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Abstract

In this study, we implement the DEIM algorithm (Discrete Em-
pirical Interpolation Method) combined with POD (Proper Orthog-
onal Decomposition) to provide dimension reduction of a model de-
scribing the aggregative response of parasitoids to hosts in a coupled
multi-species system. The model is defined by five reaction-diffusion-
chemotaxis equations. We show DEIM improves the efficiency of the
POD approximation and achieves a complexity reduction of the non-
linear terms. Numerical results are presented.
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1 Introduction

Reduced order modeling refers to the development of low-dimensional
models that represent the important characteristics of a high-dimensional
dynamical system. Typically, reduced models are constructed by project-
ing the high-fidelity model onto a suitably chosen low-dimensional subspace
([1]). While for linear models it is possible to produce input-independent
high accurate reduced models, in the case of general nonlinear systems
the transfer function approach is not applicable and input-specified semi-
empirical methods are usually employed. Most approaches for nonlinear
problems construct the reduced bases from a collection of simulations (method
of snapshots [21, 22, 23]).

Proper Orthogonal Decomposition (POD) – see [3, 5, 9, 10, 15, 25] and
the references therein – is probably the mostly used and most successful
model reduction technique, where the basis functions contain information
from the solutions of the dynamical system at pre-specified time-instances,
so-called snapshots. Due to a possible linear dependence or almost linear
dependence, the snapshots themselves are not appropriate as a basis. In-
stead two methods can be employed, singular value decomposition (SVD) for
the matrix of snapshots or eigenvalue decomposition for the correlation ma-
trix ([24]). The singular value decomposition based POD basis construction
is more computationally efficient since it decomposes the snapshots matrix
whose condition number is the square root of the correlation matrix used in
the eigenvalue decomposition.

Tensorial POD for reducing the computational complexities of the non-
linearity terms was traditionally employed in POD Galerkin by the fluid
mechanics community ([23, 15, 16]), and a matrix formulation named pre-
computing technique was introduced in [6] for calculation of quadratic non-
linearities. An extension of the tensorial based calculus to compute POD
Galerkin pth order polynomial nonlinearities has been proposed in [25].

A considerable reduction in the nonlinear terms complexity is achieved
by DEIM ([7]) – a discrete variation of Empirical Interpolation Method
(EIM), proposed by Barrault, Maday, Nguyen and Patera in [4]. According
to this method, the evaluation of the approximate nonlinear term does not
require a prolongation of the reduced state variables back to the original
high dimensional state approximation required to evaluate the nonlinearity
in the POD approximation.

Recently the use of interpolation methods relying on greedy algorithms
became attractive for computing the reduced order nonlinear terms deriva-
tives. Based on EIM, the Multi-Component Empirical Interpolation Method



POD-DEIM approach of a multi-species host-parasitoid system 175

([27]) derives affine approximations for continuous vector valued functions,
while matrix DEIM (MDEIM) technique ([28]) relies on DEIM to approx-
imate the Jacobian of a nonlinear function to obtain aposteriori error esti-
mates of DEIM reduced nonlinear dynamical system. Significant progress
in the construction of implicit reduced order models is provided by the de-
velopment of the sparse matrix DEIM method ([26]) that uses samples of
the nonzero entries of the full Jacobian matrix and thus can approximate
very large matrices, unlike the current MDEIM method which is limited by
its large computational memory requirements.

In this work, we perform an application of DEIM combined with POD
to obtain dimension reduction of a model describing the interactions of the
two hosts and two parasitoids in a one-dimensional domain in the pres-
ence of a chemotaxis process. The model was introduced and analyzed
by Pearce et al. in [19, 20] with respect to the stability properties of the
steady-states. The behaviour of the parasitoids towards plant infochemicals
generated during host feeding are defined as a chemotactic response and the
plant infochemicals are viewed as chemoattractants. The model considers
a single chemoattractant produced in proportion to the total host density.
Both parasitoids play the role of biological control agents against the hosts.

The paper is organized as follows. Section 2 describes the equations
of parasitoid model under study. Section 3 describes the POD and DEIM
methods along with Galerkin projection. Results of illustrative numerical
experiments are discussed in Section 4 while conclusions are drawn in Section
5.

2 The multi-species host-parasitoid model

We describe here the parameters and the model equations introduced by
Pearce et al. in [20]. The reaction kinetics describing the interactions be-
tween hosts and parasitoids are coupled with spatial motility and chemotaxis
terms giving rise to a system of reaction-diffusion-chemotaxis equations.

In the absence of parasitism, both host species are modelled by logistic,
density-dependent growth, with growth rates r1 and r2 and carrying capac-
ities K1 and K2, respectively. Parasitism by both parasitoids is modelled
by an Ivlev functional response. C. glomerata parasitises P. brassicae at
rate α1 and P. rapae at rate α2. C. rubecula parasitises P. rapae at rate α3.
The efficiency of parasitoid discovery of hosts is denoted by a1, a2 and a3.
Each parasitised host gives rise to e1, e2 and e3 next-generation parasitoids.
The parasitoids are subject to mortality rates d1 (C. glomerata) and d2 (C.
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rubecula).

The motility coefficients D1, D2, D3 and D4 of the four species are
constants and determine the rate at which each species disperses randomly
throughout the domain. The chemoattractantK is generated proportionally
to the total host density (N + M) at the rate r3 and decays at the rate
d3. The motility coefficient of the chemoattractant, D5, is a constant and
defines the rate at which the chemoattractant diffuses through the domain.
The chemotactic response of both species of parasitoid is modelled as a
linear response and the strength of the response depends on the chemotaxis
coefficients χ1 and χ2. The model is defined by the equations ([20]):

∂N

∂t
=

random motility︷ ︸︸ ︷
D1∇2N +

logistic growth︷ ︸︸ ︷
r1N

(
1− N

K1

)
−

mortality due to parasitism︷ ︸︸ ︷
α1P (1− e−a1N ) ,

∂M

∂t
= D2∇2M + r2M

(
1− M

K2

)
− α2P (1− e−a2M )

−α3Q(1− e−a3M ) ,

∂P

∂t
= D3∇2P − χ1∇ · (P∇k) + e1α1P (1− e−a1N ) (2.1)

+e2α2P (1− e−a2M )− d1P ,

∂Q

∂t
= D4∇2Q︸ ︷︷ ︸

random motility

− χ2∇ · (Q∇k)︸ ︷︷ ︸
parasitoid chemotactic response

+ e3α3Q(1− e−a3M )︸ ︷︷ ︸
growth to the parasitism

− d2Q︸︷︷︸
mortality

,

∂K

∂t
= D5∇2K + r3(N +M)︸ ︷︷ ︸

production

−d3K ,

where N and M are the density of hosts P. brassicae and P. rapae, respec-
tively, P and Q represent the density of parasitoids C. glomerata and C.
rubecula, and K represents the concentration of the chemoattractant pro-
duced during feeding by the hosts. N = N(x, t) denotes local population
density (organisms per area) at time t and spatial coordinate x (and likewise
for M , P , and Q). k = k(x, t) denotes local chemoattractant concentration
at time t and spatial coordinate x.

Here we consider the system (2.2) in a bounded domain Ω with smooth
boundary ∂Ω and homogeneous Dirichlet boundary conditions (which cor-
respond to a hostile external habitat). The initial conditions given by
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N(x, 0) = N0(x), M(x, 0) = M0(x) P (x, 0) = P0(x),Q(x, 0) = Q0(x) and
K(x, 0) = K0(x) will be specified in Section 4.

Using the non-dimensional variables: t′ = r1t, x
′ = x

L , N
′ = N

K1
, M ′ =

M
K2

, P ′ = P
K1

, Q′ = Q
K2

, K ′ = K
K0

, and dropping primes one obtains the
nondimensionalised system:

∂N

∂t
= DN∇2N +N (1−N)− s1P (1− e−ρ1N ) ,

∂M

∂t
= DM∇2M + γ1M (1−M)− s2P (1− e−ρ2M )

−s3Q(1− e−ρ3M ) ,

∂P

∂t
= DP∇2P − χP∇ · (P∇k) + c1P (1− e−ρ1N ) (2.2)

+c2P (1− e−ρ2M )− η1P ,

∂Q

∂t
= DQ∇2Q− χ2∇ · (Q∇k) + c3Q(1− e−ρ3M )− η2Q ,

∂K

∂t
= DK∇2K + γ2(N + γ3M)− η3K

where DN = D1
r1L2 , DM = D2

r1L2 , DP = D3
r1L2 , DQ = D4

r1L2 , DK = D5
r1L2 ,

χP = χ1k0
r1L2 , χQ = χ2k0

r1L2 , ρ1 = a1
K1

, ρ2 = a2
K2

, ρ3 = a3
K2

, γ1 = r1
r2
, γ2 = r3

K1
r1,

γ3 = K2
K1

, s1 = α1
r1
, s2 = α2K1

α1K2
, s3 = α3

r1
, c1 = e1α1

r1
, c2 = e2α2

r1
, c3 = e3α3

r1
,

η1 =
d1
r1
, η2 =

d2
r1

and η3 =
d3
r1
.

3 The POD and POD-DEIM reduced order sys-
tems

In this section we briefly present some details for constructing the reduced-
order system of the full-order system (2.2) applying Proper Orthogonal De-
composition (POD) and Discrete Empirical Interpolation Method (DEIM).

POD is an efficient method for extracting orthonormal basis elements
that contain characteristics of the space of expected solutions which is de-
fined as the span of the snapshots ([9, 10, 14, 15]). In this framework,
snapshots are the sampled (numerical) solutions at particular time steps or
at particular parameter values. POD gives an optimal set of basis vectors
minimizing the mean square error of a reduced basis representation.

Our reduced order modeling description uses a discrete inner product
though continuous products may be employed too. Generally, an unsteady
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model is usually governed by the following semi–discrete dynamical system

dy(t)

dt
= F(y, t), y(0) = y0 ∈ Rn, n ∈ IN, (3.1)

n being the number of space points discretizing the domain. From the
temporal-spatial flow y(t) ∈ Rn, we select an ensemble of Nt time instances
y1, ...,yNt ∈ Rn, where Nt ∈ IN, Nt > 0. If we denote by ȳ = 1

N

∑n
i=1 yi

the mean field correction, one way to compute the POD basis is to apply an
eigenvalue decomposition to the correlation matrixW = [wij ]i,j=1,..,Nt , wij =
⟨yi− ȳ,yj− ȳ⟩, where ⟨·, ·⟩ is the Euclidean dot product. The corresponding
eigenvalues are denoted by λi ≥ 0, i = 1, .., Nt and the eigenvectors are
stored in a matrix Φ = [ϕij ]i,j=1,..,Nt, Φ ∈ RNt×Nt . Then the orthonormal

POD basis vectors are computed using vi =
∑Nt

j=1 ϕij(yi − ȳ), i = 1, .., Nt.
Next, we introduce a relative information content to select a low-dimen-

sional basis of size k ≪ n, by neglecting modes corresponding to the small

eigenvalues. Define I(m) =
∑m

i=1 λi∑n
i=1 λi

and k is chosen such that k = min{I(m) :

I(m) ≥ γ} where 0 ≤ γ ≤ 1 is larger than 99% of the total kinetic energy
captured by the reduced space V = span{v1,v2, ...,vk}. The way the POD
basis is constructed ensures that the mean square error between y(ti) and
POD expansion yPOD(ti) = ȳ + V ỹ(ti), ỹ(ti) ∈ Rk, for all i = 1, .., Nt and
k = 1, .., Nt is minimized on average [14, p. 4].

By employing a Galerkin projection, the full model equations (3.1) is
projected onto the space V spanned by the POD basis elements and the
POD reduced order model is obtained

dỹ(t)

dt
= V TF

(
ȳ + V ỹ(t), t

)
, ỹ(0) = V T

(
y(0)− ȳ

)
. (3.2)

The efficiency of the POD-Galerkin technique is limited to linear or
bilinear terms, since the projected nonlinear terms still depend on all the
variables of the full model. To mitigate this inefficiency the discrete empirical
interpolation method (DEIM) [6, 7, 8, 17] and the empirical interpolation
method (EIM) [4, 13, 18] approximate the nonlinear terms via effective affine
offline-online computational decompositions.

The projected nonlinearity in the system (3.2) is approximated byDEIM
in the form that enables precomputation, so that evaluating the approximate
nonlinear terms using DEIM does not require a prolongation of the reduced
state variables back to the original high dimensional state approximation, as
it is required for nonlinearity evaluation in the original POD approximation.
Only a few entries of the original nonlinear term, corresponding to the spe-
cially selected interpolation indices from DEIM must be evaluated at each
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time step ([4, 6, 7, 11, 24]). We provide formally the DEIM approximation
in Definition 1, and the procedure for selecting DEIM indices is shown in
Algorithm DEIM. Each DEIM index is selected to limit the growth of a
global error bound for nonlinear terms using a greedy technique ([7]).

Definition 1 Let {uℓ}mℓ=1 ⊂ Rn be a linearly independent set denoted by U,
which is computed from the snapshots of the nonlinear term F in (3.1). The
DEIM approximation of order m for F in the space spanned by {uℓ}mℓ=1 is
given by

F := U(PTU)−1PTF, (3.3)

where P = [eϱ1 , . . . , eϱm ] ∈ Rn×m, and eϱi = [0, ..0, 1︸︷︷︸
ϱi

, 0, .., 0]T ∈ Rn,

i = 1, ..,m. The interpolation indices {ϱ1, . . . , ϱm} are selected inductively
from the basis {ui}mi=1 by the DEIM algorithm described below.

Algorithm DEIM:
INPUT: {uℓ}mℓ=1 ⊂ Rn linearly independent
OUTPUT: ϱ⃗ = [ϱ1, . . . , ϱm]T ∈ Rm

1. [|ρ| ϱ1] = max{|u1|}

2. U = [u1], P = [eϱ1 ], ϱ⃗ = [ϱ1]

3. for ℓ = 2 to m do

4. Solve (PTU)c = PTuℓ for c

5. r = uℓ −Uc

6. [|ρ| ϱℓ] = max{|r|}

7. U← [U uℓ], P← [P eϱℓ ], ϱ⃗←
[

ϱ⃗
ϱℓ

]
8. end for

Usually, the input basis U is obtained via POD method applied to non-
linear snapshots and inside the above algorithm we use U to denote some of
its columns. This is motivated by the fact that the columns are added in-
crementally at each step, and once the algorithm reaches the finishing state,
U is consistent with the initial notation proposed in Definition 1.

In the Algorithm DEIM we denoted by “max” the built-in Matlab func-
tion max with the same significance. Thus, this function applied at Step 6
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by [|ρ| ϱℓ] = max{|r|} leads to |ρ| = |rϱℓ | = maxi=1,...,n{|ri|}, with the small-
est index taken when the values along |r| contain more than one maximal
element. Precisely, the index of the first one is returned. According to this
algorithm, the DEIM procedure generates a set of indices inductively on the
input basis in such a way that, at each iteration, the current selected index
captures the maximum variation of the input basis vectors. The vector r
can be viewed as the error between the input basis {uℓ}mℓ=1 and its approxi-
mation Uc from interpolating the basis {uℓ}m−1

ℓ=1 at the indices ϱ1, . . . , ϱm−1.
The linear independence of the input basis {uℓ}mℓ=1 guarantees that, at each
iteration, r is a nonzero vector and the output indices ϱ1, . . . , ϱm are not
repeating.

An error result for DEIM approximation of a nonlinear vector-valued
function F is available in [7, Lemma 3.2], where the bound is obtained by
limiting the local growth of a certain magnification factor. It was proved
that PTU is always nonsingular and the greedy based DEIM selection pro-
cess can be viewed in terms of minimizing the condition number of PTU.
Moreover, it was shown in [8, Theorem 3.1] that the error bounds in 2−norm
of the difference between the solutions of a full-order general nonlinear or-
der differential equation and its corresponding POD-DEIM reduced order
version can be approximated by the sums of the singular values correspond-
ing to the neglected POD bases vectors of the state variables and nonlinear
terms.

The POD and POD-DEIM reduced order models of the system (2.2)
were developed by using a Galerkin projection and the techniques presented
in this section.

4 Numerical results

The system (2.2) was solved numerically using a finite difference dis-
cretization. Let 0 = x0 < x1 < · · · < xn < xn+1 = 1 be equally spaced
points on the x-axis for generating the grid points on the dimensionless
domain Ω = [0, 1], and take time domain [0, T ] = [0, 1]. The correspond-
ing spatial finite difference discretized system of (2.2) becomes a system of
nonlinear ODEs. The semi-implicit Euler scheme was used to solve the dis-
cretized system of full dimension and POD and POD-DEIM reduced order
systems.

The parameters were set to the following values ([20]): DN = DM =
8.e-8, DP = DQ = 7.5e-7, DK = 1.25e-6, χP = 1.5e-5, χQ = 1.5e-5,
ρ1 = 2.5, ρ2 = 0.25, ρ3 = 2.5, γ1 = 0.8, γ2 = 0.01, γ3 = 1, s1 = 0.8,
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s2 = 0.2, s3 = 0.8, c1 = 0.3, c2 = 0.004, c3 = 0.2, γ1 = 0.2, γ2 = 0.1 and
γ3 = 0.01. In our simulations we used the following initial conditions:

N0(x) = x(1− x)[0.75e−100(x−0.5)2 + 0.25e−100(x−0.15)2 ],

M0(x) = x(1− x)[0.15e−100(x−0.35)2 + 0.65e−100(x−0.5)2 ],

P0(x) = x(1− x)[0.075e−100(x−0.25)2 + 0.075e−125(x−0.75)2 ],

P0(x) = x(1− x)[0.075e−125(x−0.15)2 + 0.095e−175(x−0.65)2 ],

and K0(x) = 0. The number of spatial inner grid points on the x-axis
was successively taken as 32, 64, 128, ..., 2048. The solution components
of the problem (2.2) for a space configuration with 2048 internal nodes of
each discretized variable are depicted in Figs. 1,2. Tables 1–4 and Figs.
3–5 show a significant improvement in computational time of the POD-
DEIM reduced system compared to the POD reduced and the full-order
system. Precisely, POD-DEIM reduces the computational time by a factor
of O(102). The CPU time used in computing POD reduced system clearly
reflects the dependency on the dimension of the original full-order system.

5 Conclusions

The model reduction technique combining POD with DEIM has been
de-monstrated to be efficient for capturing the spatio-temporal dynamics of
a multi-species host-parasitoid system with substantial reduction in both
dimension and computational time by a factor of O(102). The failure to
decrease complexity with the standard POD technique was clearly demon-
strated by the comparative computational times shown in Tables 1–4 and
Figs 3–5. DEIM was shown to be very effective in overcoming the deficien-
cies of POD with respect to the nonlinearities in the model under study. In
order to increase the efficiency of the POD-DEIM approximation, a possi-
ble extension is to incorporate the POD-DEIM approach with higher-order
FD schemes to improve the overall accuracy, especially due to the spatio-
temporal heterogeneity and chemotaxis driven instability.

It is also interesting to compare the Discrete Empirical Interpolation
Method with Gappy POD andMissing Point Estimation methods in a proper
orthogonal decomposition framework applied to a higher order finite differ-
ence parasitoid model. The gappy POD procedure uses a POD basis to
reconstruct missing, or ”gappy“ data and it was developed in [12]. The
Missing Point Estimation method ([2]) relies on gappy POD technique and
the reduced order model computes the Galerkin projections over a restricted
subset of the spatial domain.
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Table 1: CPU time of full-order system, POD and POD-DEIM reduced
systems.

Internal CPU Time CPU Time CPU Time
Nodes n Full Dim POD POD–DEIM

32 5.407969e+00 5.317957e+00 1.715911e-01
64 5.254361e+00 5.347111e+00 1.680101e-01
128 5.607438e+00 5.710571e+00 1.696068e-01
256 6.847215e+00 6.614301e+00 1.809442e-01
512 8.610269e+00 7.600184e+00 2.016218e-01
1024 1.337721e+01 9.417793e+00 1.835292e-01
2048 2.653383e+01 1.312482e+01 1.812312e-01

Table 2: POD and POD-DEIM average relative errors for the components
N and M – host species.

Internal Error rel Error rel Error rel Error rel

Nodes n POD – N POD–DEIM – N POD – M POD–DEIM – M

32 3.482843e-14 3.516461e-14 1.645643e-13 1.657210e-13
64 1.388416e-14 1.414009e-14 9.331344e-14 9.348847e-14
128 1.653464e-14 1.661955e-14 7.420785e-14 7.175778e-14
256 4.718024e-15 4.669319e-15 1.590888e-14 1.634144e-14
512 2.736167e-14 2.732722e-14 1.716102e-14 2.124873e-14
1024 2.993938e-14 3.012212e-14 1.859783e-14 3.643836e-14
2048 9.590961e-15 1.042055e-14 4.956752e-14 1.216911e-13

Table 3: POD and POD-DEIM average relative errors for the components
P and Q – parasitoid species.

Internal Error rel Error rel Error rel Error rel

Nodes n POD – P POD–DEIM – P POD – Q POD–DEIM – Q

32 2.460205e-14 2.459944e-14 1.961488e-14 1.961738e-14
64 6.814060e-14 6.817415e-14 3.010484e-14 2.997920e-14
128 8.805397e-15 8.808601e-15 2.347853e-14 2.483260e-14
256 8.218387e-15 8.221235e-15 3.326519e-14 3.230054e-14
512 6.303037e-15 6.304210e-15 4.516320e-15 4.445458e-15
1024 1.758562e-14 1.720852e-14 3.067915e-15 3.980249e-15
2048 5.855724e-15 9.105957e-15 1.085525e-14 1.340351e-14
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Table 4: POD and POD-DEIM average relative errors for the component
K – chemoattractant.

Internal Error rel Error rel

Nodes n POD – K POD–DEIM – K

32 5.987349e-14 6.004292e-14
64 3.937026e-14 3.981359e-14
128 3.118464e-14 3.054254e-14
256 1.440359e-14 1.604336e-14
512 3.286988e-14 3.330396e-14
1024 1.140597e-14 1.642880e-14
2048 2.154869e-14 4.431176e-14

Figure 1: Solution plots (N,M,P,Q) of the model from the full-order system
(n = 2048).
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Figure 2: Solution plot K from the full-order system (n = 2048).

Figure 3: Solution plots (N,M) of the model from POD-DEIM reduced
system (dimPOD=dimDEIM=32), with the corresponding average relative
errors at the inner grid points (n = 2048).
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Figure 4: Solution plots (P,Q) of the model from POD-DEIM reduced
system (dimPOD=dimDEIM=32), with the corresponding average relative
errors at the inner grid points (n = 2048).

Figure 5: Solution plots K of the model from POD-DEIM reduced system
(dimPOD=dimDEIM=32), with the corresponding average relative errors
at the inner grid points (n = 2048).
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ESAIM Modélisation Mathématique et Analyse Numérique. 41(3):575–
605, 2007.

[14] M. Gubisch and S. Volkwein. Proper Orthogonal Decomposition for
Linear-Quadratic Optimal Control. University of Konstanz, Technical
report, 2013.

[15] K. Kunisch, S. Volkwein. Control of the Burgers’ equation by a reduced
order approach using proper orthogonal decomposition. J. Optim. The-
ory Appl. 102(2):345–371, 1999.

[16] K. Kunisch, S. Volkwein, and L. Xie. HJB-POD-Based Feedback Design
for the Optimal Control of Evolution Problems. SIAM J. Appl. Dyn.
Syst, 3(4):701–722, 2004.

[17] O. Lass, S. Volkwein. POD Galerkin schemes for nonlinear elliptic-
parabolic systems. Konstanzer Schriften in Mathematik. 301:1430–
3558, 2012.

[18] Y. Maday, N.C. Nguyen, A.T. Patera, G.S.H. Pau. A General Mul-
tipurpose Interpolation Procedure: the Magic Points. Commun. Pure
Appl. Anal. 8(1):383–404, 2009.

[19] I.G. Pearce, M.A.J. Chaplain, P.G. Schofield, A.R.A. Anderson, S.F.
Hubbard. Modelling the spatio-temporal dynamics of multi-species
host-parasitoid interactions: heterogeneous patterns and ecological im-
plications. J. Theor. Biol. 241:876–886, 2006.



188 G. Dimitriu, R. Ştefănescu, I.M. Navon
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[24] R. Ştefănescu, I.M. Navon. POD/DEIM nonlinear model order reduc-
tion of an ADI implicit shallow water equations model. J. Comput.
Phys. 237:95–114, 2013.
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