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Abstract

In this paper we establish second-order sufficient optimality con-
ditions for a boundary control problem that has been introduced and
studied by three of the authors in the preprint arXiv:1407.3916. This
control problem regards the viscous Cahn–Hilliard equation with pos-
sibly singular potentials and dynamic boundary conditions.
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1 Introduction

This paper deals with second-order optimality conditions of a special
boundary control problem for the viscous Cahn–Hilliard equation with dy-
namic boundary conditions. It continues the work [2] by three of the present
authors in which the first-order necessary conditions of optimality were de-
rived. For the work of other authors concerning the optimal control of
Cahn–Hilliard systems, we refer the reader to the references given in [2].

Crucial contributions in [2] were the derivation of the adjoint problem,
whose form turned out to be nonstandard, and an existence result for its
solutions. As is well known, first-order conditions are in the case of non-
linear equations usually not sufficient for optimality. Also, second-order
sufficient optimality conditions for nonlinear optimal control problems are
essential both in the numerical analysis and for the construction of reliable
optimization algorithms. For instance, the strong convergence of optimal
controls and states for numerical discretizations of the problem rests heavily
on the availability of second-order sufficient optimality conditions; further-
more, one can show that numerical algorithms such as SQP methods are
locally convergent if second-order sufficient optimality conditions hold true.
For a general discussion of second-order sufficient conditions for elliptic and
parabolic control problems, we refer the reader to [6] and references therein;
for the case of control problems involving phase field models, we refer to,
e. g., [3, 5].

In this paper, we aim to establish second-order sufficient optimality con-
ditions for the boundary control problem studied in [2]. To this end, we
assume that an open, bounded and connected set Ω ⊂ R3, with smooth
boundary Γ and unit outward normal n, and some final time T > 0 are
given, and we set Q := Ω× (0, T ) and Σ := Γ× (0, T ). Moreover, we denote
by ∆Γ, ∇Γ, ∂n, the Laplace–Beltrami operator, the surface gradient, and
the outward normal derivative on Γ, in this order. We make the following
general assumptions:

(A1) There are given nonnegative constants bQ, bΣ, bΩ, bΓ, b0, which do
not all vanish, functions zQ ∈ L2(Q), zΣ ∈ L2(Σ), zΩ ∈ L2(Ω), zΓ ∈ L2(Γ),
as well as a constant M0 > 0 and functions uΓ,min ∈ L∞(Σ) and uΓ,max ∈
L∞(Σ) with uΓ,min ≤ uΓ,max a. e. in Σ.
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(A2) There are given constants −∞ ≤ r− < 0 < r+ ≤ +∞ and two
functions f, fΓ : (r−, r+) → [0,+∞) such that the following holds:

f, fΓ ∈ C4(r−, r+), f(0) = fΓ(0) = 0, (1)

f ′′ and f ′′Γ are bounded from below, (2)

lim
r↘r−

f ′(r) = lim
r↘r−

f ′Γ(r) = −∞ and lim
r↗r+

f ′(r) = lim
r↗r+

f ′Γ(r) = +∞ , (3)

|f ′(r)| ≤ η |f ′Γ(r)|+ C for some η, C > 0 and every r ∈ (r−, r+). (4)

In fact, (1) is fully used only in the last part of the paper, and many of our
results hold under a weaker assumption. We also note that the conditions
(1)–(4) allow for the possibility of splitting f ′ in (3) in the form f ′ = β + π,
where β is a monotone function that diverges at r± and π is a perturbation
having a bounded derivative. Since the same is true for fΓ, the general
assumptions of [1] are satisfied. Typical and important examples for f and
fΓ are the classical regular potential freg and the logarithmic double-well
potential flog given by

freg(r) =
1

4
(r2 − 1)2 , r ∈ R (5)

flog(r) = ((1 + r) ln(1 + r) + (1− r) ln(1− r))− cr2 , r ∈ (−1, 1), (6)

where in the latter case we assume that c > 0 is so large that flog is non-
convex.

With the above assumptions, we consider the following tracking type
optimal boundary control problem:

(CP) Minimize

J(y, yΓ, uΓ) :=
bQ
2

∥y − zQ∥2L2(Q) +
bΣ
2

∥yΓ − zΣ∥2L2(Σ)

+
bΩ
2

∥y(T )− zΩ∥2L2(Ω) +
bΓ
2

∥yΓ(T )− zΓ∥2L2(Γ) +
b0
2
∥uΓ∥2L2(Σ) (7)

subject to the control constraint

uΓ ∈ Uad :=
{
vΓ ∈ H1(0, T ;L2(Γ)) ∩ L∞(Σ) :

uΓ,min ≤ vΓ ≤ uΓ,max a. e. on Σ, ∥∂tvΓ∥2 ≤M0

}
(8)

and to the Cahn–Hilliard equation with nonlinear dynamic boundary con-
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ditions as the state system,

∂ty −∆w = 0 in Q, (9)

w = ∂ty −∆y + f ′(y) in Q, (10)

∂nw = 0 on Σ, (11)

yΓ = y|Γ on Σ, (12)

∂tyΓ + ∂ny −∆ΓyΓ + f ′Γ(yΓ) = uΓ on Σ, (13)

y(·, 0) = y0 in Ω, yΓ(·, 0) = y0Γ on Γ. (14)

Here, and throughout this paper, we generally assume that the admissible
set Uad is nonempty. Moreover, we postulate:

(A3) y0 ∈ H2(Ω), y0Γ := y0|Γ ∈ H2(Γ), and it holds (notice that y0 ∈
C0(Ω))

r− < y0 < r+ in Ω. (15)

We remark at this place that in [1] the additional assumption ∂ny0 = 0 was
made; this postulate is however unnecessary for the results of [1] to hold,
since it is nowhere used in the proofs.

The system (9)–(14) is an initial-boundary value problem with nonlinear
dynamic boundary condition for a Cahn–Hilliard equation. In this connec-
tion, the unknown y usually stands for the order parameter of an isothermal
phase transition, and w denotes the chemical potential of the system.

Our paper is organized as follows: in Section 2, we provide and collect
some results proved in [2, 1] concerning the state system, and we study
a certain linear counterpart thereof that will be employed repeatedly in
the later analysis. In Section 3, the existence of the second-order Fréchet
derivative of the control-to-state mapping will be shown. Section 4 then
brings the derivation of the second-order sufficient condition of optimality.

In order to simplify notation, we will in the following write yΓ for the
trace y|Γ of a function y ∈ H1(Ω) on Γ, and we introduce the abbreviations

V := H1(Ω), H := L2(Ω), VΓ := H1(Γ), HΓ := L2(Γ), H := H ×HΓ,

V := {(v, vΓ) ∈ V × VΓ : vΓ = v|Γ}, G := H2(Ω)×H2(Γ),

X := H1(0, T ;HΓ) ∩ L∞(Σ), Y := H1(0, T ;H) ∩ L∞(0, T ;V), (16)
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and endow these spaces with their natural norms. Moreover, for the generic
Banach space X we denote by X∗ its dual space and by ∥ · ∥X its norm.
Furthermore, the symbol ⟨ · , · ⟩ stands for the duality pairing between the
spaces V ∗ and V , where it is understood that H is embedded in V ∗ in the
usual way, i. e., such that we have ⟨u, v⟩ = (u, v) for every u ∈ H and
v ∈ V with the standard inner product ( · , · ) of H. Finally, for u ∈ V ∗

and v ∈ L1(0, T ;V ∗) we define their generalized mean values uΩ ∈ R and
vΩ ∈ L1(0, T ), respectively, by setting

uΩ :=
1

|Ω|
⟨u, 1⟩ and vΩ(t) := (v(t))Ω for a. e. t ∈ (0, T ), (17)

where |Ω| stands for the Lebesgue measure of Ω.
During the course of our analysis, we will make repeated use of the

elementary Young’s inequality

ab ≤ δa2 +
1

4δ
b2 for every a, b ≥ 0 and δ > 0, (18)

of Hölder’s inequality, and of Poincaré’s inequality

∥v∥2V ≤ Ĉ
(
∥∇v∥2H + |vΩ|2

)
for every v ∈ V , (19)

where Ĉ > 0 depends only on Ω.
Next, we recall a tool that is commonly used in the context of problems

related to the Cahn–Hilliard equation. We define

domN := {v∗ ∈ V ∗ : vΩ∗ = 0} and N : domN → {v ∈ V : vΩ = 0} (20)

by setting, for v∗ ∈ domN,

Nv∗ ∈ V, (Nv∗)
Ω = 0, and

∫
Ω
∇Nv∗ · ∇z dx = ⟨v∗, z⟩ ∀ z ∈ V . (21)

That is, v = Nv∗ is the unique weak solution with vΩ = 0 to the Neumann
problem for−∆with datum v∗. Indeed, if v∗ ∈ H, then the above variational
equation means that −∆Nv∗ = v∗ in Ω and ∂nNv∗ = 0 on Γ. Moreover, we
have

⟨u∗,Nv∗⟩ = ⟨v∗,Nu∗⟩ =
∫
Ω
(∇Nu∗) · (∇Nv∗) dx ∀u∗, v∗ ∈ domN, (22)

whence also, for every v∗ ∈ H1(0, T ;V ∗) satisfying (v∗)
Ω = 0 a.e. in (0, T ),

2⟨∂tv∗(t),Nv∗(t)⟩ =
d

dt
∥v∗(t)∥2∗ for a.a. t ∈ (0, T ), (23)

where we set ∥v∗∥2∗ :=
∫
Ω
|∇Nv∗|2 dx for every v∗ ∈ V ∗.
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2 The state equation

At first, we specify our notion of solution to the state system (9)–(14).

Definition 1. Suppose that the general assumptions (A1)–(A3) are ful-
filled, and let uΓ ∈ X be given. By a solution to (9)–(14) we mean a triple
(y, yΓ, w) that satisfies

y ∈W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;H2(Ω)), (24)

yΓ ∈W 1,∞(0, T ;HΓ) ∩H1(0, T ;VΓ) ∩ L∞(0, T ;H2(Γ)), (25)

yΓ(t) = y(t)|Γ for a. a. t ∈ (0, T ), (26)

r− < inf ess
Q

y ≤ sup ess
Q

y < r+ , r− < inf ess
Σ

yΓ ≤ sup ess
Σ

yΓ < r+ , (27)

w ∈ L∞(0, T ;H2(Ω)), (28)

as well as, for almost every t ∈ (0, T ), the variational equations∫
Ω
∂ty(t) v dx+

∫
Ω
∇w(t) · ∇v dx = 0 , (29)∫

Ω
w(t) v dx =

∫
Ω
∂ty(t) v dx+

∫
Γ
∂tyΓ(t) vΓ dΓ +

∫
Ω
∇y(t) · ∇v dx

+

∫
Γ
∇ΓyΓ(t) · ∇ΓvΓ dΓ +

∫
Ω
f ′(y(t)) v dx

+

∫
Γ

(
f ′Γ(yΓ(t))− uΓ(t)

)
vΓ dΓ, (30)

for every v ∈ V and every (v, vΓ) ∈ V, respectively, and the Cauchy condition

y(0) = y0 , yΓ(0) = y0Γ . (31)

Remark 1. It is worth noting that (recall the notation (17))

(∂ty(t))
Ω = 0 for a. a. t ∈ (0, T ) and y(t)Ω = m0 for every t ∈ [0, T ],

where m0 = (y0)
Ω is the mean value of y0, (32)

as usual for the Cahn–Hilliard equation.

Now recall that Uad is a convex, closed, and bounded subset of the
Banach space X and thus contained in some bounded open ball in X. For
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convenience, we fix such a ball once and for all, noting that any other such
ball could be used instead. The next assumption is thus rather a denotation:

(A4) The set U is some open ball in X that contains Uad and satisfies

∥uΓ∥H1(0,T ;L2(Γ)) + ∥uΓ∥L∞(Σ) ≤ R ∀uΓ ∈ U, (33)

where R > 0 is a fixed given constant.
Concerning the well-posedness of the state system, we have the following

result.

Theorem 1. Suppose that the general hypotheses (A1)–(A4) are fulfilled.
Then the state system (9)–(14) has for any uΓ ∈ U a unique solution
(y, yΓ, w) in the sense of Definition 1. Moreover, there are constants K∗

1 > 0,
K∗

2 > 0, and r̃−, r̃+ ∈ (r−, r+), which depend only on Ω, T , the shape of the
nonlinearities f and fΓ, the initial datum y0, and the constant R, such that
the following holds:
(i) Whenever (y, yΓ, w) is the solution to (9)–(14) associated with some
uΓ ∈ U, then

∥(y, yΓ)∥W 1,∞(0,T ;H)∩H1(0,T ;V)∩L∞(0,T ;G) + ∥w∥L∞(0,T ;H2(Ω)) ≤ K∗
1 , (34)

r̃− ≤ y ≤ r̃+ a. e. in Q, r̃− ≤ yΓ ≤ r̃+ a. e. on Σ. (35)

(ii) Whenever (yi, yi,Γ, wi), i = 1, 2, are the solutions to (9)–(14) associated
with ui,Γ ∈ U, i = 1, 2, then

∥(y1, y1,Γ)− (y2, y2,Γ)∥H1(0,T ;H)∩L∞(0,T ;V) ≤ K∗
2 ∥u1,Γ − u2,Γ∥L2(Σ) . (36)

Proof. We may apply Theorems 2.2, 2.3, 2.4, 2.6 and Corollary 2.7 of [1]
(where V has a slightly different meaning with respect to the present paper)
to deduce that (i) holds true. Moreover, assertion (ii) is a consequence of
[2, Lemma 4.1].

Remark 2. It follows from Theorem 1 that the control-to-state operator

S : U →W 1,∞(0, T ;H) ∩H1(0, T ;V) ∩ L∞(0, T ;G), uΓ 7→ (y, yΓ) , (37)

is well defined and Lipschitz continuous from U, viewed as a subset of L2(Σ),
into Y. Moreover, owing to (34) and (35), we may assume (by possibly
choosing a larger K∗

1 ) that for any uΓ ∈ U the corresponding state (y, yΓ) =
S(uΓ) satisfies

max
1≤i≤4

(
∥f (i)(y)∥L∞(Q) + ∥f (i)Γ (yΓ)∥L∞(Σ)

)
≤ K∗

1 . (38)
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Next, in order to ensure the solvability of a number of linearized systems
later in this paper, we introduce the linear initial-boundary value problem

∂tχ−∆µ = 0 in Q, (39)

µ = ∂tχ−∆χ+ λχ+ g in Q, (40)

∂nµ = 0 on Σ, (41)

χΓ = χ|Γ on Σ, (42)

∂tχΓ + ∂nχ−∆ΓχΓ + λΓ χΓ = gΓ on Σ, (43)

χ(0) = χ0 in Ω, χΓ(0) = χ0Γ := χ
0|Γ on Γ, (44)

and its variational counterpart, namely, for almost every t ∈ (0, T ),∫
Ω
∂tχ(t) v dx+

∫
Ω
∇µ(t) · ∇v dx = 0 for every v ∈ V, (45)∫

Ω
µ(t)v dx =

∫
Ω
∂tχ(t) v dx+

∫
Γ
∂tχΓ(t) vΓ dΓ +

∫
Ω
∇χ(t) · ∇v dx

+

∫
Γ
∇ΓχΓ(t) · ∇ΓvΓ dΓ +

∫
Ω

(
λ(t)χ(t) + g(t)

)
v dx

+

∫
Γ

(
λΓ(t)χΓ(t)− gΓ(t)

)
vΓ dΓ for every (v, vΓ) ∈ V, (46)

together with the Cauchy condition

χ(0) = χ0, χΓ(0) = χ0Γ . (47)

We have the following result.

Lemma 1. Suppose that (g, gΓ) ∈ H1(0, T ;H) ∩ (L∞(Q) × L∞(Σ)) and
(λ, λΓ) ∈W 1,∞(0, T ;H)∩ (L∞(Q)×L∞(Σ)) are given, and let χ0 ∈ H2(Ω)
be such that χ0Γ := χ

0|Γ ∈ H2(Γ). Then the problem (39)–(44) has a unique
solution in the sense that there is a unique triple (χ, χΓ, µ) that fulfills (45)–
(47) and whose components satisfy the analogue of the regularity require-
ments (24), (25), and (28), respectively. Moreover, there exists a constant
K∗

3 > 0, which depends only on Ω, T , ∥λ∥L∞(Q), and ∥λΓ∥L∞(Σ), such that
the following holds: whenever χ0 = 0, then

∥(χ, χΓ)∥H1(0,T ;H)∩L∞(0,T ;V) ≤ K∗
3 ∥(g, gΓ)∥L2(0,T ;H) . (48)
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Proof. In the following, we denote by Ci, i ∈ N, positive constants that
only depend on the quantities mentioned in the assertion. First, we observe
that the results concerning existence, uniqueness, and regularity follow from
a direct application of [1, Cor. 2.5]. Now assume that χ0 = 0. Then we
have χΩ(t) = 0 for almost every t ∈ (0, T ). We thus may choose in (45)
v = N(χ(t)), and in (46) v = −χ(t). Adding the resulting equalities and
integrating with respect to time, we arrive at the identity

1

2

(
∥χ(t)∥2∗ + ∥χ(t)∥2H + ∥χΓ(t)∥2HΓ

)
+

∫ t

0

∫
Ω
|∇χ|2 dx ds +

∫ t

0

∫
Γ
|∇ΓχΓ|2 dΓ ds

=

∫ t

0

∫
Ω

(
−g − λχ

)
χdx ds +

∫ t

0

∫
Γ

(
gΓ − λΓ χΓ

)
χΓ dΓ ds

for all t ∈ [0, T ]. Estimating the right-hand side with the help of Young’s
and Poincaré’s inequalities, and applying Gronwall’s lemma, we have that

∥(χ, χΓ)∥L∞(0,T ;H)∩L2(0,T ;V) ≤ C1 ∥(g, gΓ)∥L2(0,T ;H). (49)

Moreover, we may insert v = N(∂tχ(t)) in (45) and v = −∂tχ(t) in (46).
Adding the resulting equations, integrating with respect to time, and using
(21), we obtain the identity∫ t

0
∥∂tχ(s)∥2∗ ds +

∫ t

0

∫
Ω
|∂tχ|2 dx ds +

∫ t

0

∫
Γ
|∂tχΓ|2 dΓ ds

+
1

2
(∥∇χ(t)∥2H + ∥∇ΓχΓ(t)∥2HΓ

)

=

∫ t

0

∫
Ω
(−g − λχ) ∂tχdx ds +

∫ t

0

∫
Γ
(gΓ − λΓ χΓ) ∂tχΓ dΓ ds . (50)

Invoking Young’s inequality, we can easily infer from (49) and (50) the esti-
mate

∥(χ, χΓ)∥H1(0,T ;H)∩L∞(0,T ;V) ≤ C2 ∥(g, gΓ)∥L2(0,T ;H), (51)

whence the assertion follows.

3 Differentiability properties of the control-to-state
mapping

The main objective in this section is to prove that the control-to-state
mapping is twice continuously differentiable. We begin our analysis with
the following result.
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Theorem 2. Suppose that (A1)–(A4) are fulfilled. Then the following
holds true:
(i) The control-to-state mapping S is Fréchet differentiable in U as a map-
ping from U ⊂ X to Y.
(ii) Let uΓ ∈ U, and let (y, yΓ) = S(uΓ) be the associated solution to the
state system (9)–(14). Then the Fréchet derivative DS(uΓ) ∈ L(X,Y) is
given as follows: if hΓ ∈ X, then DS(uΓ)hΓ = (ξ, ξΓ), where (ξ, ξΓ, ζ) with

ξ ∈W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;H2(Ω)), (52)

ξΓ ∈W 1,∞(0, T ;HΓ) ∩H1(0, T ;VΓ) ∩ L∞(0, T ;H2(Γ)), (53)

ζ ∈ L∞(0, T ;H2(Ω)), (54)

is the unique solution to the linearized system

∂tξ −∆ζ = 0 in Q, (55)

ζ = ∂tξ −∆ξ + f ′′(y) ξ in Q, (56)

∂nζ = 0 on Σ, (57)

ξΓ = ξ|Γ on Σ, (58)

∂tξΓ + ∂nξΓ −∆ΓξΓ + f ′′Γ(yΓ) ξΓ = hΓ on Σ, (59)

ξ(0) = 0 in Ω, ξΓ(0) = 0 on Γ. (60)

(iii) The mapping DS : U → L(X,Y), uΓ 7→ DS(uΓ), is Lipschitz continuous
on U in the following sense: there is a constant K∗

4 > 0, which depends
only on the data and the constant R, such that for all u1,Γ, u2,Γ ∈ U and all
hΓ ∈ X it holds that

∥(DS(u1,Γ)−DS(u2,Γ))hΓ∥Y ≤ K∗
4 ∥u1,Γ − u2,Γ∥L2(Σ) ∥hΓ∥L2(Σ). (61)

Proof. First observe that the system (55)–(60) is of form (39)–(44), and
with (χ, χΓ, µ) := (ξ, ξΓ, ζ), g ≡ 0, gΓ := hΓ, and (λ, λΓ) := (f ′′(y), f ′′Γ(yΓ)),
the assumptions of Lemma 1 are fulfilled. Consequently, for every hΓ ∈ X,
there is a unique triple (ξ, ξΓ, ζ) that satisfies the corresponding variational
system (45)–(47) and whose components have the regularity properties in
(52), (53) and (54). We may therefore apply [2, Thm. 4.2] to conclude the
validity of the assertions (i) and (ii).

It remains to show (iii). To this end, let uΓ ∈ U be arbitrary and let
kΓ ∈ X be such that uΓ + kΓ ∈ U. We denote (yk, ykΓ) = S(uΓ + kΓ) and
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(y, yΓ) = S(uΓ), and we assume that any hΓ ∈ X with ∥hΓ∥X = 1 is given.
It then suffices to show that there is some L > 0, independent of hΓ, uΓ and
kΓ, such that

∥(ξk, ξkΓ)− (ξ, ξΓ)∥Y ≤ L ∥kΓ∥L2(Σ) , (62)

where (ξk, ξkΓ) = DS(uΓ+kΓ)hΓ and (ξ, ξΓ) = DS(uΓ)hΓ. For this purpose,
in the following we denote by Ci, i ∈ N, positive constants that depend
neither on uΓ, kΓ nor on the special choice of hΓ ∈ X with ∥hΓ∥X = 1 .
To begin with, observe that the triple (ξ̂, ξ̂Γ, ζ̂) := (ξk, ξkΓ, ζ

k)− (ξ, ξΓ, ζ) is
the unique solution to the variational analogue of the initial-boundary value
problem

∂tξ̂ −∆ζ̂ = 0 in Q, (63)

ζ̂ = ∂tξ̂ −∆ξ̂ + f ′′(y) ξ̂ + ξk(f ′′(yk)− f ′′(y)) in Q, (64)

∂nζ̂ = 0 on Σ, (65)

ξ̂Γ = ξ̂|Γ on Σ, (66)

∂tξ̂Γ + ∂nξ̂ −∆Γξ̂Γ + f ′′Γ(yΓ) ξ̂Γ = −ξkΓ(f ′′Γ(ykΓ)− f ′′Γ(yΓ)) on Σ, (67)

ξ̂(0) = 0 in Ω, ξ̂Γ(0) = 0 on Γ. (68)

Moreover, the components of (ξ̂, ξ̂Γ, ζ̂) enjoy the regularity properties indi-
cated in (24), (25), and (28), respectively.

Now observe that it follows from Theorem 1, from part (i) of this proof,
and from (38), that (g, gΓ) := (ξk (f ′′(yk) − f ′′(y)),−ξkΓ (f ′′(ykΓ) − f ′′(yΓ)))
belongs to H1(0, T ;H)∩ (L∞(Q)×L∞(Σ)), while (λ, λΓ) := (f ′′(y), f ′′Γ(yΓ))
belongs to W 1,∞(0, T ;H) ∩ (L∞(Q)× L∞(Σ)). Moreover, (38) also implies
that for every uΓ ∈ U we have for (y, yΓ) = S(uΓ) the estimate

∥f ′′(y)∥L∞(Q) + ∥f ′′Γ(yΓ)∥L∞(Σ) ≤ K∗
1 .

Hence, it follows from estimate (48) in Lemma 1 that

∥(ξ̂, ξ̂Γ)∥Y ≤ C1

(
∥ξk (f ′′(yk)− f ′′(y))∥L2(Q)

+ ∥ξkΓ (f ′′Γ(ykΓ)− f ′′Γ(yΓ))∥L2(Σ)

)
. (69)

Now, by the mean value theorem and (38), there exists a positive constant
C2 such that almost everywhere in Q (on Σ, respectively)

|f ′′(yk)−f ′′(y)| ≤ C2 |yk−y| and |f ′′Γ(ykΓ)−f ′′Γ(yΓ)| ≤ C2 |ykΓ−yΓ| . (70)
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At this point, we recall that U is a bounded subset of X. Since uΓ + kΓ ∈ U

and ∥hΓ∥X = 1, we thus can infer from (38) and from the estimate (48)
in Lemma 1 that (ξk, ξkΓ) is bounded in Y independently of kΓ, uΓ and the
choice of hΓ ∈ X with ∥hΓ∥X = 1. Using the embedding V ⊂ L4(Ω) and the
stability estimate proved in Theorem 1, we therefore have that

∥ξk (f ′′(yk)− f ′′(y))∥2L2(Q) ≤ C2

∫ T

0

∫
Ω

(
|ξk|2 |yk − y|2

)
dx dt

≤ C2

∫ T

0

(
∥ξk(t)∥2L4(Ω) ∥y

k(t)− y(t)∥2L4(Ω)

)
dt

≤ C3 ∥(yk, ykΓ)− (y, yΓ)∥2Y ≤ C4 ∥kΓ∥2L2(Σ) . (71)

Since an analogous estimate holds for the second summand in the bracket
on the right-hand side of (69), the assertion follows.

With the Lipschitz estimate (61) at hand, we are now in the position
to show the existence of the second-order Fréchet derivative. We have the
following result.

Theorem 3. Assume that (A1)–(A4) are fulfilled. Then the following
holds true:
(i) The control-to-state operator S is twice Fréchet differentiable in U as a
mapping from U ⊂ X to Y.
(ii) For all uΓ ∈ U, the second Fréchet derivative D2S(uΓ) ∈ L(X,L(X,Y))
is defined as follows: if hΓ, kΓ ∈ X are arbitrary, then D2S(uΓ)[hΓ, kΓ] =:
(η, ηΓ) is the unique solution to the initial-boundary value problem

∂tη −∆ϑ = 0 in Q, (72)

ϑ = ∂tη −∆η + f ′′(y) η + f (3)(y)φψ in Q, (73)

∂nϑ = 0 on Σ, (74)

ηΓ = η|Γ on Σ, (75)

∂tηΓ + ∂nη −∆ΓηΓ + f ′′Γ(yΓ) ηΓ = −f (3)Γ (yΓ)φΓ ψΓ on Σ, (76)

η(0) = 0 in Ω, ηΓ(0) = 0 on Γ, (77)

where we have put

(y, yΓ) = S(uΓ), (φ,φΓ) = DS(uΓ)hΓ, (ψ,ψΓ) = DS(uΓ)kΓ . (78)
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(iii) The mapping D2S : U → L(X,L(X,Y)), uΓ 7→ D2S(uΓ), is Lipschitz
continuous on U in the following sense: there exists a constant K∗

5 > 0,
which depends only on the data and on the constant R, such that for every
u1,Γ, u2,Γ ∈ U and all hΓ, kΓ ∈ X it holds that

∥(D2S(u1,Γ)−D2S(u2,Γ))[hΓ, kΓ]∥Y

≤ K∗
5 ∥u1,Γ − u2,Γ∥L2(Σ) ∥hΓ∥L2(Σ) ∥kΓ∥L2(Σ). (79)

Proof. At first, it is easily verified that the pair (g, gΓ) := (f (3)(y)φψ,

−f (3)Γ (yΓ)φΓ ψΓ) belongs to H1(0, T ;H)∩ (L∞(Q)×L∞(Σ)). We thus can
argue as in the proof of Theorem 2 to deduce from Lemma 1 that the system
(72)–(77) is uniquely solvable in the sense that its variational counterpart has
a unique solution (η, ηΓ, ϑ) whose components enjoy the regularity indicated
in (24), (25), and (28), respectively. Moreover, by (48) we have the estimate

∥(η, ηΓ)∥Y ≤ C1

(∥∥∥f (3)(y)φψ∥∥∥
L2(Q)

+
∥∥∥f (3)Γ (yΓ)φΓ ψΓ

∥∥∥
L2(Σ)

)
. (80)

Here, and in the remainder of the proof of parts (i), (ii), we denote by Ci,
i ∈ N, positive constants that do not depend on the quantities hΓ, kΓ, and
uΓ. Using (38), and invoking the embedding V ⊂ L4(Ω), we find that∥∥∥f (3)(y)φψ∥∥∥2

L2(Q)
≤ C2

∫ T

0

∫
Ω
|φ|2 |ψ|2 dx dt

≤ C2

∫ T

0
∥φ(t)∥2L4(Ω) ∥ψ(t)∥

2
L4(Ω) dt ≤ C3 ∥φ∥2L∞(0,T ;V ) ∥ψ∥

2
L∞(0,T ;V )

≤ C4 ∥hΓ∥2L2(Σ) ∥kΓ∥
2
L2(Σ) , (81)

where the validity of the last inequality can be seen as follows: by definition
(recall (78)), (φ,φΓ) is the unique solution to the linear problem (55)–(60).
We can therefore infer from (48) that ∥(φ,φΓ)∥Y ≤ C5 ∥hΓ∥L2(Σ). By the
same token, we conclude that ∥(ψ,ψΓ)∥Y ≤ C6 ∥kΓ∥L2(Σ). The asserted
inequality therefore follows from the definition of the norm of the space Y,
and we obtain from similar reasoning that also∥∥∥f (3)Γ (yΓ)φΓ ψΓ

∥∥∥
L2(Σ)

≤ C7 ∥hΓ∥L2(Σ) ∥kΓ∥L2(Σ) .

Hence, we get

∥(η, ηΓ)∥Y ≤ C8 ∥hΓ∥L2(Σ) ∥kΓ∥L2(Σ) . (82)
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In particular, it follows that the bilinear mapping X × X 7→ Y, [kΓ, hΓ] 7→
(η, ηΓ), is continuous.

Now we prove the assertions concerning existence and form of the second
Fréchet derivative. Since U is open, there is some Λ > 0 such that uΓ+kΓ ∈ U

whenever ∥kΓ∥X ≤ Λ. In the following, we only consider such perturbations
kΓ ∈ X. We observe that for (y, yΓ) = S(uΓ) and for (yk, ykΓ) = S(uΓ + kΓ)
the global estimates (34)–(36) and (38) are satisfied.

After these preparations, we notice that it suffices to show that∥∥DS(uΓ + kΓ)−DS(uΓ)−D2S(uΓ)kΓ
∥∥
L(X,Y)

= sup
∥hΓ∥X=1

∥∥(DS(uΓ + kΓ)−DS(uΓ)−D2S(uΓ)kΓ
)
hΓ

∥∥
Y

≤ C ∥kΓ∥2L2(Σ) (83)

with a constant C independent of kΓ.

To this end, let hΓ ∈ X be arbitrary with ∥hΓ∥X = 1. We put (ρ, ρΓ) =
DS(uΓ + kΓ)hΓ, define the pairs (φ,φΓ), (ψ,ψΓ) as in (78), and define

(ν, νΓ) := (ρ, ρΓ)− (φ,φΓ)− (η, ηΓ).

Observe that the components of (ν, νΓ) have the regularity properties indi-
cated in (24) and (25), respectively. Moreover, in view of (83), we need to
show that

∥(ν, νΓ)∥Y ≤ C ∥kΓ∥2L2(Σ) . (84)

Now, invoking the explicit expressions for the quantities defined above,
it is easily seen that the triple (ν, νΓ, π) (where π is defined below) is the
unique solution to the variational counterpart of the linear initial-boundary
value problem

∂tν −∆π = 0 in Q, (85)

π = ∂tν −∆ν + f ′′(y) ν + σ in Q, (86)

∂nπ = 0 on Σ, (87)

νΓ = ν|Γ and ∂tνΓ + ∂nν −∆ΓνΓ + f ′′Γ(yΓ) νΓ = σΓ on Σ, (88)

ν(0) = 0 in Ω, νΓ(0) = 0 on Γ, (89)
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where we have put

σ := ρ
(
f ′′(yk)− f ′′(y)

)
− f (3)(y)φψ,

σΓ := −ρΓ
(
f ′′Γ(y

k
Γ)− f ′′Γ(yΓ)

)
+ f

(3)
Γ (yΓ)φΓ ψΓ . (90)

In view of (38), and since it is easily checked that (σ, σΓ) belongs to the
space H1(0, T ;H) ∩ (L∞(Q) × L∞(Σ)), we may again invoke the estimate
(48) in Lemma 1 to conclude that (84) is satisfied if only

∥(σ, σΓ)∥L2(0,T ;H) ≤ C ∥kΓ∥2L2(Σ) . (91)

Applying Taylor’s theorem to f ′′, and recalling (38), we readily see that
there is a function ωf ∈ L∞(Q) such that, a. e. in Q,

f ′′(yk)− f ′′(y) = f (3)(y) (yk − y − ψ) + f (3)(y)ψ + ωf (y
k − y)2 . (92)

Hence, we have that

σ = ρ f (3)(y) (yk − y − ψ) + ψ f (3)(y) (ρ− φ) + ρωf (y
k − y)2 . (93)

Now observe that from the proof of Fréchet differentiability (see inequality
(4.5) in the proof of [2, Thm. 4.2]) and from (61) we can conclude the
estimates

∥(yk, ykΓ)− (y, yΓ)− (ψ,ψΓ)∥Y ≤ C9 ∥kΓ∥2L2(Σ) ,

∥(ρ, ρΓ)− (φ,φΓ)∥Y ≤ C10 ∥kΓ∥L2(Σ) . (94)

Moreover, we can infer from inequality (36) in Theorem 1 that

∥(yk, ykΓ)− (y, yΓ)∥Y ≤ K∗
2 ∥kΓ∥L2(Σ) , (95)

and it follows from Lemma 1 that (ρ, ρΓ) is bounded in Y by a positive
constant that is independent of kΓ, hΓ ∈ X with ∥kΓ∥X ≤ Λ and ∥hΓ∥X = 1.
Finally, we conclude from Lemma 1 (ii) that with a suitable constant C11 > 0
it holds

∥(ψ,ψΓ)∥Y ≤ C11 ∥kΓ∥L2(Σ) . (96)

After these preparations, and invoking Hölder’s inequality and the continuity
of the embeddings V ⊂ L4(Ω) and V ⊂ L6(Ω), we can estimate as follows:

∥σ∥2L2(Q) ≤ C12

∫ T

0

∫
Ω

(
|ρ|2 |yk − y − ψ|2 + |ψ|2|ρ− φ|2 + |ρ|2|yk − y|4

)
dx dt



56 P. Colli, M. H. Farshbaf-Shaker, G. Gilardi, J. Sprekels

≤ C12

∫ T

0

(
∥ρ(t)∥2L4(Ω) ∥(y

k − y − ψ)(t)∥2L4(Ω)

+ ∥ψ(t)∥2L4(Ω) ∥ρ(t)− φ(t)∥2L4(Ω) + ∥ρ(t)∥2L6(Ω) ∥y
k(t)− y(t)∥4L6(Ω)

)
dt

≤ C13 sup
t∈(0,T )

(
∥ρ(t)∥2V ∥(yk − y − ψ)(t)∥2V + ∥ψ(t)∥2V ∥ρ(t)− φ(t)∥2V

+ ∥ρ(t)∥2V ∥yk(t)− y(t)∥4V
)

≤ C14 ∥kΓ∥4L2(Σ). (97)

By the same reasoning, a similar estimate can be derived for ∥σΓ∥L2(Σ),
which concludes the proof of the assertions (i) and (ii).

Next, we prove the assertion (iii). To this end, suppose that uΓ ∈ U and
that hΓ and kΓ are arbitrarily chosen in X, and let δΓ ∈ X be arbitrary with
uΓ+δΓ ∈ U. In the following, we will denote by Ci, i ∈ N, positive constants
that do not depend on any of these quantities. We put

(y, yΓ) = S(uΓ), (yδ, yδΓ) = S(uΓ + δΓ),

(φ,φΓ) = DS(uΓ)hΓ, (φδ, φδ
Γ) = DS(uΓ + δΓ)hΓ,

(ψ,ψΓ) = DS(uΓ)kΓ, (ψδ, ψδ
Γ) = DS(uΓ + δΓ)kΓ,

(η, ηΓ) = D2S(uΓ)[hΓ, kΓ], (ηδ, ηδΓ) = D2S(uΓ + δΓ)[hΓ, kΓ] .

From the previous results, in particular, (36) and (61), we can infer that
there is a constant C1 > 0 such that

∥(φ,φΓ)∥Y + ∥(φδ, φδ
Γ)∥Y ≤ C1 ∥hΓ∥L2(Σ),

∥(ψ,ψΓ)∥Y + ∥(ψδ, ψδ
Γ)∥Y ≤ C1 ∥kΓ∥L2(Σ),

∥(η, ηΓ)∥Y + ∥(ηδ, ηδΓ)∥Y ≤ C1 ∥hΓ∥L2(Σ) ∥kΓ∥L2(Σ),

∥(yδ, yδΓ)− (y, yΓ)∥Y ≤ C1 ∥δΓ∥L2(Σ),

∥(φδ, φδ
Γ)− (φ,φΓ)∥Y ≤ C1 ∥δΓ∥L2(Σ) ∥hΓ∥L2(Σ),

∥(ψδ, ψδ
Γ)− (ψ,ψΓ)∥Y ≤ C1 ∥δΓ∥L2(Σ) ∥kΓ∥L2(Σ) . (98)

Now observe that (η̃, η̃Γ) = (ηδ, ηδΓ) − (η, ηΓ) and ϑ̃ = ϑδ − ϑ (where ϑδ

and ϑ have their obvious meaning corresponding to (73)) satisfy the linear
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initial-boundary value problem

∂tη̃ −∆ϑ̃ = 0 in Q, (99)

ϑ̃ = ∂tη̃ −∆η̃ + f ′′(y) η̃ + σ in Q, (100)

∂nϑ̃ = 0 on Σ, (101)

η̃Γ = η̃|Γ and ∂tη̃Γ + ∂nη̃ −∆Γη̃Γ + f ′′Γ(yΓ) η̃Γ = σΓ on Σ, (102)

η̃(0) = 0 in Ω, η̃Γ(0) = 0 on Γ, (103)

where we have put

σ = ηδ(f ′′(yδ)− f ′′(y)) + (f (3)(yδ)φδ ψδ − f (3)(y)φψ) ,

σΓ = −ηδΓ(f ′′Γ(yδΓ)− f ′′Γ(yΓ))− (f
(3)
Γ (yδΓ)φ

δ
Γ ψ

δ
Γ − f

(3)
Γ (yΓ)φΓ ψΓ) . (104)

The system (99)–(103) is again of the form (39)–(44), and since it is readily
verified that (σ, σΓ) belongs to the space H1(0, T ;H) ∩ (L∞(Q) × L∞(Σ)),
we may employ Lemma 1 once more to conclude that

∥(η̃, η̃Γ)∥Y ≤ C2 ∥(σ, σΓ)∥L2(0,T ;H) , (105)

so that it remains to show an estimate of the form

∥(σ, σΓ)∥L2(0,T ;H) ≤ C3 ∥δΓ∥L2(Σ) ∥hΓ∥L2(Σ) ∥kΓ∥L2(Σ) . (106)

Since

f (3)(yδ)φδ ψδ − f (3)(y)φψ

= φδ ψ (f (3)(yδ)− f (3)(y)) + f (3)(yδ)φδ (ψδ − ψ) + f (3)(y)ψ (φδ − φ) ,
(107)

we can infer from (38) that, almost everywhere in Q,

|σ| ≤ C4 (|ηδ| |yδ−y| + |φδ| |ψ| |yδ−y| + |φδ| |ψδ−ψ| + |ψ| |φδ−φ|) . (108)

Using (98), Hölder’s inequality and the continuity of the embedding V ⊂
L4(Ω), we find that∫ T

0

∫
Ω

(
|ηδ|2 |yδ − y|2

)
dx dt ≤

∫ T

0

(
∥ηδ(t)∥2L4(Ω) ∥(y

δ − y)(t)∥2L4(Ω)

)
dt

≤ C5 ∥ηδ∥2L∞(0,T ;V )∥y
δ − y∥2L∞(0,T ;V )

≤ C6 ∥δΓ∥2L2(Σ) ∥hΓ∥
2
L2(Σ) ∥kΓ∥

2
L2(Σ) . (109)
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Similar reasoning yields

∥φδ(ψδ − ψ)∥2L2(Q) + ∥ψ(φδ − φ)∥2L2(Q)

≤ C7 ∥δΓ∥2L2(Σ) ∥hΓ∥
2
L2(Σ) ∥kΓ∥

2
L2(Σ) . (110)

Moreover, once again invoking (98), Hölder’s inequality, and the continuity
of the embedding V ⊂ L6(Ω), we conclude that∫ T

0

∫
Ω

(
|φδ|2 |ψ|2 |yδ − y|2

)
dx dt

≤
∫ T

0

(
∥(yδ − y)(t)∥2L6(Ω) ∥φ

δ(t)∥2L6(Ω) ∥ψ(t)∥
2
L6(Ω)

)
dt

≤ C8 ∥φδ∥2L∞(0,T ;V ) ∥ψ∥
2
L∞(0,T ;V ) ∥y

δ − y∥2L∞(0,T ;V )

≤ C9 ∥δΓ∥2L2(Σ) ∥hΓ∥
2
L2(Σ) ∥kΓ∥

2
L2(Σ) . (111)

Finally, we can estimate ∥σΓ∥L2(Σ), deriving estimates similar to (108)–
(111), which entails the validity of the required estimate (106). With this,
the assertion is completely proved.

4 Optimality conditions

Now that the second-order Fréchet derivative of the control-to-state op-
erator for problem (CP) is obtained, we can address the matter of deriv-
ing second-order sufficient optimality conditions. As a preparation of the
corresponding theorem, we provide the adjoint system and the first-order
necessary optimality conditions. Since these were already established in [2],
we only present the results without proofs.

At first, it is easily shown (cf. [2, Thm. 2.2]) that (CP) has a solution.
For the remainder of this paper, let us assume that ūΓ ∈ Uad is any such min-
imizer and that (ȳ, ȳΓ, w̄), where (ȳ, ȳΓ) = S(ūΓ), is the associated solution
to the state system. Recall that (ȳ, ȳΓ, w̄) has the regularity properties (24),
(25), and (28), respectively, and that (38) is satisfied for (y, yΓ) = (ȳ, ȳΓ).

The adjoint system to the problem (CP) is formally given by

q +∆p = 0 in Q, (112)

−∂t(p+ q)−∆q + f ′′(ȳ) q = bQ(ȳ − zQ) in Q, (113)

∂np = 0 on Σ, (114)
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qΓ = q|Γ and − ∂tqΓ + ∂nq −∆ΓqΓ + f ′′Γ(ȳΓ) qΓ = bΣ(ȳΓ − zΣ) on Σ,
(115)

(p+ q)(T ) = bΩ(ȳ(T )− zΩ) in Ω, (116)

qΓ(T ) = bΓ(ȳΓ(T )− zΓ) on Γ, (117)

and was derived in [2] under the additional compatibility assumption

bΩ = bΓ = 0. (118)

In order to keep the technicalities at a reasonable level, we will from now
on always assume that (118) is fulfilled; we remark that in [2, Remark 5.6]
it has been pointed out that this assumption is dispensable at the expense
of less regularity of the adjoint state variables.

The following result was proved in [2, Thm. 2.4].

Theorem 4. Let (A1)–(A4) and (118) be fulfilled. Then the adjoint system
(112)–(117) has a unique solution in the following sense: there is a unique
triple (p, q, qΓ) with the regularity properties

p ∈ H1(0, T ;H2(Ω)) ∩ L2(0, T ;H4(Ω)), (119)

q ∈ H1(0, T ;H) ∩ L2(0, T ;H2(Ω)), (120)

qΓ ∈ H1(0, T ;HΓ) ∩ L2(0, T ;H2(Γ)), (121)

qΓ(t) = q(t)|Γ for a.a. t ∈ (0, T ), (122)

that solves for a.a. t ∈ (0, T ) the variational equations∫
Ω
q(t) v dx =

∫
Ω
∇p(t) · ∇v dx ∀ v ∈ V, (123)

−
∫
Ω
∂t
(
p(t) + q(t)

)
v dx+

∫
Ω
∇q(t) · ∇v dx+

∫
Ω
f ′′(ȳ(t)) q(t) v dx

−
∫
Γ
∂tqΓ(t) vΓ dΓ +

∫
Γ
∇ΓqΓ(t) · ∇ΓvΓ dΓ +

∫
Γ
f ′′Γ(ȳΓ(t)) qΓ(t) vΓ dΓ

=

∫
Ω
bQ

(
ȳ(t)− zQ(t)

)
v dx+

∫
Γ
bΣ

(
ȳΓ(t)− zΣ(t)

)
vΓ dΓ

for all (v, vΓ) ∈ V, (124)

and the final condition∫
Ω
(p+ q)(T ) v dx+

∫
Γ
qΓ(T ) vΓ dΓ = 0 ∀(v, vΓ) ∈ V . (125)
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Now, let us introduce the “reduced cost functional” J̃ : U → R by

J̃(uΓ) := J(y, yΓ, uΓ), where (y, yΓ) = S(uΓ). (126)

Since ūΓ is an optimal control with associated optimal state (ȳ, ȳΓ) = S(ūΓ),
the necessary condition for optimality is

DJ̃(ūΓ)(vΓ − ūΓ) ≥ 0 for every vΓ ∈ Uad, (127)

or, written explicitly (recall that bΩ = bΓ = 0),

bQ

∫ T

0

∫
Ω
(ȳ − zQ) ξ dx dt + bΣ

∫ T

0

∫
Γ
(ȳΓ − zΣ) ξΓ dΓ dt

+ b0

∫ T

0

∫
Γ
ūΓ (vΓ − ūΓ) dΓ dt ≥ 0 for every vΓ ∈ Uad, (128)

where, for any given vΓ ∈ Uad, the functions ξ, ξΓ are the first two com-
ponents of the solution triple (ξ, ξΓ, ζ) to the linearized problem (55)–(60)
associated with hΓ = vΓ − ūΓ. Moreover, since the adjoint variables have
been constructed in such a way that

bQ

∫ T

0

∫
Ω
(ȳ−zQ)ξ dx dt+ bΣ

∫ T

0

∫
Γ
(ȳΓ−zΣ)ξΓ dΓdt =

∫ T

0

∫
Γ
qΓ(vΓ−ūΓ)dΓdt,

(129)
we can rewrite (128) in the form (see also [2, Thm. 2.5])∫ T

0

∫
Γ
(qΓ + b0 ūΓ)(vΓ − ūΓ) dΓ dt ≥ 0 for every vΓ ∈ Uad. (130)

In particular, if b0 > 0, then ūΓ is the orthogonal projection of −qΓ/b0 onto
Uad with respect to the standard scalar product in L2(Σ).

After these preparations, we now derive sufficient conditions for optimal-
ity. But, since the control-to-state operator S is not Fréchet differentiable
on L2(Σ) but only on U ⊂ X, we are faced with the so-called “two-norm
discrepancy”, which makes it impossible to establish second-order sufficient
optimality conditions by means of the same simple arguments as in the
finite-dimensional case or, e. g., in the proof of [6, Thm. 4.23, p. 231]. It will
thus be necessary to tailor the conditions in such a way as to overcome the
two-norm discrepancy. At the same time, for practical purposes the condi-
tions should not be overly restrictive. For such an approach, we follow the
lines of Chapter 5 in [6], here. Since many of the arguments developed here
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are rather similar to those employed in [6], we can afford to be sketchy and
refer the reader to [6] for full details.

To begin with, the quadratic cost functional J, viewed as a map from
C0([0, T ];H) × U into R, is obviously twice continuously Fréchet differen-
tiable on C0([0, T ];H)×U and thus, in particular, at ((ȳ, ȳΓ), ūΓ). Moreover,
since bΩ = bΓ = 0, we have for any ((y, yΓ), uΓ) ∈ C0([0, T ];H)×U and any
((v, vΓ), hΓ), ((ω, ωΓ), kΓ) ∈ C0([0, T ];H)× X that

D2J((y, yΓ), uΓ)[((v, vΓ), hΓ), ((ω, ωΓ), kΓ)]

= bQ

∫ T

0

∫
Ω
v ω dx dt + bΣ

∫ T

0

∫
Γ
vΓ ωΓ dΓ dt + b0

∫ T

0

∫
Γ
hΓ kΓ dΓ dt . (131)

It then follows from Theorem 3 and from the chain rule that the reduced
cost functional J̃ is also twice continuously Fréchet differentiable on U. Now
let hΓ, kΓ ∈ X be arbitrary. In accordance with our previous notation, we
put

(φ,φΓ) = DS(ūΓ)hΓ, (ψ,ψΓ) = DS(ūΓ)kΓ, (η, ηΓ) = D2S(ūΓ)[hΓ, kΓ] .

Then a straightforward calculation resembling that carried out on page 241
in [6], using the chain rule as the main tool, yields the equality

D2J̃(ūΓ)[hΓ, kΓ] = D(y,yΓ)J((ȳ, ȳΓ), ūΓ)(η, ηΓ)

+D2J((ȳ, ȳΓ), ūΓ)[((φ,φΓ), hΓ) , ((ψ,ψΓ), kΓ)] . (132)

For the first summand on the right-hand side of (132), we have

D(y,yΓ)J((ȳ, ȳΓ), ūΓ)(η, ηΓ) = bQ

∫ T

0

∫
Ω
(ȳ − zQ) η dx dt

+ bΣ

∫ T

0

∫
Γ
(ȳΓ − zΣ) ηΓ dΓdt, (133)

where (η, ηΓ) solves the system (72)–(77). We now claim that

bQ

∫ T

0

∫
Ω
(ȳ − zQ) η dx dt + bΣ

∫ T

0

∫
Γ
(ȳΓ − zΣ) ηΓ dΓ dt

= −
∫ T

0

∫
Ω
f (3)(ȳ)φψ q dx dt −

∫ T

0

∫
Γ
f
(3)
Γ (ȳΓ)φΓ ψΓ qΓ dΓ dt . (134)

To prove this claim, we test (72) by p, insert v = ϑ in (123), and add the
resulting equations to obtain

0 =

∫ T

0

∫
Ω
(∂tη p + q ϑ) dx dt . (135)
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Next, we test (73) by q. Since q|Γ = qΓ, we find the identity∫ T

0

∫
Ω
q ϑ dx dt =

∫ T

0

∫
Ω
∂tη q dx dt +

∫ T

0

∫
Ω
∇η · ∇q dx dt

+

∫ T

0

∫
Γ
∂tηΓ qΓ dΓ dt +

∫ T

0

∫
Γ
∇ΓηΓ · ∇ΓqΓ dΓ dt +

∫ T

0

∫
Ω
f ′′(ȳ) η q dx dt

+

∫ T

0

∫
Ω
f (3)(ȳ)φψ q dx dt +

∫ T

0

∫
Γ
f ′′Γ(ȳΓ) ηΓ qΓ dΓ dt

+

∫ T

0

∫
Γ
f
(3)
Γ (ȳΓ)φΓ ψΓ qΓ dΓ dt . (136)

Now observe that the initial condition η(0) = ηΓ(0) = 0 and the final con-
dition (125) imply, using integration by parts with respect to time, that∫ T

0

∫
Ω
∂tη (p+ q) dx dt +

∫ T

0

∫
Γ
∂tηΓ qΓ dΓ dt

= −
∫ T

0

∫
Ω
∂t(p+ q) η dx dt −

∫ T

0

∫
Γ
ηΓ ∂tqΓ dΓ dt .

Hence, by adding (135) and (136) to each other, we obtain the identity

0 = −
∫ T

0

∫
Ω
∂t(p+ q) η dx dt −

∫ T

0

∫
Γ
ηΓ ∂tqΓ dΓ dt +

∫ T

0

∫
Ω
∇η · ∇q dx dt

+

∫ T

0

∫
Γ
∇ΓηΓ · ∇ΓqΓ dΓdt+

∫ T

0

∫
Ω
f ′′(ȳ)η q dx dt+

∫ T

0

∫
Ω
f (3)(ȳ)φψq dx dt

+

∫ T

0

∫
Γ
f ′′Γ(ȳΓ) ηΓ qΓ dΓ dt +

∫ T

0

∫
Γ
f
(3)
Γ (ȳΓ)φΓ ψΓ qΓ dΓ dt . (137)

Inserting (v, vΓ) = (η, ηΓ) in (124), we finally obtain that

0 =

∫ T

0

∫
Ω

(
bQ(ȳ − zQ) η + f (3)(ȳ)φψ q

)
dx dt

+

∫ T

0

∫
Γ

(
bΣ(ȳΓ − zΣ) ηΓ + f

(3)
Γ (ȳΓ)φΓ ψΓ qΓ

)
dΓ dt,

by comparison. From this the claim (134) follows.
Now we can recall (131)–(134) in order to find the representation formula

D2J̃(ūΓ)[hΓ, hΓ] = b0 ∥hΓ∥2L2(Σ) +

∫ T

0

∫
Ω

(
bQ − q f (3)(ȳ)

)
|φ|2 dx dt

+

∫ T

0

∫
Γ

(
bΣ − qΓ f

(3)
Γ (ȳΓ)

)
|φΓ|2 dΓ dt . (138)
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Equality (138) gives rise to hope that, under appropriate conditions,
D2J̃(ūΓ) might be a positive definite operator on a suitable subset of the
space L2(Σ). To formulate such a condition, we introduce for fixed τ > 0
the set of strongly active constraints for ūΓ by

Aτ (ūΓ) := {(x, t) ∈ Σ : |qΓ(x, t) + b0 ūΓ(x, t)| > τ} , (139)

and we define the τ−critical cone Cτ (ūΓ) to be the set of all hΓ ∈ XM0 :=
{hΓ ∈ X : ∥∂thΓ∥L2(Σ) ≤ M0} such that

hΓ(x, t)


= 0 if (x, t) ∈ Aτ (ūΓ)

≥ 0 if ūΓ(x, t) = uΓ,min and (x, t) ̸∈ Aτ (ūΓ)

≤ 0 if ūΓ(x, t) = uΓ,max and (x, t) ̸∈ Aτ (ūΓ)

. (140)

After these preparations, we can formulate the second-order sufficient opti-
mality condition (SSC) as follows.

There exist constants δ > 0 and τ > 0 such that

D2J̃(ūΓ) [hΓ, hΓ] ≥ δ ∥hΓ∥2L2(Σ) ∀hΓ ∈ Cτ (ūΓ),

where D2J̃(ūΓ) [hΓ, hΓ] is given by (138) with (ȳ, ȳΓ) = S(ūΓ),

(φ,φΓ) = DS(ūΓ)hΓ and the associated adjoint state (p, q, qΓ). (141)

The following result resembles Theorem 5.17 in [6].

Theorem 5. Suppose that the conditions (A1)–(A4) and (118) are ful-
filled, and assume ūΓ ∈ Uad, (ȳ, ȳΓ) = S(ūΓ), and that the triple (p, q, qΓ)
satisfies (119)–(125). Moreover, assume that the conditions (130) and (141)
are fulfilled. Then there are constants ε > 0 and σ > 0 such that

J̃(uΓ) ≥ J̃(ūΓ) + σ ∥uΓ−ūΓ∥2L2(Σ) for all uΓ ∈ Uad with ∥uΓ−ūΓ∥X ≤ ε .
(142)

In particular, ūΓ is locally optimal for (CP) in the sense of X.

Proof. The proof closely follows that of [6, Thm. 5.17], and therefore we can
refer to [6]. We only indicate one argument that needs additional explana-
tion. To this end, let uΓ ∈ Uad be arbitrary. Since J̃ is twice continuously
Fréchet differentiable in U, it follows from Taylor’s theorem with integral
remainder (see, e. g., [4, Thm. 8.14.3, p. 186]) that

J̃(uΓ)− J̃(ūΓ) = DJ̃(ūΓ)vΓ +
1

2
D2J̃(ūΓ)[vΓ, vΓ] + RJ̃(uΓ, ūΓ) , (143)
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with vΓ = uΓ − ūΓ and the remainder

RJ̃(uΓ, ūΓ) =

∫ 1

0
(1− s)

(
D2J̃(ūΓ + s vΓ)−D2J̃(ūΓ)

)
[vΓ, vΓ] ds. (144)

Now, we estimate the integrand (D2J̃(ūΓ + s vΓ) − D2J̃(ūΓ))[vΓ, vΓ] in
(144). To this end, we put

(ys, ysΓ) = S(ūΓ + svΓ), (φ,φΓ) = DS(ūΓ)vΓ, (φs, φs
Γ) = DS(ūΓ + svΓ)vΓ,

(η, ηΓ) = D2S(ūΓ)[vΓ, vΓ], (ηs, ηsΓ) = D2S(ūΓ + svΓ)[vΓ, vΓ] ,

and use the representation formulas (131)–(133). We obtain

D(y,yΓ)J((y
s, ysΓ), ūΓ + svΓ)(η

s, ηsΓ)−D(y,yΓ)J((ȳ, ȳΓ), ūΓ)(η, ηΓ) = I1 + I2,

(145)

with the integrals

I1 := bQ

∫ T

0

∫
Ω
(ys − ȳ) η dx dt + bΣ

∫ T

0

∫
Γ
(ysΓ − ȳΓ) ηΓ dΓ dt,

I2 := bQ

∫ T

0

∫
Ω
(ys − zQ) (η

s − η) dx dt + bΣ

∫ T

0

∫
Γ
(ysΓ − zΣ) (η

s
Γ − ηΓ) dΓ dt.

(146)

Moreover,

D2J((ys, ysΓ), ūΓ + svΓ)[((φ
s, φs

Γ), vΓ) , ((φ
s, φs

Γ), vΓ)]

−D2J((ȳ, ȳΓ), ūΓ)[((φ,φΓ), vΓ) , ((φ,φΓ), vΓ)] = I3, where

I3 := bQ

∫ T

0

∫
Ω
(φs − φ)(φs + φ) dx dt + bΣ

∫ T

0

∫
Γ
(φs

Γ − φΓ)(φ
s
Γ + φΓ) dΓ dt .

(147)

We now estimate the integrals I1, I2, and I3, where we denote by Ci, i ∈ N,
constants that depend neither on s ∈ [0, 1] nor on uΓ ∈ Uad. At first, using
the Cauchy-Schwarz inequality, we obtain

|I1| ≤ max{bQ, bΣ} ∥(ys, ysΓ)− (ȳ, ȳΓ)∥L2(0,T ;H) ∥(η, ηΓ)∥L2(0,T ;H)

≤ max{bQ, bΣ} ∥(ys, ysΓ)− (ȳ, ȳΓ)∥Y ∥(η, ηΓ)∥Y

≤ C1 s ∥vΓ∥3L2(Σ), (148)
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where in the last inequality we have employed the estimates (36) and (82).
Similarly, we have

|I2| ≤ max{bQ, bΣ}∥(ys, ysΓ)− (zQ, zΣ)∥L2(0,T ;H)∥(ηs, ηsΓ)− (η, ηΓ)∥L2(0,T ;H)

≤ max{bQ, bΣ} ∥(ys, ysΓ)− (zQ, zΣ)∥L2(0,T ;H) ∥(ηs, ηsΓ)− (η, ηΓ)∥Y

≤ C2 s ∥vΓ∥3L2(Σ), (149)

where, for the last inequality, we used (A1) and (34) to estimate the first
norm and (79) for the second one. Finally, we get

|I3| ≤ max{bQ, bΣ}∥(φs, φs
Γ)−(φ,φΓ)∥L2(0,T ;H)∥(φs, φs

Γ)+(φ,φΓ)∥L2(0,T ;H)

≤ max{bQ, bΣ} ∥(φs, φs
Γ)− (φ,φΓ)∥Y ∥(φs, φs

Γ) + (φ,φΓ)∥Y

≤ C3 s ∥vΓ∥3L2(Σ). (150)

For the last inequality, we applied (61) to estimate the first norm and the
triangle inequality and (48) to estimate the second one. Combining the
above estimates, we thus have finally shown that

∣∣∣RJ̃(uΓ, ūΓ)
∣∣∣ ≤ C4

∫ 1

0
(1− s) s ∥vΓ∥3L2(Σ) ds ≤ C5 ∥vΓ∥X ∥vΓ∥2L2(Σ) , (151)

with global constants C4 > 0 and C5 > 0 that do not depend on the choice
of uΓ ∈ Uad. But this means that∣∣∣RJ̃(uΓ, ūΓ)

∣∣∣
∥uΓ − ūΓ∥2L2(Σ)

→ 0 as ∥uΓ − ūΓ∥X → 0. (152)

With this information at hand, we can argue along exactly the same lines as
on pages 292–294 in the proof of Theorem 5.17 in [6] to conclude the validity
of the assertion.
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