)

Ãj(t) = Aj(t)Y (t)+Bj(t)Γ(t), j = 0, . . . , r, 0 ≤ t ≤ θ−1, with Y (θ) = Y (0).

If (Y (t),Γ(t)), 0 ≤ t ≤ θ − 1 is a solution of the LMIs (8), then the
control u(t) = F (t)x(t) stabilizes the system (2), where

F (t) = Γ(t− [
t

θ
]θ)Y −1(t− [

t

θ
]θ), t ≥ 0. (9)
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(iii) there exist the matrices Y (t) = Y T (t) ∈ Rn×n,Γ(t) ∈ Rm×n, 0 ≤ t ≤
θ − 1, satisfying the following system of LMIs:

−Y (t+ 1) Ã0(t) . . . Ãr(t)

(Ã0(t))
T −Y (t) . . . 0

. . . . . . . . . . . .

(Ãr(t))
T 0 . . . −Y (t)

 < 0 (10)

0 ≤ t ≤ θ − 1, with Y (θ) = Y (0). If (Y (t),Γ(t)), 0 ≤ t ≤ θ − 1 is a solution
of the LMIs (10), then the stabilizing feedback gain can be obtained as in
(9).

Proof. One obtains immediately applying Theorem 3.11 and Theorem
3.12 [5] in the case of the corresponding closed-loop systems completed with
the Schur complement technique.

2.2 Several iterative procedures to compute the stabilizing
solution of DTRE

Here we recall several iterative methods which allow us to compute the
bounded and stabilizing solution of DTRE (1).

I. A Newton-Kantorovich type method

For each k = 1, 2, . . . one computes X(k)(·) as the unique periodic solu-
tion of the discrete-time backward affine equation:

X(k)(t) =
∑r

j=0(Aj(t)+Bj(t)F
(k−1)(t))TX(k)(t+1)

(Aj(t)+Bj(t)F
(k−1)(t)) +QF (k−1)(t)

(11)

where

QF (k−1)(t) =

(
In

F (k−1)(t)

)T (
M(t) L(t)

LT (t) R(t)

) (
In

F (k−1)(t)

)
(12)

and

F (k)(t) = −
∑r

j=0

(
R(t) +BT

j (t)X
(k)(t+ 1)Bj(t)

)−1

×(
∑r

j=0 BT
j (t)X

(k)(t)Aj(t) + LT (t))
(13)

if k ≥ 1, while F (0)(t) is a stabilizing feedback gain for the system (2).
For example F (0)(t) could be computed via formula (9) either based on a
solution of the system of LMIs (8) or a solution of the system of LMIs (10).
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One may show in a standard way that if the conditions from Proposition
2.1 (ii) are fulfilled, then for each k ≥ 1 the control u(t) = F (k)(t)x(t)
stabilizes the system (2), thus one obtains that (11) has an unique bounded
solution and this solution is periodic with period θ. Furthermore, we have
X(k)(t) ≥ X(k+1)(t) ≥ . . . ≥ X̂(t), k ≥ 1, t ∈ Z, X̂(·) being any θ-periodic
sequence satisfying (7) and limk→∞X(k)(t) = Xs(t), t ∈ Z.

Even if the Newton-Kantorovich type method described by (11)-(13)
has a quadratic convergence rate it is less used being difficult implementable.
The difficulties consist in finding the periodic solution of (11) in the case r ≥
1 and θ ≥ 1 sufficiently large. That is way ofen alternative methods where
derived. Even if those alternative methods have only linear convergence
rate, they have the advantage to be easier implementable.

Below, we present some alternative methods to compute the stabilizing
solution of DTRE (1). In Section 4 we shall present a method which allows
us to compute the θ-periodic solution of (11).

II. A successive approximation method

Step 0. We choose a θ-periodic sequence {F (0)(t)}t∈Z with the property

that the control u(t) = F (0)(t)x(t) stabilizes the system (2). For the de-
signing of such a stabilizing feedback gain, may be used, for example, the
procedure described by Proposition 2.2. One computes X(1)(·) as a solution
of the following system of LMIs:

X(1)(t) ≥
∑r

j=0 (Aj(t) +Bj(t)F
(0)(t))TX(1)(t+ 1)

(Aj(t) +Bj(t)F
(0)(t)) +QF (0)(t) + ε2 In

(14)

0 ≤ t ≤ θ− 1, with X(1)(θ) = X(1)(0), ε is a fixed parameter, QF (0)(t) being
computed as in (12) with F (k−1)(t) replaced by F (0)(t).

Step k, k ≥ 1. Compute X(k+1)(·) by

X(k+1)(t) =
∑r

j=0 (Aj(t) +Bj(t)F
(k)(t))TX(k)(t+ 1)

(Aj(t) +Bj(t)F
(k)(t)) +QF (k)(t) + ε2

k+1 In ,
(15)

QF (k)(t) being computed as in (12) while F (k)(t) is computed as in (13).
Since the algorithm described by (14)-(15) is a special case of that de-
scribed in Section 5.7 from [5], we may conclude that under the conditions
of Proposition 2.1 X(1)(t) ≥ . . . ≥ X(k)(t) ≥ X(k+1)(t) ≥ . . . ≥ X̂(t) and
limk→∞X(k)(t) = Xs(t), 0 ≤ t ≤ θ − 1.
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In the next section we shall discuss some procedural aspects regarding
the computation of a solution of the system of LMIs (14).

III. Stein iterations

Step 0. Coincides with Step 0 from the previous algorithm. One com-

putes X(1)(·), 0 ≤ t ≤ θ − 1 as a solution of the system of LMIs (14). Also
one computes F (1)(t) as in (13) ) for k = 1.

Step k. k ≥ 1. Compute X(k+1)(·) as a unique θ−periodic solution of
the backward Stein equation:

X(k+1)(t)

= (A0(t) +B0(t)F
(k)(t))TX(k+1)(t+ 1)(A0(t) +B0(t)F

(k)(t))

+
∑r

j=1 (Aj(t) +Bj(t)F
(k)(t))TX(k)(t+ 1)

×(Aj(t) +Bj(t)F
(k)(t)) +QF (k)(t) + ε2

k+1 In

(16)

t ∈ Z, F (k)(t) being computed as in (13).

Some procedural issues regarding the computation of the θ−periodic so-
lution of (16) will be discussed in the next section.

IV. Modified Stein iterations

Step 0. Coincides with Step 0 from the algorithm described in II. One

computes X(1)(·) as a solution of the system of LMIs (14) and F (1)(t) as in
(13) for k = 1.

Step k. k ≥ 1. One computes X(k+1)(·) as a unique θ−periodic solution
of the backward Stein equation:

X(k+1)(t)

= (A0(t) +B0(t)Γ
(k)(t))TX(k+1)(t+ 1)(A0(t) +B0(t)Γ

(k)(t))

+
∑r

j=1 (Aj(t) +Bj(t)Γ
(k)(t))TX(k)(t+ 1)

×(Aj(t) +Bj(t)Γ
(k)(t)) +QΓ(k)(t) + ε2

k+1 In

(17)
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where Γ(k)(t) = F1(t) if k = 1 and

Γ(k)(t) = −
(
R(t) +BT

0 (t)X
(k)(t+ 1)B0(t)

+
∑r

j=1 BT
j (t)X

(k−1)(t+ 1)Bj(t)
)−1

×(BT
0 (t)X

(k)(t+ 1)A0(t)

+
∑r

j=1 BT
j (t)X

(k−1)(t+ 1)Aj(t) + LT (t))

(18)

if k ≥ 2 and QΓ(k)(t) one computes as in (12) taking Γ(k)(t) instead of
F (k−1)(t).

3 Procedural issues

In this section we shall analyze some aspects regarding the computation
of the sequences of approximations of the stabilizing solution of DTRE (1)
described in the previous section.

3.1 The computation of the θ-periodic solution of a backward
Stein equation with periodic coefficients

The discrete-time backward affine equations (16)-(17) can be regarded
as special cases of the discrete-time backward affine equation:

X(t) = ÂT (t)X(t+ 1)Â(t) +H(t) (19)

t ∈ Z, where {Â(t)}t∈Z ⊂ Rn×n, {H(t)}t∈Z ⊂ Sn are periodic sequences of
period θ. Assume that the discrete-time linear equation

X(t+ 1) = Â(t)X(t) (20)

is exponentially stable.
Let T (t, s) = Â(t − 1)Â(t − 2)...Â(s) if t > s and T (t, s) = In if t = s,
t, s ∈ Z.

The solutions of equation (19) have the representation:

X(t) = T T (θ, t)X(θ)T (θ, t) +
θ−1∑
s=t

T T (s, t)H(s)T (s, t), t ≤ θ − 1.

The periodicity condition X(0) = X(θ) yields

X(θ) = T T (θ, 0)X(θ)T (θ, 0) + H̃ (21)
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where

H̃ =
θ−1∑
s=0

T T (s, 0)H(s)T (s, 0). (22)

Since the zero solution of (20) is exponentially stable it follows that the
spectral radius of the monodromy matrix T (θ, 0) satisfies ρ(T (θ, 0)) < 1
(see e.g. [3] or [10]).

Hence (21) has a unique solution which may be computed using any
existing solver for time invariant Stein equations. Instead of (22), the last
term H̃ from (21) may be computed also as: H̃ = X(0; θ, 0) where t →
X(t; θ, 0) is the solution of (19) satisfying the final condition X(θ; θ, 0) = 0.
Then, the other values X(t), 1 ≤ t ≤ θ − 1 of the θperiodic solution of the
equation (19) are obtained recursively from this equation.

Remark 3.1. The unique θ-periodic solution of (16) and (17), respec-
tively can be computed according to the procedure described before taking
successively Â(t) = A0(t) + B0(t)F

(k)(t) in the case of equation (16) or
Â(t) = A0(t) +B0(t)Γ

(k)(t) in the case of equation (17).

3.2 An iterative method for computation of a solution of a
system of LMIs (14)

Let {F (0)(t)}t∈Z be a θ-periodic sequence such that the zero solution of
the closed-loop system

x(t+ 1) = [A0(t) +B0(t)F
(0)(t) +

r∑
j=1

wj(t)(Aj(t) +Bj(t)F
(0)(t))]x(t) (23)

is ESMS. Therefore, the discrete-time backward affine equation

Y (t) =
r∑

j=0

(Aj(t) +Bj(t)F
(0)(t))TY (t+ 1)(Aj(t) +Bj(t)F

(0)(t))

+QF (0)(t) + 2ε2In (24)

has a unique θ-periodic solution {Ỹ (t)}t∈Z.
Let Y (k)(t) be the θ-periodic solution of the discrete-time backward affine
equation:

Y (k)(t) = [A0(t) +B0(t)F
(0)(t)]TY (k)(t+ 1)

× [A0(t) +B0(t)F
(0)(t)] +H(k)(t)

(25)
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where

H(k)(t) =
r∑

j=1

(Aj(t) +Bj(t)F
(0)(t))TY (k−1)(t+ 1)(Aj(t) +Bj(t)F

(0)(t))

+QF (0)(t) + 2ϵ2In, k ≥ 1, (26)

with

Y (0)(t) = 0, t ∈ Z. (27)

Proposition 3.1. If the zero solution of (23) is ESMS then the θ-
periodic sequences {Y (k)(t)}t∈Z, k = 0, 1, ... are well defined via (25)-(27)
and have the properties:

a) 0 = Y (0)(t) ≤ Y (1)(t) ≤ ... ≤ Y (k)(t) ≤ ... ≤ Ỹ (t);
b) lim

k→∞
Y (k)(t) = Ỹ (t), t ∈ Z, Ỹ (·) being the θperiodic solution of 24.

If k0 is such that 0 ≤
r∑

j=1
(Aj(t) + Bj(t)F

(0)(t))T (Y (k0)(t+ 1)− Y (k0−1)(t+

1))(Aj(t) + Bj(t)F
(0)(t)) ≤ ε2In, 0 ≤ t ≤ θ − 1, then X(1)(t) , Y (k0)(t),

0 ≤ t ≤ θ − 1, satisfy the system of LMIs (14).
The proof is a special case of Corollary 5.3 from [5].
Remark 3.2. For the computation of the θ-periodic solution of the

equation (25)-(27) one may use the procedure described in Subsection 3.1.

4 The computation of the θ-periodic solution of a
discrete-time backward Stein equation of stochas-
tic control

In this section we shall present an alternative method for the computa-
tion of the θ-periodic solution of backward affine equations of type (11)-(13).
These equations are special cases of a discrete-time backward affine equation
of the form:

X(t) =
r∑

j=0

ÂT
j (t)X(t+ 1)Âj(t) +G(t) (28)

where {Âj(t)}t∈Z ⊂ Rn×n, 0 ≤ j ≤ r, {G(t)}t∈Z ⊂ Sn are periodic sequences
of period θ. Assume that the zero solution of the discrete-time stochastic
linear equation:

x(t+ 1) = (Â0(t) +

r∑
j=1

wj(t)Âj(t))x(t) (29)
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is ESMS. Under these condition (28) has a unique bounded on Z solution
X̂(·) and additionally that solution is periodic with period θ.

Reasoning as in the case of the equation (24) one obtains that X̂(t) =
lim
k→∞

Z(k)(t), where Z(k)(·), k ≥ 1 is the unique θ-periodic solution of the

backward Stein equation:

Z(k)(t) = ÂT
0 (t)Z

(k)(t+1)Â0(t)+
r∑

j=1

ÂT
j (t)Z

(k−1)(t+1)Âj(t)+G(t)

Z(0)(t) = 0, t ∈ Z. (30)

In the following, we shall provide an alternative method which allows us to
avoid the iterative process described in (30) to obtain the θ-periodic solution
of (28).

4.1 The periodic solution of a discrete-time backward affine
equation on an Euclidian space

Let us consider the discrete-time equation

x(t) = M̂(t)x(t+ 1) + g(t) (31)

where {M̂(t)}t∈Z ⊂ Rn̂×n̂, {g(t)}t∈Z ⊂ Rn̂ are periodic sequences of period
θ. Assume that the linear equation associated to (31):

x(t) = M̂(t)x(t+ 1) (32)

has not nonzero solutions which are periodic of period θ. We set T̂ (t, s) =
M̂(t)M̂(t + 1)...M̂(s − 1) if t < s and T̂ (t, s) = In̂ if t = s. T̂ (t, s) is the
anti-causal evolution operator defined on Rn̂ by the discrete-time backward
equation (32).

The solutions of (31) have the representation:

x(t) = T̂ (t, τ)x(τ) +

τ−1∑
s=t

T̂ (t, s)g(s), ∀ t ≤ τ − 1 ∈ Z.

The periodicity condition x(0) = x(θ) leads to

x(0) = T̂ (0, θ)x(0) +

θ−1∑
s=0

T̂ (0, s)g(s).
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Hence, the initial condition x(0) of the unique θ-periodic solution of (31)
one obtains solving the system of linear equations

(In̂ − T̂ (0, θ))ζ = g̃ (33)

where

g̃ =

θ−1∑
s=0

T̂ (0, s)g(s). (34)

Since the linear equation (32) has no nonzero solutions which are periodic
sequences of period θ we deduce that det(In̂− T̂ (0, θ)) ̸= 0. This allows us to
conclude that the equation (33)-(34) has a unique solution ζ = x̃(0) = x̃(θ).
The other values x̃(t), 1 ≤ t ≤ θ−1 of the periodic solution x̃(·) are obtained
directly from (31).

Remark 4.1 The term g̃ from (34) may be obtain also from g̃ =
x(0; θ, 0) where ttox(t; θ, 0) is the solution of (31) satisfying the final condi-
tion x(θ; θ, 0) = 0.

4.2 The H-representation technique revisited

In this paragraph we briefly recall the method of H-representation of
a Lyapunov operator in terms of a matrix on the space of dimension n̂ =
n(n+1)

2 . This allows us to rewrite the equation (28) in the form of an equation
of type (31).

For details we refer to [21], where this method was introduced. We re-
call that if X ∈ Rn×n, then Ψ(X) = V ec(X) = (x(1), x(2), ..., x(n))T ∈ Rn2

where x(i) is the ith line of the matrix X, 1 ≤ i ≤ n.
Let E11, E12, ..., E1n, E22, ..., E2n, ..., En−1n−1, En−1n, Enn be the standard
base of the space of symmetric matrices Sn.
This means that Epq = (epq(i, j))i,j=1,n with epq(ij) = 1 if (ij) ∈ {(pq), (qp)}
and epq(ij) = 0 otherwise. If X ∈ Sn is an arbitrary symmetric matrix, then

X = E11x1 + ...+E1nxn + E22xn+1 + ...+ Ennxn̂. (35)

We introduce the linear operator φ : Sn → Rn̂ defined by

φ(X) = x (36)

where x = (x1, x2, ..., xn̂)
T is the vector whose components occur in the right

hand side of (35). We introduce also the matrix

H =
(
Ψ(E11) Ψ(E12) ... Ψ(E1n) Ψ(E22) ... Ψ(En−1n) Ψ(Enn)

)
.
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The matrix H has n2 lines and n(n+1)
2 columns. Also, rankH = n(n+1)

2 . For
details see for example [21].
From the definition of the operators φ, Ψ and of the matrix H, we obtain
the following fundamental relation:

Ψ(X) = Hφ(X) (37)

for all X ∈ Sn. Let L(t) : Sn → Sn,

L(t)X =

r∑
j=0

ÂT
j (t)XAj(t). (38)

Applying Lemma 2.2. in [21] we may write

Ψ(L(t)X) = (

r∑
j=0

ÂT
j (t)⊗ ÂT

j (t))Ψ(X)

for all X ∈ Sn, ⊗ being the Kronecker product. Using (37) we obtain

Ψ(L(t)X) = (

r∑
j=0

ÂT
j (t)⊗ ÂT

j (t))Hφ(X), ∀X ∈ Sn. (39)

4.3 The computation of the θ-periodic solution of the equa-
tion (28)

Now we show how the computation of the θ-periodic solution of (28) can
be reduced to the computation of the θ-periodic solution of an equation of
type (31.

First, let us remark that (38) allows us to write (28) in a compact form:

X(t) = L(t)X(t+ 1) +G(t) (40)

Since Ψ : Rn×n → Rn2
is an isomorphism we may deduce that the equation

(40) is equivalent to the equation:

Ψ(X(t)) = Ψ(L(t)X(t+ 1)) + Ψ(G(t)). (41)

Based on (37) and (39) we rewrite (41) in the form

Hφ(X(t)) = (

r∑
j=0

ÂT
j (t)⊗ ÂT

j (t))Hφ(X(t+ 1)) +Hφ(G(t)). (42)
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Multiplying to the left (42) by HT and taking into account that HTH is
invertible, we obtain that x(t) , φ(X(t)) is a solution of the discrete-time
backward equation on Rn̂:

x(t) = M(t)x(t+ 1) + g(t) (43)

where

M(t) =

r∑
j=0

(HTH)−1HT (ÂT
j (t)⊗ ÂT

j (t))H (44)

and

g(t) = φ(G(t)). (45)

We have:
Proposition 4.1 (i) If {X(t)}t∈Z is a global solution of equation (28)

then {x(t)}t∈Z defined by x(t) = φ(X(t)), t ∈ Z is a global solution of
equation (43)-(45).

(ii) If {x̃(t)}t∈Z is a global solution of the backward affine equation (43)-
(45), then {X̃(t)}t∈Z defined by X̃(t) = φ−1(x̃(t)) is a global solution of
equation (28).

Proof. (i) follows immediately from the previous developments.
(ii) Let x̃(·) be a global solution of (43)-(45). If X̃(t) = φ−1(x̃(t)), t ∈ Z,

we define ∆(t) = X̃(t)−L(t)X̃(t+1)−G(t). We have to show that ∆(t) = 0,
for all t ∈ Z. The previous equality is rewritten as:

X̃(t) = L(t)X̃(t+ 1) +G(t) + ∆(t). (46)

Using again (37), (39) and taking into account that φ(X̃(t)) = x̃(t) we
deduce from (46) that

Hx̃(t) = (

r∑
j=0

ÂT
j (t)⊗ ÂT

j (t))Hx̃(t+ 1) +Hφ(G(t)) +Hφ(∆(t)). (47)

Multiplying to the left (47) by HT and taking into account that HTH is
invertible, we obtain via (44) and (45) that:

X̃(t) = M(t)x̃(t+ 1) + g(t) + φ(∆(t)).

Since x̃(·) is a solution of (43)-(45) we infer that φ(∆(t)) = 0, t ∈ Z. Taking
into account that φ is an invertible operator, we may conclude that ∆(t) = 0
for all t ∈ Z, which ends the proof.
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Remark 4.2 It is easy to see that x̃(t), t ∈ Z, is a θperiodic solution of
(43)-(45) if and only if φ−1(x̃(t)), t ∈ Z is a θ-periodic solution of (28).

Proposition 4.2 If the zero solution of equation (29) is ESMS then
the zero solution is the only one θ-periodic solution of the backward linear
equation

x(t) = M(t)x(t+ 1) (48)

associated to (43)-(45).

Proof. Let {x̂(t)}t∈Z be a θ-periodic solution of (48). Let X̂(t) =
φ−1(x̂(t)), t ∈ Z. From Proposition 4.1 and Remark 4.2 we deduce that
X̂(·) is a θ-periodic solution of the linear backward equation

X(t) = L(t)X(t+ 1). (49)

Applying Theorem 2.5 and Theorem 3.11 in [5] we deduce that if the zero-
solution of (29) is ESMS, then the discrete-time backward equation (49) has
a unique, periodic solution of period θ. Hence, X̂(t) = 0, t ∈ Z. This allows
us to deduce that x̂(t) = φ(0) = 0, t ∈ Z. Thus the proof is complete.

So, the computation of the value x̃(θ) of the θ-periodic solution of the

equation (43)-(45) can be performed solving the linear system of n(n+1)
2

scalar equations with n(n+1)
2 scalar unknowns:

(I − T (0, θ))ζ = g̃ (50)

where

g̃ =

θ−1∑
s=0

T (0, s)g(s) (51)

T (t, s) being the anticausal linear evolution operator on Rn̂ defined by the
backward linear equation (48) and g(s) are the ones defined in (45).

If x̃(θ) = ζ is the unique solution of the linear equation (50)-(51) then
the value X̃(θ) of the θ-periodic solution of (28) is obtained by

X̃(θ) = φ−1(x̃(θ)). (52)

To this end, the components of the vector x̃(θ) are plugged in the right hand
side of (35). The other related values X̃(t), 1 ≤ t ≤ θ − 1 of the θ-periodic
solution X̃(·) are obtained directly from (28).
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5 Numerical experiments

In this section we present how the considered iterations work for finding
a stabilizing solution to (1). We will carry out experiments for numerically
solving discrete-time generalized Riccati equation (1).

Our experiments are executed in MATLAB on a 2,16GHz Intel(R) Duo
CPU computer. We denote tol- a small positive real number denoting the
accuracy of computation; E = maxt ||X(k)(t) − G(X(k)(t + 1))||2. We use
the following stop criterion for all algorithms:

E ≤ tol .

5.1 Example 1

Consider a discrete-time 3-periodic linear system with r=1, t=0,1,2,
given by (n=3) the coefficient matrices:

A0(0)=


−0.466 0.0100 0.002

−0.09 −0.45 0.1

−0.035 −0.01 −0.485

 , A0(1)=


−0.33 −0.03 −0.004

−0.075 −0.49 0.09

−0.025 −0.015 −0.495

 ,

A0(2)=


−0.45 0 −0.001

−0.095 −0.505 0.1

0.033 −0.02 −0.473

 , A1(0)=


−0.055 −0.05 −0.008

0.13 −0.12 0

−0.3 0.25 0

 ,

A1(1)=


−0.04 0.02 −0.02

0.2 −0.035 −0.01

−0.1 −0.25 −0.06

 , A1(2)=


0 −0.01 0.04

0.1 −0.055 0

0.02 0.025 −0.045

 ,

B0(0)=


1 12 −5

0.1 −1 1.5

0.2 −0.5 0

 , B0(1)=


1 8 4.5

−0.5 −3 −2.5

−1 −0.8 −0.6

 ,

B0(2)=


1 −6.5 −8

1 −2.5 6

−0.8 −0.8 −0.4

 , B1(0)=


−1 10 −5

0.2 −1 −1.5

−0.2 −2 −0.5

 ,
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B1(1)=


1 −6.5 −8

1 −2.5 6

−0.8 −0.8 −0.4

 , B1(2)=


−1 10 −5

0.2 −1 −1.5

−0.2 −2 −0.5

 .

L(0)= 1
90


−0.5 −0.3 −0.4

−0.25 −0.4 −0.6

−0.5 −0.5 −0.8

 , L(1)= 1
90


−0.5 −0.14 −0.8

−0.5 −0.5 −0.8

−0.6 −0.8 −0.3

 .

L(2)= 1
90


−0.3 −0.15 −0.7

−0.6 −0.6 −0.5

−0.4 −0.7 −0.4

 ,



R(0) = diag(1.5; 1.5; 1.5),

R(1) = diag(1; 1; 1),

R(2) = diag(1.25; 1.25; 1.25),

M(0) = M(1) = M(2) = 0 .

.

We have found the solutions Y (0), Y (1), Y (2) using inequality (8). Then
we compute F (0), F (1), F (2) using (9). Thus, we can apply iteration (11).
After one iteration steps we obtain the stabilizing solution to (1). The
solution is negative definite. Next, we compute the stabilizing solution using
iteration (15). We solve inequality (14) for finding X(1)(0), X(1)(1), X(1)(2).
We need three LMI iteration steps for solving (14). We find the solution
after 7 iteration steps with (15).

Next iteration (16). The solution is obtained after 5 iteration steps.

Next iteration (17). The solution is obtained after 6 iteration steps.

5.2 Two additional examples

Let us consider the new discrete-time 3-periodic linear system with r=1,
t=0,1,2. The matrix coefficients are constructed using the following MAT-
LAB code:

Aj(t) = randn(n, n); m1 = max(Aj(t)); m2 = max(m1);

Aj(t) = Aj(t)/(10 ∗m2); j = 0, 1

Bj(t) = randn(n, n); m1 = max(Bj(t)); m2 = max(m1);

Bj(t) = Bj(t)/(m2); j = 0, 1

L(t) = abs(randn(n, n)); m1 = max(L(t)); m2 = max(m1);

L(t) = −L(t)/(80 ∗m2);

M(t) = zeros(n, n);
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5.2.1 Example 2.1

R(0) = eye(n, n) ∗ 1.05; R(1) = eye(n, n) ∗ 0.175; R(2) = eye(n, n) ∗
0.125.

In this table the full execution time for each iteration is given. This in-
cludes the time for computing the initial point X(1)(0), X(1)(1), X(1)(2) and
the time for approximating the stabilizing solution using the corresponding
iteration formula.

Results for n = 8 and tol = 1e − 5 for 50 runs are: the CPU time for
iteration (11) is 18.0620 seconds; the average number of iteration steps is
2.02 and the maximal error from all runs is E = 3.7852e− 06.

Results for n = 8 and tol = 1e − 5 for 50 runs are: the CPU time for
iteration (15) is 3.7970 seconds; the average number of iteration steps is
4.1800 and the maximal error from all runs is E = 4.8106e− 06.

Results for n = 8 and tol = 1e − 5 for 50 runs are: the CPU time for
iteration (16) is 4.6560 seconds; the average number of iteration steps is 4.0
and the maximal error from all runs is E = 9.0651e− 06.

Results for n = 8 and tol = 1e − 5 for 50 runs are: the CPU time for
iteration (17) is 4.77 seconds; the average number of iteration steps is 5.06
and the maximal error from all runs is E = 6.9399e− 06.

Results for n = 12 and tol = 1e − 5 for 50 runs are: the CPU time for
iteration (11) is 125.9060 seconds; the average number of iteration steps is
2.08 and the maximal error from all runs is E = 9.5401e− 06.

Results for n = 12 and tol = 1e − 5 for 50 runs are: the CPU time for
iteration (15) is 11.7350 seconds; the average number of iteration steps is
4.26 and the maximal error from all runs is E = 9.4270e− 06.

Results for n = 12 and tol = 1e − 5 for 50 runs are: the CPU time for
iteration (16) is 12.8440 seconds; the average number of iteration steps is
4.160 and the maximal error from all runs is E = 8.4240e− 06.

Results for n = 12 and tol = 1e − 5 for 50 runs are: the CPU time for
iteration (17) is 15.0380 seconds; the average number of iteration steps is
5.36 and the maximal error from all runs is E = 9.0533e− 06.

5.2.2 Example 2.2

We choose: R(0) = eye(n, n) ∗ 1.45; R(1) = eye(n, n) ∗ 0.175; R(2) =
eye(n, n) ∗ 0.125.

We present the full information about each iteration. This includes the
time for approximating the stabilizing solution using the corresponding it-
eration formula. The initial point X(1)(0), X(1)(1), X(1)(2) is the same for
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all iterations and it is computing via (14).

Results for n = 18 and tol = 1e − 4 for 50 runs are: the CPU time for
iteration (11) is 811.5010 seconds; the average number of iteration steps is
2.36 and the maximal error from all runs is E = 9.8986e− 05.

Results for n = 18 and tol = 1e − 4 for 50 runs are: the CPU time
for iteration (15) is 0.622 seconds; the average number of iteration steps is
4.5800 and the maximal error from all runs is E = 8.2157e− 05.

Results for n = 18 and tol = 1e − 4 for 50 runs are: the CPU time
for iteration (16) is 3.312 seconds; the average number of iteration steps is
4.2200 and the maximal error from all runs is E = 9.3210e− 05.

Results for n = 18 and tol = 1e − 4 for 50 runs are: the CPU time for
iteration (17) is 3.61 seconds; the average number of iteration steps is 5.46
and the maximal error from all runs is E = 8.6559e− 05.

6 Conclusion

We have considered four iterations for computing the stabilizing solution
to (1). In order to execute iterations (11), (16) and (17) we have to solve
a linear system with a big dimension, i.e. it has the size (θ n)2 × (θ n)2. In
the same time iteration (15) gives us a possibility to find X(k+1)(t) in the
following way:

X(k+1)(θ − 2) =

=
∑r

j=0 (Aj(θ − 2) +Bj(θ − 2)F (k)(θ − 2))TX(k)(θ − 1)

×(Aj(θ − 2) +Bj(θ − 2)F (k)(θ − 2)) +QF (k)(θ − 2) + ε2

k+1 In

X(k+1)(θ − 3) =

=
∑r

j=0 (Aj(θ − 3) +Bj(θ − 3)F (k)(θ − 3))TX(k+1)(θ − 2)

×(Aj(θ − 3) +Bj(θ − 3)F (k)(θ − 3)) +QF (k)(θ − 3) + ε2

k+1 In

....

X(k+1)(0) =

=
∑r

j=0 (Aj(0) +Bj(0)F
(k)(0))TX(k+1)(1)(Aj(0) +Bj(0)F

(k)(0))

+QF (k)(0) + ε2

k+1 In
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X(k+1)(θ − 1) =

=
∑r

j=0 (Aj(θ − 1) +Bj(θ − 1)F (k)(θ − 1))TX(k+1)(0)

×(Aj(θ − 1) +Bj(θ − 1)F (k)(θ − 1)) +QF (k)(θ − 1) + ε2

k+1 In

We call the last iteration the improved approximation method. This
method is applied to Example 2.2. Results for n = 18 and tol = 1e− 4 for
50 runs are: the CPU time is 0.02 seconds; the average number of iteration
steps is 2.06 and the maximal error from all runs is E = 3.7096e− 05.
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