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Abstract

A posteriori error estimation methods are usually developed in the
context of upper and lower bounds of errors. In this paper, we are con-
cerned with a posteriori analysis in terms of identities, i.e., we deduce
error relations, which holds as equalities. We discuss a general form
of error identities for a wide class of convex variational problems. The
left hand sides of these identities can be considered as certain measures
of errors (expressed in terms of primal/dual solutions and respective
approximations) while the right hand sides contain only known ap-
proximations. Finally, we consider several examples and show that
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Prager-Synge and Mikhlin’s error relations. Also, we discuss particular
cases related to power growth functionals and to the generalized Stokes
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1 Functional setting

In this section, we present the class of variational problems to be considered
and recall several basic facts related to this class of problems.

Throughout the paper we use two pairs of mutually conjugate reflexive
Banach spaces. The first pair is Y and Y ∗ (with the duality pairing (y∗, y),
where y∗ ∈ Y ∗ and y ∈ Y ). The norms of Y and Y ∗ are denoted by ∥ · ∥
and ∥ · ∥∗, respectively. Another pair of spaces is V and V ∗. The product
of v ∈ V and v∗ ∈ V ∗ is denoted by << v∗, v >> . We assume that

V ⊂ V ⊂ V ∗,

where V is a Hilbert space with the norm ∥ · ∥V and scalar product (·, ·)V ,
so that << v∗, v >> = (v∗, v)V for any v∗ ∈ V.

By Λ : V → Y we denote a bounded linear operator and assume that
the conjugate operator Λ∗ : Y ∗ → V ∗ satisfies the relation

(y∗,Λw) = << Λ∗y∗, w >> , ∀w ∈ V. (1.1)

If y∗ is more regular and belongs to the set

H∗
Λ∗ := { y∗ ∈ Y ∗ | Λ∗y∗ ∈ V } ,

then (1.1) can be rewritten in the form

(y∗,Λw) = (Λ∗y∗, w)V , ∀w ∈ V. (1.2)

We consider the following class of variational problems: find u ∈ V such
that

J(u) = inf P := inf
v∈V

J(v) (ProblemP), (1.3)

where

J(v) = G(Λv) + F (v), (1.4)

the functionals G : Y → R and F : V → R are convex and lower semicon-
tinuous functionals such that J(v) is a proper functional (cf. [2]) and

J(v) → +∞ as ∥v∥V → +∞. (1.5)

In addition, we assume that F is finite at zero element of V and G is coercive
on Y .
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As usual, the functionals dual to F and G are defined by the relations

F ∗(v∗) = sup
v∈V

{<< v∗, v >> −F (v)}

and

G∗(y∗) = sup
y∈Y

{ (y∗, y) − G(y) } ,

respectively.

If v∗ ∈ H∗
Λ∗ , then the first relation admits another form

F ∗(v∗) = sup
v∈V

{(v∗, v)V − F (v)} .

Existence of a minimizer u to Problem P follows from standard arguments
of the variational calculus (see, e.g., [1, 2]).

Problem P has a saddle point formulation associated with the Lagrangian

L(v, y∗) := F (v) + ( y∗,Λv) −G∗(y∗),

which is convex and lower semicontinuous with respect to the variable v and
concave and upper semicontinuous with respect to the variable y∗.

The Lagrangian yields a dual variational functional defined by the rela-
tion

I∗(y∗) = inf
v∈V

L(v, y∗) = −G∗(y∗) + inf
v∈V

((y∗,Λv) + F (v))

= −G∗(y∗)− sup
v∈V

(<< −Λ∗y∗, v >> −F (v))

= −G∗(y∗)− F ∗(−Λ∗y∗)

and a new (dual) variational problem: find p∗ ∈ Y ∗ such that

I∗(p∗) = sup
y∗∈Y ∗

{−G∗(y∗)− F ∗(−Λ∗y∗)} (ProblemP∗).

It is not difficult to show that under the above made assumptions

inf P = supP∗ := sup
y∗∈Y ∗

inf
v∈V

L(v, y∗) (1.6)

and Problem P∗ also has a solution.
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2 General form of error identities for convex vari-
ational problems

Since both primal and dual problems are well posed and have solutions u∗

and p∗, respectively, the pair (u, p∗) is a saddle point of L on V × Y ∗, i.e.

L(u, y∗) ≤ L(u, p∗) ≤ L(v, p∗), ∀v ∈ V, y∗ ∈ Y ∗, (2.1)

The left–hand side of the inequality yields the relation

(y∗ − p∗,Λu) ≤ G∗(y∗)−G∗(p∗), ∀y∗ ∈ Y ∗,

which means that

Λu ∈ ∂G∗(p∗) ⇔ p∗ ∈ ∂G(Λu). (2.2)

Analogously, the right–hand side of (2.1) yields the relation

F (v)− F (u) ≥ (p∗,Λ(u− v)) =<< −Λ∗p∗, v − u >> , (2.3)

which means that

−Λ∗p∗ ∈ ∂F (u) ⇔ u ∈ ∂F ∗(−Λ∗p∗). (2.4)

In general, the relations (2.2) and (2.4) present necessary conditions for the
solution pair (u, p∗) and have the form of differential inclusions. However,
there is another equivalent way to present these conditions, which is more
convenient for our purposes. It is well known (see, e.g., [2, 5]) that (2.2) and
(2.4) are equivalent to the relations

DG(Λu, p
∗) := G(Λu) +G∗(p∗)− (p∗,Λu) = 0, (2.5)

and

DF (u,−Λ∗p∗) := F (u) + F ∗(−Λ∗p∗)+ << Λ∗p∗, u >>= 0, (2.6)

respectively.

The functionals DG(y
∗, y) : Y ∗ × Y → R and DF (v

∗, v) : V ∗ × V → R
(in the literature, they are often called compound functionals) vanish if and
only if the arguments satisfy (2.2) and (2.4). In all other cases, they are
positive.
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Let q∗ ∈ Y ∗ and v ∈ V be the functions compared with p∗ and u. We
introduce the following nonlinear measure of the distance between {u, p∗}
and {v, y∗}:

M({u, p∗}, {v, y∗}) :=
= DF (u,−Λ∗y∗) +DG(Λu, y

∗) +DF (v,−Λ∗p∗) +DG(Λv, p
∗). (2.7)

It is easy to see that M({u, p∗}, {v, y∗}) is nonnegative and vanishes if and
only if

Λv ∈ ∂G∗(p∗), y∗ ∈ ∂G(Λu),

−Λ∗y∗ ∈ ∂F (u), v ∈ ∂F ∗(−Λ∗p∗).

In other words, M({u, p∗}, {v, y∗}) vanishes if and only if all the necessary
saddle point conditions are satisfied. Moreover, it was proved (see [5], Sec-
tion 7.2 and [10]) that

M({u, p∗}, {v, y∗}) = J(v)− I∗(y∗). (2.8)

We see that M{(u, p∗), (v, y∗)} = 0 if and only if J(v) = I∗(y∗) what is pos-
sible only if v is a minimizer of the problem P and y∗ is a maximizer of the
problem P∗. In view of this fact, in [11] the functional M was introduced
as the right error measure for the class of variational problems (1.3)–(1.4).
Since any numerical procedure is focused (explicitly or implicitly) on min-
imization of the duality gap J(v) − I∗(y∗), it automatically minimizes the
distance between {u, p∗} and {v, y∗} in terms of the measure M.

Now we can formulate the main result, which presents the general a
posteriori error identity for the considered class of problems.

Theorem 2.1 Let u be a minimizer of the Problem P and p∗ be a maximizer
of the Problem P∗. Then, for any v ∈ V and y∗ ∈ Y ∗ the following identity
holds:

M{(u, p∗), (v, y∗)} = DF (v,−Λ∗y∗ ) +DG(Λv, y
∗). (2.9)

The statement directly follows from (2.8). Indeed,

J(v)− I∗(y∗) = G(Λv) + F (v) +G∗(y∗) + F ∗(−Λ∗y∗)

= DG(Λv, y
∗) + (y∗,Λv) +DF (v,−Λ∗y∗)− < Λ∗y∗, v > .

We apply (1.1) and arrive at (2.9).
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We note that a somewhat different notation the identity (2.9) was proved
in [5] (see 7.2.14). It has a clear meaning: the distance between the pair of
exact solutions and their approximations measured in terms of the measure
M is equal to the sum of two fully computable functionals DG(Λv, y

∗) and
DF (v,−Λ∗y∗) that depend only on approximate solutions and does not con-
tain unknown exact solutions. Therefore, this relation can be viewed as the
basic a posteriori error identity .

Remark 2.1 It is commonly accepted that errors should be measured in
terms of relative (normalized) quantities, which adjust absolute values of
errors to a certain measure (e.g., norm) of the exact solution. The relation
(2.8) clearly suggests a proper normalization. Since the duality gap J(v) −
I∗(y∗) is equal to the error measure M({u, p∗}, {v, y∗}) and C∗ := |J(u)| =
|I∗(p∗)| is a number inside it related to the exact values of the primal/dual
energy functionals, it is natural to use the quantity

E(v, y∗) = 1

C∗M({u, p∗}, {v, y∗})

as a normalized measure of the error (trivial solutions with zero energy
are excluded from this consideration). Since J(u) is generally unknown, in
practice it may be suggested to use the constant C̃∗ = 1

2(|J(v)| + |I∗(y∗)|)
instead of C∗. Then we recall (2.9) and introduce the quantity

Ẽ(v, y∗) = 1

C̃∗
(DF (v,−Λ∗y∗ ) +DG(Λv, y

∗))

as a fully computable normalized measure that objectively quantify the ac-
curacy of (v, y∗).

A special, but important case

F (v) =<< ℓ ∗, v >> , ℓ ∗ ∈ V ∗

deserves a special consideration. We have

F ∗(−Λ∗y∗) = sup
v∈V

<< −Λ∗y∗ − ℓ ∗, v >>=

{
0 if y∗ ∈ Q∗

ℓ ∗ ,
+∞ if y∗ ̸∈ Q∗

ℓ ∗ ,

where

Q∗
ℓ ∗ := {q∗ ∈ Y ∗ | (q∗,Λw) + ⟨ℓ ∗, w⟩ = 0, w ∈ V }.
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Hence,

I∗(y∗) =

{
−G∗(y∗) if y∗ ∈ Q∗

ℓ ∗ ,
−∞ if y∗ ̸∈ Q∗

ℓ ∗

Problem P∗ has the form: find p∗ ∈ Q∗
ℓ ∗ such that the functional −G∗(p∗)

attains its supremum on Q∗
ℓ ∗ .

It is easy to see that the identity (2.8) holds in the form +∞ = +∞ if
y∗ ̸∈ Q∗

ℓ ∗ and in the form

DG(Λu, y
∗) +DG(Λv, p

∗) = J(v)− I∗(y∗) (2.10)

for y∗ ∈ Q∗
ℓ ∗ . Therefore, we conclude that for v ∈ V and y∗ ∈ Q∗

ℓ ∗ the error
measure is defined by the relation

M{(u, p∗), (v, y∗)} = DG(Λu, y
∗) +DG(Λv, p

∗).

and the a posteriori error identity (2.9) holds on the affine manifold Q∗
ℓ ∗ in

the form

M{(u, p∗), (v, y∗)} = DG(Λv, y
∗). (2.11)

Identities (2.10) and (2.11) have been established in [9, 10] and used for the
derivation of functional type a posteriori error estimates for a wide class of
convex variational problems.

Now we consider particular forms of (2.8)–(2.11) related to some classes
of functionals commonly used in mathematical modeling.

3 Problems with quadratic G(y∗)

Let U be a Hilbert space endowed with the scalar product (·, ·)U containing
the same elements as Y and Y ∗ and A : U → U be a bounded, linear, and
positive definite operator. The spaces Y and Y ∗ are identified by the norms

|||τ |||2 = (Aτ, τ)U and |||τ |||2∗ = (A−1τ, τ)U ,

respectively (it is clear that these norms are equivalent to the original norm
of U). We define Λ as a linear bounded operator acting from V to U . The
conjugate operator Λ∗ : U → V ∗ is defined by the relation

(y,Λv)U =< Λ∗y, v > .
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Consider first the problem

Λ∗AΛu+ αu = ℓ ∗, (3.1)

where α is a positive constant and ℓ ∗ ∈ V. The corresponding generalized
solution u is defined by the relation

(AΛu,Λw)U + α(u,w)V = (ℓ ∗, w)V ∀w ∈ V. (3.2)

In this case,

G(y) =
1

2
(Ay, y)U , G∗(y∗, y∗) =

1

2
(A−1y∗, y∗)U ,

and

F (v) =
α

2
∥v∥2V − (ℓ ∗, v)V .

We find that for any v∗ ∈ V

F ∗(v∗) = sup
v∈V

{
(v∗ + ℓ ∗, v)V − α

2
∥v∥2V

}
=

1

2α
∥v∗ + ℓ ∗∥2V .

For any y∗ ∈ Y ∗, we have

DG(Λu, y
∗) =

1

2

(
(AΛu,Λu)U + (A−1y∗, y∗)U − 2(Λu, y∗)U

)
=

1

2
|||AΛu− y∗|||2∗ (3.3)

and

DG(Λv, p
∗) =

1

2
|||AΛv − p∗|||2∗. (3.4)

Let y∗ ∈ H∗
Λ∗ . Then,

DF (u,−Λ∗y∗) =
α

2
∥u∥2V +

1

2α
∥ℓ ∗ − Λ∗y∗∥2V + (u,Λ∗y∗ − ℓ ∗)V

=
1

2α
∥Λ∗y∗ + αu− ℓ ∗∥2V (3.5)

and quite analogously (note that p∗ ∈ H∗
Λ∗) we obtain

DF (v,−Λ∗p∗) =
1

2α
∥Λ∗p∗ + αv − ℓ ∗∥2V . (3.6)
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Now we recall (2.2) and (2.4). Since the functionals G and G∗ are Gateaux
differentiable, the relations (2.2) have the form

p∗ = G′(Λu) = AΛu and Λu = (G∗)′ (p∗) = A−1p∗. (3.7)

The functionals F , and F ∗ are also differentiable. Therefore, (2.4) have the
form

u = (F ∗)′ (−Λ∗p∗) =
1

α
(ℓ ∗ − Λ∗p∗) (3.8)

and

−Λ∗p∗ = F ′(u) = αu− ℓ ∗. (3.9)

By (3.7)–(3.9) we conclude that the components of the measure M are as
follows:

DG(Λu, y
∗) =

1

2
|||p∗ − y∗|||2∗, (3.10)

DG(Λv, p
∗) =

1

2
|||Λ(u− v)|||2, (3.11)

DF (u,−Λ∗y∗) =
1

2α
∥Λ∗(y∗ − p∗)∥2V , (3.12)

DF (v,−Λ∗p∗) =
α

2
∥v − u∥2V . (3.13)

Thus, for this class of linear problems the measure M{(u, p∗), (v, y∗)} is
defined by the sum of above presented four norms of two error functions
e := u− v and η∗ := p∗ − y∗.

It is easy to see that M{(u, p∗), (v, y∗)} is equivalent to the sum of two
norms associated with the primal and dual errors:

|||e|||2α :=
1

2

(
|||Λe|||2 + α∥e∥2V

)
. (3.14)

and

∥η∗∥2
H∗, 1

α

:=
1

2

(
|||η∗|||2∗ +

1

α
∥Λ∗η∗∥2V

)
(3.15)

Here the first norm is the energy norm associated with the primal variational
functional J and the second one can be viewed a norm of the space H∗

Λ∗ .
We see that

M ({u, p∗}, {v, y∗}) = |||e|||2α + ∥η∗∥2
H∗, 1

α
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and the identity (2.8) reads

|||e|||2α + ∥η∗∥2
H∗, 1

α

= J(v)− I∗(y∗). (3.16)

In other words, for this class of variational problems the difference between
the primal and dual functionals measured in terms of M is equal to the sum
of specially selected norms.

Theorem 2.1 implies the following a posteriori error identity:

|||e|||2α + ∥η∗∥2
H∗, 1

α

=
1

2
|||AΛv − y∗|||2∗ +

1

2α
|||Λ∗y∗ + αv − ℓ ∗|||2V . (3.17)

The right hand side of this identity contains only known functions and van-
ishes if and only if

AΛv − y∗ = 0,

Λ∗y∗ + αv − ℓ ∗ = 0,

i.e., if v = u (cf. (3.1)) and y∗ = p∗. In all other cases the right hand
side is positive and equals to the combined primal–dual measure of the error
presented by the left hand side. We note that such type identity (both sides
of which are expressed in terms of squared norms) takes place only for this
class of linear problems.

The identity (3.17) is not valid for α = 0. In this case, then we must use
(2.10) and (2.11) and use introduce the condition

Λ∗y∗ = ℓ ∗. (3.18)

We find that

M{(u, p∗), (v, y∗)} =
1

2
|||AΛu− y∗|||2∗ +

1

2
|||AΛv − p∗|||2∗

=
1

2
|||η∗|||2 + 1

2
|||Λe |||2.

Then, (2.10) yields the identity

1

2
|||η∗|||2∗ +

1

2
|||Λe |||2 = J(v)− I∗(y∗). (3.19)

Set here y∗ = p∗. Since

I∗(p∗) = J(u) and p∗ = AΛu,
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we obtain

1

2
|||Λe |||2 = J(v)− J(u). (3.20)

This is a generalized form of the Mikhlin’s error identity (see, e.g., [4, 3]),
which was derived for variational functionals defined by quadratic forms.

By (2.11), we find that

|||AΛu− y∗|||2∗ + |||AΛv − p∗|||2∗ = |||AΛv − y∗|||2∗. (3.21)

We can rewrite it in an equivalent form

|||η∗|||2∗ + |||Λe |||2 = |||AΛv − y∗|||2∗, ∀y∗ ∈ Q∗
ℓ ∗ . (3.22)

The latter identity can be viewed as a generalization of the Prager–Synge
error relation derived in [7] for linear elasticity problems.

Remark 3.1 We see that error measures arising in the estimates are gen-
erated by nonnegative compound functionals. In the linear case (i.e., for
quadratic type functionals), they are equivalent to norms. However in gen-
eral, M consists of nonlinear terms that jointly form a proper measure of
the accuracy (see [11]).

4 Particular cases

Now we briefly discuss applications of the above presented error identities
to particular classes variational problems.

4.1 Quadratic growth problems with Λ = grad

Let V = H1
0 (Ω), where Ω is a bounded Lipschitz domain in Rd (d ≥ 1). We

set U = L2(Ω,Rd), V = L2(Ω), and identify A with a symmetric real matrix
in Md×d

sym. Then Λ∗ = −div and (3.1) is the equation

divA∇u− αu+ ℓ ∗ = 0. (4.1)

In this case,

|||e|||2α =
1

2

∫
Ω

(
A∇e · ∇e+ α|e|2

)
dx,

|||η∗|||2
H∗, 1

α

=
1

2

∫
Ω

(
A−1η∗ · η∗ + 1

α
|div η∗|2

)
,
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and the a posteriori error identity (3.17) has the form

|||e|||2α + |||η∗|||2
H∗, 1

α

=
1

2

∫
Ω

(
A∇v · ∇v +A−1y∗ · y∗ − y∗ · ∇v

)
dx

+
1

2α
∥div y∗ − αv + ℓ ∗∥2. (4.2)

If α = 0, then we use (3.18) and (3.19) and obtain the identities

1

2

∫
Ω

A−1η∗ · η∗ dx+
1

2

∫
Ω

A∇e · ∇e dx = J(v)− I∗(y∗) (4.3)

and the Mikhlin’s identity

1

2

∫
Ω

A∇e · ∇e dx = J(v)− J(u). (4.4)

By (3.22) we obtain a version of the Prager-Synge identity∫
Ω

(A−1η∗ · η∗ +A∇e · ∇e)dx

=

∫
Ω

(
A∇v · ∇v +A−1y∗ · y∗ −∇v · y∗

)
dx. (4.5)

4.2 Problems with the operator Λ = Sym∇

Problems of this type arise in continuum media problems, where Λ is a
symmetric part of the tensor∇u and u is a vector field. In this case, the error
identities are quite similar to (4.2)–(4.5). The reader can find a sistematic
discussion of them and respective error majorants in [5, 9, 10, 12]).

4.3 Generalized Stokes problem

If V coincides with the space S1,2
0 (Ω,Rd) that is the closure of smooth

solenoidal fields with respect to the norm of H1(Ω,Rd) and Λv = ∇v, where
v is the velocity vector field, then we arrive at a class of variational prob-
lems generated by incompressible media. The generalized Stokes problem
is one of the most known problems in this class. It often arises in time
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discretization of the parabolic Stokes problem. It is related to the system

−ν∆u+ αu = ℓ ∗ in Ω, (4.6)

div u = 0, (4.7)

u = u0 on ∂Ω, (4.8)

where u0 is a divergence free field in H1(Ω,Rd) and ν > 0 is the viscosity.
In this case, Λ∗ = −Div (i.e., the conjugate operator is formed by the

divergence of a tensor field), U = L2(Ω,Rd),

G(Λv) =

∫
Ω

ν

2
|∇v|2dx, and G∗(y∗) =

∫
Ω

1

2ν
|y∗|2dx.

Here |y∗| denotes the Euclidean norm of the tensor y∗ ( |y∗|2 := y∗ : y∗).
Let v ∈ S1,2

0 (Ω,Rd) and y∗ ∈ L2(Ω,Md×d
sym) be approximations of the

exact velocity u and exact stress σ∗, respectively. Then the general method
exposed in Sect. 2 suggests to measure the errors e = u−v and η∗ = σ∗−y∗

(for the velocity and stress) in terms of the integral type measures

|||e|||2α =
1

2

∫
Ω

(
ν|∇e|2 + α|e|2

)
dx

and

|||η∗|||2
H∗, 1

ν

=
1

2

∫
Ω

(
1

ν
|η∗|2 + 1

α
|Div η∗|2

)
dx,

respectively.
We conclude that the a posteriori error identity (3.17) has the form

|||e|||2α + |||η∗|||2
H∗, 1

ν
=

1

2

∫
Ω

(
ν|∇v|2 + 1

ν
|y∗|2 − y∗ : ∇v

)
dx

+
1

2α
∥Div y∗ − αv + ℓ ∗∥2. (4.9)

4.4 Nonlinear problem

Finally, we consider an example of highly nonlinear problem, where G is a
power growth functional and F has linear growth with respect to v. Let

J(v) =
1

q

∫
Ω

|∇v|q dx+ α

∫
Ω

|v| dx+

∫
Ω

fvdx.



170 P. Neittaanmaki, S. Repin

We assume that 0 < q < +∞, α > 0, and f is a bounded real valued
function. Existence of the minimizer u is obvious because J(v) is coercive

of the reflexive space V =
◦
W 1,q(Ω). In this case, Λ = ∇, Λ∗ = −div ,

G∗(y∗) =
1

q∗

∫
Ω

|y∗|q∗ dx, 1

q
+

1

q∗
= 1,

and

DG(y, y
∗) =

∫
Ω

(
1

q
|y|q + 1

q∗
|y∗|q∗ − yy∗

)
dx.

Next,

F (v) = α

∫
Ω

|v|dx+

∫
Ω

fvdx,

For any real valued function v∗ ∈ V ∗, we have

F ∗(v∗) = sup
v∈V

∫
Ω

((v∗ − f)v − α|v|)dx

=

{
0 if |v∗ − f | ≤ α,
+∞ if |v∗ − f | > α

(4.10)

and, therefore,

F ∗(−Λ∗y∗) =

{
0 if |div y∗ + f | ≤ α,
+∞ if |div y∗ + f | > α.

Hence

DF (v,−Λ∗y∗) =


∫
Ω

(α|v|+ v(div y∗ + f))dx if |div y∗ + f | ≤ α,

+∞ if |div y∗ + f | > α.

We see that the measure M is finite only if

y∗ ∈ Q∗
α := {y∗ ∈ Y ∗ | |div y∗(x) + f | ≤ α for a.a. x ∈ Ω} .(4.11)

This condition plays the same role as (3.18) for variational problems with
F (v) =< ℓ ∗, v >. However, there is an essential difference. Now the error
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identities are finite not on the set Q∗
ℓ ∗ (which is an affine manifold defined by

(3.18)) but in a ”strip” Q∗
α and width of this strip depends on the parameter

α.
Note that p∗ = |∇u|q−2∇u and ∇u = |p∗|α∗−2p∗. Another duality rela-

tion reads

div p∗ + f =

{
−α u

|u| if u ̸= 0,

−αζ where |ζ| ≤ 1 if u = 0

and we conclude that p∗ ∈ Q∗
α. In view of (2.7), for any y∗ ∈ Q∗

α and v ∈ V ,
the measure M is defined by the relation

M({u, p∗}, {v, y∗})

=

∫
Ω

(α|u|+ u(div y∗ + f) + α|v|+ v(div p∗ + f)) dx

+

∫
Ω

(
1

q
|p∗|q + 1

q∗
|y∗|q∗ − p∗ · y∗|p∗|α∗−2

)
dx

+

∫
Ω

(
1

q
|∇v|q + 1

q∗
|∇u|q −∇v · ∇u|∇u|q−2

)
dx. (4.12)

It is easy to see that the measure vanishes if u = v and p∗ = y∗. Now
Theorem 2.1 yields the following error identity for this variational problem:

M({u, p∗}, {v, y∗}) =
∫
Ω

(α|v|+ v(div y∗ + f)) dx

+

∫
Ω

(
1

q
|∇v|q + 1

q∗
|y∗|q∗ −∇v · y∗

)
dx. (4.13)

Finally, we note that the problem considered above generates an elliptic
variational inequality of the second kind. Analysis of suitable error measures
(and corresponding error majorants) for variational inequalities of the first
kind is presented in [13] for obstacle type problems and in [6] for problems
with nonlinear boundary conditions.
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[5] P. Neittaanmäki and S. Repin. Reliable methods for computer simula-
tion. Error control and a posteriori estimates. Studies in Mathematics
and its Applications, 33. Elsevier Science B.V., Amsterdam, 2004.
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