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1 Introduction

Consider the following nonlinear parabolic boundary value problem with
respect to the unknown function φ:

αξ
∂

∂t
φ− ξ∆φ =

1

2ξ
(φ− φ3) in Q = [0, T ]× Ω

ξ
∂

∂ν
φ+ αξ

∂

∂t
φ−∆Γφ+ c0φ = w(t, x) on Σ = [0, T ]× ∂Ω (1.1)

φ(0, x) = φ0(x) on Ω,

where:

• Ω is a bounded domain in IR with boundary ∂Ω = Γ and T > 0 stands
for some final time;

• φ(t, x) is the phase function (used to distinguish between the states
(phases) of a material which occupies the region Ω at every time t ∈
[0, T ]);

• α (the relaxation time), ξ (the measure of the interface thickness) and
c0 are positive constants;

• ∆Γ is the Laplace-Beltrami operator;

• w(t, x) ∈W
1− 1

2p
,2− 1

p
p (Σ) is a given function and p satisfies

p ≥ 3

2
; (1.2)

• φ0 ∈W
2− 2

p
∞ (Ω) verifying ξ ∂

∂νφ0 −∆Γφ0 + c0φ0 = w(0, x) on Γ.

Equation (1.1)1 was introduced initially by Allen and Cahn (see [1]) to
describe the motion of anti-phase boundaries in crystalline solids. Actually,
the Allen-Cahn model is widely applied to moving interface problems, such
as the mixture of two incompressible fluids, the nucleation of solids, vesicle
membranes, etc. Also, the nonlinear parabolic equation (1.1)1 appears in the
Caginalp’s phase-field transition system (see [4]) describing the transition
between the solid and liquid phases in the solidification process of a material
occupying a region Ω (see [6]).
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Following the strategy used in [5] and [9], the nonlinear parabolic bound-
ary value problem (1.1) can be rewritten suitably in the following form:{

αξ
∂

∂t
φ− ξ∆φ =

1

2ξ
(φ− φ3) in Qφ = ψ

on Σξ
∂

∂ν
φ+ αξ

∂

∂t
ψ −∆Γψ + c0ψ = w(t, x)

on Σφ(0, x) = φ0(x) x ∈ Ωψ(0, x) = ψ0(x) x ∈ Γ, (1.3)

where the new variable ψ = φ, ψ(0, x) = φ0 on Γ, is introduced in order
to treat the dynamic boundary conditions (1.1)2 as a parabolic equation

for ψ on the boundary Γ, with ψ0 ∈ W
2− 2

p
∞ (Γ), φ0 = ψ0 on Γ and, for the

remaining data in (1.1), we keep the meanings already formulated.

As regards the existence in (1.3), it is known that under appropriate
conditions on φ0 and w, there exists a unique solution (φ,ψ) ∈ W 1,2

p (Q) ×
W 1,2

p (Σ), p ≥ 3
2 (see [5, Theorem 2.1]). Here we have used the standard

notation for Sobolev spaces, namely, given a positive integer k and 1 ≤ p ≤
∞, we denote by W k,2k

p (Q) the usual Sobolev space on Q:

W k,2k
p (Q) =

{
y ∈ Lp(Q) :

∂r

∂tr
∂s

∂xs
y ∈ Lp(Q), for 2r + s ≤ k

}
,

i.e., the space of functions whose t-derivatives and x-derivatives up to the or-
der k and 2k, respectively, belong to Lp(Q). Also, we have used the Sobolev

spaces W l
p(Ω), W

l
2
,l

p (Σ) with nonintegral l for the initial and boundary con-
ditions, respectively (see [7, Chapter 1] and references therein).

Numerical investigation of the nonlinear parabolic problem (1.1), sub-
ject to various other types of boundary conditions, have been made in [2],
[3], [7] and [8]. The main novelty of this work is the presence of the non-
homogeneous dynamic boundary conditions (1.1)2, untreated numerically
until now (to our knowledge) in the mathematical literature and which
makes the present nonlinear parabolic problem (1.1) to be more accurate in
describing many important phenomena of two-phase systems: superheating,
supercooling, the effects of surface tension, separating zones, etc; in parti-
cular, the interactions with the walls in confined systems. Consequently, a
wide variety of industrial applications are covered.

In order to approximate the solution of the nonlinear boundary value
problem (1.3) (in fact, the solution of problem (1.1)), a scheme of fractional
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steps type was introduced and analyzed in [9], namely, for every ε > 0, it
was associated to problem (1.3) the following approximating scheme (see
also [2-3], [6-8]): {

αξ
∂

∂t
φε − ξ∆φε =

1

2ξ
φεin Qε

i

ξ
∂

∂ν
φε + αξ

∂

∂t
ψε −∆Γψ

ε + c0ψ
ε = w(t, x)on Σε

i

φε(iε, x) = z(ε, φε
−(iε, x))on Ωψε(iε, x) = φε(iε, x)on Γ, (1.4)

where Qε
i = [iε, (i+1)ε]×Ω, Σε

i = [iε, (i+1)ε]× Γ and z(ε, φε
−(iε, x)) is the

solution of the Cauchy problem:{
z′(s) +

1

2ξ
z3(s) = 0 s ∈ [0, ε]

z(0) = φε
−(iε, x) on Ω

φε
−(0, x) = φ0(x) on Ω

φε
−(0, x) = ψ0(x) on Γ, (1.5)

for i = 0, 1, · · · ,Mε − 1, with Mε =
[
T
ε

]
, Qε

Mε−1 = [(Mε − 1)ε, T ] × Ω,
Σε
Mε−1 = [(Mε − 1)ε, T ]× Γ and φε

− stands for the left-hand limit of φε.

In other words, the fractional steps method consists in decoupling the
nonlinear problem (1.3) in a linear parabolic boundary value problem, ex-
pressed on a partition of the time interval [0, T ] (composed from Mε subin-
tervals, the first Mε−1 having the same length ε) and a nonlinear ordinary
differential equation containing the nonlinearity φ3. Accordingly, the ad-
vantage of this approach consists in simplifying the numerical computation
of the process of approximation for the solution of nonlinear problem (1.1).

Invoking again the Theorem 2.1 in [5], we have that there is a unique
solution to (1.4)-(1.5), namely: (φε, ψε) ∈W 1,2

p (Qε
i )×W

1,2
p (Σε

i ), with p ≥ 3
2

and i = 0, 1, · · · ,Mε − 1.

Owing to the Lions and Peetre embedding theorem, we know that
W 1,2

p (Q) ⊂ L∞(Q) if p ≥ 3
2 (see [7, Chapter 1] and references therein) and

thus, for later use, we will introduce the sets:

WQ = L2([0, T ];H1(Ω)) ∩ L∞(Q) and WΣ = L2([0, T ];H1(Γ)) ∩ L∞(Σ).
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Definition 1 By a weak solution of the nonlinear problem (1.3) we mean a
pair of functions (φ,ψ) ∈ WQ ×WΣ, φ = ψ on Σ, which satisfies (1.3) in
the following sense:

αξ

∫
Q

(
∂

∂t
φ, ϕ1

)
dt dx+ ξ

∫
Q

∇φ∇ϕ1 dt dx (1.6)

+αξ

∫
Σ

(
∂

∂t
ψ, ϕ2

)
dt dγ +

∫
Σ

∇ψ∇ϕ2 dt dγ + c0

∫
Σ

ψϕ2 dtdγ

=
1

2ξ

∫
Q

(φ− φ3)ϕ1 dt dx+

∫
Σ

wϕ2 dtdγ

∀(ϕ1, ϕ2) ∈ L2([0, T ];H1(Ω))× L2([0, T ];H1(Γ)), and φ(0, x) = φ0(x) in Ω.

The symbols
∫
Q

and
∫
Σ

above denote the duality between L2([0, T ];H1(Ω))

and L2([0, T ];H1(Ω)′), as well as L2([0, T ];H1(Γ)) and L2([0, T ];H1(Γ)′),
respectively.

The following result (see [3], [7]) establishes the relationship between the
solution (φ,ψ) in (1.3) and the solution (φϵ, ψϵ) in (1.4)-(1.5).

Theorem 1 Assume that φ0(x) ∈ W
2− 2

q
∞ (Ω), satisfying ξ ∂

∂νφ0 − ∆Γφ0 +

c0φ0 = w(0, x) on Γ, and w(t, x) ∈ W
1− 1

2p
,2− 1

p
p (Σ). Let (φε, ψε) be the

solution of the approximating scheme (1.4)-(1.5). Then for ε→ 0, one has

(φε, ψε) → (φ⋆, ψ⋆) strongly in L2(Ω)×L2(Γ) for any t ∈ (0, T ], (1.8)

where (φ⋆, ψ⋆) ∈ WQ ×WΣ is the weak solution of the nonlinear equation
(1.3).

The outline of the paper is as follows: in Section 2 we have introduced the
discrete equations corresponding to (1.4)-(1.5); consequently, a conceptual
numerical algorithm has been formulated: Alg 1-IMBDF dbc. A stability
result for this approach is stated and proved in the next Section. Some
numerical experiments are reported in the last Section.

2 Numerical method

In this section we are concerned with the numerical approximation of
the solution (φε, ψε) to (1.4)-(1.5). As already stated, we will work in one
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dimension and then ∆φε = φε
xx, ∆Γψ

ε = ψε
xx and ∂

∂νφ
ε = ∂

∂xφ
ε · ν = ∓φε

x

(i.e., (see [7, Chapter 1, p. 27]), the directional derivative of φε in the
direction of the outward pointing unit normal vector ν).

Let Ω = (0, b) ⊂ IR+ and we introduce over it the grid withN equidistant
nodes

xj = (j − 1)dx j = 1, 2, . . . , N, dx =
b

N − 1
.

Accordingly, the boundary Γ is given by the set of points {x1=0, xN =b}.
Considering M ≡ Mε as the number of equidistant nodes in which is

divided the time interval [0, T ], we set

ti = (i− 1)ε i = 1, 2, . . . ,M, ε =
T

M − 1
.

We denote by φi
j the approximate values in the point (ti, xj) of the

unknown function φε. More precisely

φi
j = φε(ti, xj) i = 1, 2, . . . ,M, j = 1, 2, . . . , N,

i.e., for the later use

φi not=
(
φi
1, φ

i
2, . . . , φ

i
N

)T
i = 1, 2, . . . ,M. (2.1)

We continue by explaining how we will treat each term from (1.4)-(1.5).
Owing to the relation (1.4)4 and knowing that Γ = {x1, xN}, we can put{

ψi
1 = ψε(ti, x1) = φε(ti, x1) = φi

1ψ
i
N = ψε(ti, xN ) = φε(ti, xN ) = φi

N

i = 1, 2, . . . ,M. (2.2)

The Laplace operator in (1.4)1 will be approximated by a second order cen-
tred finite differences, that is, for i = 1, 2, ...,M :

φε
xx(ti, xj) = ∆dxφ

i
j ≈

φi
j−1 − 2φi

j + φi
j+1

dx2
j = 1, 2, ..., N, (2.3)

where ∆dx is the discrete Laplace operator, depending on the step-size dx.
Corresponding to the Laplace-Beltrami operator in (1.4)2, we will use the
same approximating scheme as above, which, correlated with (1.4)4 and
(2.2), gives us{

ψε
xx(ti, x1) = ∆dxψ

i
1 ≈

φi
0 − 2φi

1 + φi
2

dx2
ψε
xx(ti, xN ) = ∆dxψ

i
N
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≈
φi
N−1 − 2φi

N + φi
N+1

dx2
i = 1, 2, ...,M, (2.4)

where φi
0 and φi

N+1 are dummy variables.

Involving the separation of variables method to solve the Cauchy problem
(1.5) (see [2], [6], [7], [8]), we obtain{

z(ε, φε
−(t1, x))=z(ε, φ0(x))=φ0(x)

√
ξ

ξ+εφ0(x)
, z(ε, φε

−(ti, x))=

φε
−(ti, x)

√
ξ

ξ+εφε
−(ti, x)

i = 2, ...,M − 1. (2.5)

Remembering that ∂Ω = Γ = {x1, xN}, the boundary conditions (1.4)2
can be rewritten as follows{

−ξφε
x(x1)+αξ

∂

∂t
ψε(ti, x1)−ψε

xx(ti, x1)+c0ψ
ε(ti, x1)=

w(ti, x1)ξφ
ε
x(xN )+αξ

∂

∂t
ψε(ti, xN )−ψε

xx(ti, xN )+c0ψ
ε(ti, xN )=w(ti, xN ),

(2.6)
for i = 1, 2, . . . ,M , where the sign in the front of ∂

∂νφ
ε = φε

x · ν is −
(+) because the normal to [0 = x1, b = xN ] at x1 (xN ) point is in the
negative (positive) direction (i.e. the unit normal vector ν = ∓1 at 0 and b,
respectively).

Now, using in (2.6) a forward (backward) finite differences to approxi-
mate φε

x(x1) (φ
ε
x(xN )) and, taking into account the relations (2.2) and (2.4),

we get {
−ξφ

i
2 − φi

1

dx
+ αξ

∂

∂t
ψε(ti, x1)−∆dxψ

i
1 + c0ψ

i
1 =

wi
1ξ
φi
N − φi

N−1

dx
+ αξ

∂

∂t
ψε(ti, xN )−∆dxψ

i
N + c0ψ

i
N = wi

N , (2.7)

where wi
1 = w(ti, x1), w

i
N = w(ti, xN ), i = 1, 2, ...,M .

For approximating the partial derivative with respect to time, we em-
ployed a first-order scheme, namely:
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{
∂

∂t
φε(ti, xj) ≈

φi
j − φi−1

j

ε
i = 2, 3, . . . ,M, j = 1, 2, . . . , N

∂

∂t
ψε(ti, xj) ≈

ψi
j − ψi−1

j

ε
i = 2, 3, . . . ,M, j ∈ {1, N}. (2.8)

Finally we refer to the right hand in (1.4)1 that is
1
2ξφ

ε(ti, xj). To approx-
imate this quantity (the reaction term), we will involve an implicit formula
(see [8]), i.e.:

1

2ξ
φε(ti, xj) ≈

1

2ξ
φi
j i = 1, 2, . . . ,M, j = 1, 2, . . . , N. (2.9)

We are now ready to build the 1-IMBDF approximating scheme. To
do this, we begin by replacing in (1.4)1 the approximations stated in (2.3),
(2.8)1 and (2.9). We deduce

αξ
φi
j − φi−1

j

ε
− ξ∆dxφ

i
j =

1

2ξ
φi
j , i = 2,M, j = 1, N. (2.10)

We continue by replacing in (1.4)2 the approximations stated in (2.4), (2.7)
and (2.8)2 which leads to

{
αξ
ψi
1 − ψi−1

1

ε
− ξ

φi
2 − φi

1

dx
−∆dxψ

i
1 + c0ψ

i
1 = wi

1,

αξ
ψi
N − ψi−1

N

ε
+ξ

φi
N − φi

N−1

dx
−∆dxψ

i
N+c0ψ

i
N =wi

N , i = 2,M. (2.11)

Substituting in (2.10) and (2.11) the approximations of ∆dxφ
i
j , ∆dxψ

i
1 and

∆dxψ
i
N , expressed by (2.3) and (2.4), respectively, using (2.2) and arranging

convenient, we obtain that (1.4) is discretized as follows{
−c2φi

j−1 +

[
c1 + 2c2 −

1

2ξ

]
φi
j − c2φ

i
j+1 = c1φ

i−1
j j = 1, N,

[c1 + c3 + 2 + c0]φ
i
1 − (1 + c3)φ

i
2 = wi

1 + c1φ
i−1
1 + φi

0,−(1+c3)φ
i
N−1+
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[c1+c3+2+c0]φ
i
N =wi

N+c1φ
i−1
N +φi

N+1, (2.12)

for i = 2, 3, . . . ,M , where

c1 =
αξ
ε , c2 =

ξ
dx2 and c3 =

ξ
dx .

In order to compute the matrix
(
φi
j

)
i=2,M, j=1,N

, the linear system

(2.12) will be solved ascending with respect to the time levels. For the
first time level (i = 1), the values of φ1

j are computed using (1.4)3 and
(2.5). For more details on implementing this computation process which
involves the variable z, see the cycle ”For i = 2 to M do” in the algorithm
”Alg 1-IMBDF dbc” listed below.

Moreover, let us point out from (2.12) that we have N unknowns for
each time-level i, i = 2, 3, ...,M (see and (2.1)).

If, corresponding to j = 1 and j = N we take φi
0 = φi

1 and φi
N+1 = φi

N ,
than the system (2.12) can be rewritten in matrix form as

Aφi = Bφi−1 + di i = 2, 3, ...,M, (2.13)

where

A =

(
a1 − (1 + c2 + c3)0 · · · 000− c2c1 + 2c2 −

1

2ξ
− c2 · · · 000

...
...
...
. . .

...
...
...000 · · ·

−c2c1 + 2c2 −
1

2ξ
− c2000 · · · 0− (1 + c2 + c3)a1

a1 = c1 + 2c2 + c3 + c0 + 1− 1
2ξ ,

B =

(
2c10 · · · 000c1 · · · 00

...
...
. . .

...
...00 · · · c1000 · · · 02c1 di =

(
wi
10
...0wi

N .

Therefore, the general design of the algorithm to calculate the approxi-
mate solution to the nonlinear system (1.4)-(1.5), via fractional steps method
and 1-IMBDF, is the following one

Begin Alg 1-IMBDF dbc

Choose T > 0, b > 0;

Choose M > 0, N > 0; compute ε and dx;

Choose φ0 and w;

Set ψ0(x1) = φ0(x1) and ψ0(xN ) = φ0(xN );

Compute φ1
1 = φϵ

−(0, x1) = ψ0(x1) from (1.5)4;
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For j = 2 to N − 1 do

Compute φ1
j = φϵ

−(0, xj) = φ0(xj) from (1.5)3;

End-for;

Compute φ1
N = φϵ

−(0, xN ) = ψ0(xN ) from (1.5)4;

For i = 2 to M do

Compute wi−1
1 and wi−1

N ;

Compute φi−1 = z(ε, φε
−(ti−1, ·)) using (2.5);

Compute φi solving the linear system (2.13);

End-for;

End.

As it is well known, most initial value problems reduce to solving large
sparse linear systems of the form (2.13). For later use regarding the numer-
ical implementation of the conceptual algorithms Alg 1-IMBDF dbc, we
proof the following

Lemma 1. If

c1 + 2c2 + c3 + c0 + 1− 1

2ξ
̸= 0 and c1 + 2c2 −

1

2ξ
̸= 0, (2.14)

then the matrix coefficients in linear system (2.13) can be factored into the
product of a lower-triangular matrix and an upper-triangular matrix (LU -
factorization).

Proof. Let denote by amn, m,n = 1, 2, · · · , N , the elements of matrix co-
efficients in linear system (2.13). Analyzing the main diagonal elements of
block matrices A, we first find that, owing to the hypothesis expressed by
(2.14), second part, the coefficients ann, n = 2, 3, · · · , N − 1 ̸= 0. Observing
now that a1 ̸= 0 reflect the assumptions expressed in (2.14), first part, we
find easily that ann ̸= 0 ∀n = 1, 2, · · · , N . So Gaussian elimination can be
performed on the system (2.13) without interchanges; consequently A has
an LU factorization.

Remark 1. As we can easily deduce from the proof of Lemma 1, the
hypothesis (2.14) expresses the requirement that all diagonal elements of
the matrix coefficients A in (2.13) to be non-zero, which guarantees the
existence of LU decomposition.

3 Stability conditions

To establish conditions of stability for the linear difference equations ex-
pressed by (2.13), we will use in our analysis the Lax-Richtmyer definition of
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stability, expressed in terms of norm ∥·∥∞ (see [7, Chapter 5] and references
therein). Equation (2.13) may be rewritten in a more convenient form as

φi = A-1Bφi−1 +A-1di i = 2, 3, ...,M (3.1)

(the existence of A-1 will be proved in the proof of Proposition 1 below).
Moreover, the matrix A can be written in the form

A = D(I +D-1G) (3.2)

where D = diag(a1, c1 + 2c2 − 1
2ξ , · · · , c1 + 2c2 − 1

2ξ , a1) and G = A − D.

Thus, noting a2 = c1 + 2c2 − 1
2ξ , we have

D-1G =

(
0-
1 + c2 + c3

a1
0 · · · 000- c2

a2
0-
c2
a2

· · · 000
...
...
...
. . .

...
...
...000 · · · - c2

a2
0-
c2
a2

000 · · ·

0-
1 + c2 + c3

a1
0.

The sum of each line in matrix D-1G is written in the vector v below (recall
that a1 = c1 + 2c2 + c3 + c0 + 1− 1

2ξ and a2 = c1 + 2c2 − 1
2ξ )

v =

[
-
1 + c2 + c3

a1
, -2

c2
a2
, · · · , -2 c2

a2
, -
1 + c2 + c3

a1

]
. (3.3)

Let’s denote by

vmax = max{|-(1 + c2 + c3)|, |-2c2|} and vmin = min{|a1|, |a2|}.

Now we are able to prove the following result with respect to the stability
in matrix equation (3.1).

Proposition 1. Suppose that vmin − vmax > 0. If

αξ

vmin − vmax
<
ε

2
(3.4)

then the equation (3.1) is stable. Otherwise, it is unstable.

Proof. The proof is reduced to check the inequality ∥A−1B∥∞ < 1.We begin
by determining an estimate for ∥D−1G∥∞ = max |v|, wherefrom we easily
derive the estimate

∥D−1G∥∞ <
vmax

vmin
. (3.5)

The estimate (3.5) allows now to prove the existence of A-1. Indeed, since
by hypothesis we have assumed that vmax < vmin than ∥D−1G∥∞ < 1 which
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guarantees that there exist (I + D-1G)−1. Moreover, there exist A-1 and
A-1 = (I+D-1G)-1D-1. Using the well known inequality: ∥(I+D-1G)-1∥∞ <

1
1−∥D−1G∥∞ and making use of (3.2), it follows that

∥A−1∥∞ ≤ ∥(I +D-1G)-1∥∞∥D−1∥∞ <
1

1− ∥D−1G∥∞
∥D−1∥∞. (3.6)

How the inequality ∥D−1G∥∞ < 1 imply that 1−∥D−1G∥∞ > 1− vmax
vmin

> 0,
we easily deduce now that

0 <
1

1− ∥D−1G∥∞
<

vmin

vmin − vmax
.

Since ∥D−1∥∞ ≤ 1
vmin

and involving the above estimate, from (3.6) we finally
obtain

∥A−1∥∞ <
1

vmin − vmax
. (3.7)

Now we turn our attention to matrix B. Analyzing the matrix B lines, it
follows that

∥B∥∞ = max {2c1, c1} = 2
αξ

ε
. (3.8)

Summing up and making use of (3.7)-(3.8) we derive the following estimate

∥A−1B∥∞ ≤ ∥A−1∥∞∥B∥∞ <
1

vmin − vmax
∥B∥∞,

which, owing to (3.4), leads us to the estimate ∥A−1B∥∞ < 1 as we claimed
at beginning of proof.

Remark 2. The hypothesis vmin > vmax in Proposition 1 derives from the
necessity to have a strict sub-unitary estimation for max |v| (see relation
(3.3)). A large part of numerical experiments presented in the next section
are designed to support this theoretical aspect.

4 Numerical experiments

The aim of this Section is to present numerical experiments implementing
the conceptual algorithm Alg 1-IMBDF dbc. Corresponding to input
data T , b,M , N , we have used several different values, while, for the model’s
parameters, we have started with the values: ξ = .5, α = 1.0e + 1 and
c0 = 1.0e− 3.
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Figure 1: The initial conditions φ0
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Figure 2: The approximate solution z(ε, ·) of the Cauchy problem (1.5)

The initial values φ0(xj), j = 1, 2, ..., N , plotted in Figure 1, were com-
puted via Matlab function csapi(fi0) - cubic spline interpolant, corre-
sponding to the following input data:

fi0=[-1.4 -1.4 -1.44 -1.42 -1.42 -1.44 -1.43 -1.43 -1.42 -1.42 -1.4 -1.4 -1.25 ...

-1.2 -1.17 -1.15 -1.1 -1.08 -1.0 -.95 -.9 -.85 -.88 -.6 .0 .5 -.92 -.25 .8 -.7 ...

.58 .75 .58 -.63 -.59 .69 -.72 .7 -.59 -.5 .7 -.79 -.87 -.88 .0 .72 -.8 .81 ...

.0 -.89 .0 .7 .55 .68 -.49 .79 .0 -.1 -.8 -.78 -.83 .69 .8 .68 .5 .7 .59 1. ...

1.08 1.1 1.15 1.17 1.2 1.25 1.3 1.3 1.25 1.24 1.3 1.31 1.3 1.32 1.3 1.3];

Now (see (2.5)) we are able to calculate the vector (z (ε, φ0(xj)))j=1,N , plot-

ted in Figure 2, and the vector φ1 =
(
φ1
j

)
j=1,N

(see (1.4)3).

We will present now some numerical experiments regarding the stability
of the matrix equation (3.1), established by Proposition 1. For the first
tests, we have set: T = 1, b = 2, M = 100, N = 100 and the values at
boundary given by: w(ti, 0) = −725, w(ti, b) = 0, i = 1, 2, ...,M . We can
verify that vmin − vmax = 1.69e+ 3 > 0 and αξ

vmin−vmax
− ε

2 = −0.0021 < 0.
Consequently, all hypothesis in Proposition 1 are satisfied and then we are
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Figure 3: Example of numerical stability: φi at different levels of time

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1.5

−1

−0.5

0

0.5

1

1.5
The approximate solution fii, i=1, 2, M/4, M/2, M

i=1  
i=2  
i=38 
i=76 
M=150
N=100

Figure 4: Example of numerical stability: φi at different levels of time

in a stability case. The shape of the graphs plotted in Figures 3 shows
that it really is. Changing in the above settings only the value of M , again
we are in a stable case. Analyzing the graph in Figure 4 we find a slight
improvement of stability in the boundary point x1 = 0.

Taking now T = 2, b = 2, M = 50, N = 50 and α = 1.0e + 2, one can
check that αξ

vmin−vmax
− ε

2 = 0.00224 > 0 which means that the hypothesis
(3.4) in not verified, i.e., the numerical scheme (3.1) is unstable (see Figure
5). Changing ξ = 0.75 and c0 = 1.0e+3, we get αξ

vmin−vmax
− ε

2 = 0.0054 > 0.
So, again we are in a unstable case (see Figure 6). Let’s remark that the
instability of the solution occurred after a slight change for α, ξ and c0.
This highlights the strong dependence of approximation scheme regarding
physical parameters.

We turn to numerical stability conditions changing w(ti, 0) = 72.5 and
w(ti, b) = −72.5, i = 1, 2, ...,M . We get again a stable case and the nu-
merical results, obtained by algorithms Alg 1-IMBDF dbc were plotted
in Figure 7. Analyzing the approximations near 0 and b, we observe a good
stability which makes it suitable to be used in the numerical analysis of the
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Figure 5: Example of a numerical instability
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Figure 6: Example of a slight numerical instability
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Figure 7: Example of numerical stability: φi at different levels of time
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boundary optimal control problems governed by (1.1).

5 Conclusions

Analyzing the numerical results in terms of physical phenomena (see fig-
ures 3-7), we find that the phase function distribution say that the instability
of the portion of material will disappear. Moreover, the numerical experi-
ments depicted in figure 7, for example, highlight the theoretical meaning
assigned to the unknown function φ and the zone of separation between
material phases.

The numerical solution obtained by this way can be considered as an
admissible one for the appropriate boundary optimal control problem (from
this perspective, compare figures 4, 5 and 7 in terms of stability). Gen-
erally, the numerical method considered here can be used to approximate
the solution of a nonlinear parabolic phase-field system containing a general
nonlinear part. Not the least, let’s remark that conditions of stability are
sustained by both theory and numerical experiment and that are signifi-
cantly dependent on the physical parameters.
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