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Abstract

The aim of this paper is to provide conditions for the boundedness
of the anisotropic norm of discrete–time linear stochastic systems with
multiplicative noise. It is proved that these conditions can be expressed
in terms of the existence of a stabilising solution of a specific Riccati
equation satisfying some additional constraints.
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1 Introduction

The signal filtering problem received much attention over the last seven
decades, starting with the early formulation and developments due to E.
Hopf and N. Wiener in the 1940’s. Two decades later, the well-known re-
sults of Kalman and Bucy ([10], [11]) have been successfully implemented in
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many applications including aerospace, signal processing, geophysics, etc.
and they have strongly influenced the research in this area. Some sur-
veys on linear filtering and estimation can be found for instance in [9] and
in [20]. Many papers devoted to this topics investigate the filtering per-
formances with respect to the uncertainty modelling errors of the system
which state is estimated. This interest is motivated by the fact that the
filter performance deteriorates in the presence of modelling errors. Some
of these papers consider the problem of robust filtering when the system
is subject to parametric uncertainty (see e.g. [3], [6], [12], and the ref-
erences therein). There are applications in which the system parameters
are corrupted with random perturbations leading to stochastic models with
multiplicative noise. Such stochastic systems have been intensively studied
over the last few decades (see [23] for early references), many of the re-
cent theoretical developments including optimal control and filtering results
([4], [6], [15]). Another important issue arising in filtering applications is
related to the input of the systems generating the filtered signals. Besides
developments based on Kalman filtering, also known as H2-type filtering
since the exogenous input signals are assumed white noises, alternative ap-
proaches have been proposed where deterministic bounded energy inputs
are considered. Such formulations and developments have been performed
in the framework of the H∞-norm minimisation ([7], [20]). Many practi-
cal applications require a compromise between the H2 and the H∞ filtering
since the H2 norm minimisation of the estimation error may not be suitable
when the considered signals are strongly coloured (e.g. periodic signals), and
that H∞-optimization may poorly perform when these signals are weakly
coloured (e.g. white noise), (see e.g. [1] and [16]). An promising alternative
to accomplish such compromise is to use the so-called a-anisotropic norm
(see e.g. [5], [13], [22]) since it offers and intermediate topology between the
H2 and H∞ norms. More precisely, if the coloured signal is generated by an
m-dimensional exogenous input, the a-anisotropic norm ‖|F‖|a of a stable
system F has the property 1/

√
m‖F‖2 ≤ ‖|F‖|a ≤ ‖F‖∞ (see, for instance

[13]).
In [22] a Bounded Real Lemma type result is proved for the anisotropic

norm of discrete-time deterministic systems. It is shown that the bound-
edness norm condition implies to solve a nonconvex optimization in which
frequency representation of the filtered signal plays a crucial role.

The aim of the present paper is to determine boundedness conditions
for the anisotropic norm of stochastic systems with multiplicative noise. By
contrast with the above mentioned papers, all the developments of this paper
use time representations of the signals and the obtained results provide a



Boundedness conditions for the anisotropic norm 237

generalisation of the ones derived the absence of the multiplicative noise and
for the case when the system is subject to state-dependent noise [21].

Notation. Throughout the paper the superscript ‘T ’ stands for matrix
transposition, Rn denotes the n dimensional Euclidean space, Rn×m is the
set of all n×m real matrices, and the notation P >0 (P ≥ 0), for P ∈ Rn×n

means that P is symmetric and positive definite (positive semidefinite). The
trace of a matrix Z is denoted by Tr{Z}, and |v| denotes the Euclidian norm
of an n-dimensional vector v.

2 Preliminaries and Problem Statement

Consider the stochastic system with multiplicative noise

x(t+ 1) = (A0 +
∑r

i=1 ξi(t)Ai)x(t) + (B0 +
∑r

i=1 ξi(t)Bi)w(t)
y(t) = Cx(t) +Dw(t), t = 0, 1, ...

(1)

where ξ(t) = (ξ1(t), ..., ξr(t))
T is a sequence of independent random vectors

ξ : Ω → Rr on a probability space(Ω,F ,P). It is assumed that {ξ(t)}t≥0
satisfies the conditions E [ξ(t)] = 0 and E

[
ξ(t)ξT (t)

]
= Ir, t = 0, 1, ... . The

matrices of the state space model (1) have the dimensions Ai ∈ Rn×n, Bi ∈
Rn×m, i = 0, 1...., r, C ∈ Rp×n, D ∈ Rp×m.

It is assumed that the input w(t) are random variables generated by a
linear stochastic filter with multiplicative noise G

x̃(t+ 1) = (Af0 +
∑r

i=1 ξi(t)Afi) x̃(t) + (Bf0 +
∑r

i=1 ξi(t)Bfi) v(t)
w(t) = Cf x̃(t) +Dfv(t), t = 0, 1, ...

(2)

where the order nf and the matrices Afi ∈ Rnf×nf , Bfi ∈ Rnf×m, i =
0, 1...., r, Cf ∈ Rm×nf , D ∈ Rm×m are not prefixed and v(t) ∈ Rm are

white noise vectors with the properties E [v(t)] = 0 and E
[
v(t)vT (t)

]
=

Im, t = 0, 1, ... . It is assumed that {ξ(t)}t≥0 and {v(t)}t≥0 are independent
stochastic processes.

Definition 1 A stochastic system with multiplicative noise of form (1) with
Bi = 0, i = 0, 1, ..., r is called exponentially stable in mean square (ESMS) if
there exist β ≥ 1 and ρ ∈ (0, 1) such that E

[
|Φ(t, s)x(0)|2

]
≤ βρ(t−s)|x(0)|2

for all t ≥ s ≥ 0, x(0) ∈ Rn, where Φ(t, s) denotes the fundamental matrix
solution of (1).

Throughout the paper it will be assumed that both systems (1) and (2) are
ESMS.
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Definition 2 The H2-type norm of the ESMS system (1) is defined as

‖F‖2 =

[
lim
`→∞

1

`

∑̀
t=0

E
[
yT (t)y(t)

]] 1
2

.

The next result provides a method to compute the H2 norm of the stochastic
system (1) (see e.g. [4]).

Lemma 1 The H2 type norm of the ESMS system (1) is given by ‖F‖2 =(
Tr
(∑r

i=0B
T
i XBi +DTD

)) 1
2 where X ≥ 0 is the solution of the Lyapunov

equation X =
∑r

i=0A
T
i XAi + CTC.

Let L2 (Z× Ω,Rm) the space of all sequences w = {w(t)}t∈Z+ of m-

dimensional vectors with ‖w‖2 :=
∑∞

t=−∞E|w(t)|2 <∞ and by L̃2 (Z+ × Ω,
Rm) the space of all w ∈ L2 (Z+ × Ω,Rm) such that w(t) are measurable
with respect to Ft for every t ∈ Z+, Ft ⊂ F denoting a family of σ-algebras
associated to the vectors ξ(t). In [14] it is proved that if the system (1) is
ESMS, one may define the linear bounded input-output operator

(Fw)(t) : L̃2 (Z+ × Ω,Rm)→ L̃2 (Z+ × Ω,Rp)

by

(Fw)(t) = Cx(t) +Dw(t), t ∈ Z+,

x(t) being the solution of (1) with zero initial condition. Denoting by ‖F‖∞
the norm of the above operator, one can prove the following Bounded Real
Lemma type result for stochastic systems of form (1) with respect to the
H∞ norm [14].

Lemma 2 The ESMS system (1) has the norm ‖F‖∞ < γ for a certain
γ > 0 if and only if the Riccati equation

P =
∑r

i=0A
T
i PAi+

(∑r
i=0A

T
i PBi + CTD

)(
γ2I −

∑r
i=0B

T
i PBi −DTD

)−1
×
(∑r

i=0A
T
i PBi + CTD

)T
+ CTC

has a stabilizing solution P ≥ 0 such that γ2I −
∑r

i=0B
T
i PBi −DTD > 0.

It is recalled that a symmetric solution P of the above Riccati equation
is called a stabilising solution if the stochastic system

x(t+ 1) =

(
A0 +B0K +

r∑
i=1

ξi(t) (Ai +BiK)

)
x(t)
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is ESMS, where by definition

K :=

(
γ2I −

r∑
i=0

BT
i PBi −DTD

)−1( r∑
i=0

AT
i PBi + CTD

)T

.

Given an ESMS filter of form (2), the mean anisotropy of the random vari-
able w(t) generated by G is defined as

Ā(G) = −1

2
ln det

mE
[
w̃(0)w̃T (0)

]
‖G‖22

 (3)

where w̃(0) = w(0) − E
[
w(0)| (w(k))k<0

]
denotes the prediction error of

w(0) based on w(k), k < 0 (see details in [5]). Then the a-anisotropic norm
of F is defined as ([5])

‖|F‖|a = sup
G∈Ga

‖FG‖2
‖G‖2

, (4)

where Ga denotes the set of all stochastic systems of form (2) with Ā(G) < a.

3 Main result

Theorem 1 The stochastic system with multiplicative noise (1) has the a-
anisotropic norm less than a given γ > 0 if there exists q ∈

(
0,min

(
γ−2,

‖F‖−2∞
))

such that the Riccati equation

X =
∑r

i=0A
T
i XAi +

(∑r
i=0A

T
i XBi + CTD

)
×
(
1
q I −

∑r
i=0B

T
i XBi −DTD

)−1 (∑r
i=0A

T
i XBi + CTD

)T
+ CTC

(5)

has a stabilizing solution X ≥ 0 satisfying the following conditions

Ψq :=
1

q
I −

r∑
i=0

BT
i XBi −DTD > 0 (6)

and

det

(
1

q
− γ2

)
Ψ−1q ≤ e−2a. (7)
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Proof. Using the Definition 1 of the H2-type norm it follows that the
condition supG∈Ga

‖FG‖2
‖G‖2 < γ is equivalent with the condition

lim
`→∞

1

`

∑̀
t=0

E
[
|y(t)|2 − γ2|w(t)|2

]
< 0 (8)

for all w(t) generated by filters G ∈ Ga.
For the sake of simplicity writing, the following notations will be intro-

duced:

A(t) := A0 +
∑r

i=1 ξ(t)Ai

B(t) := B0 +
∑r

i=1 ξ(t)Bi .

Using (1) it follows that

xT (t+ 1)Xx(t+ 1)− xT (t)Xx(t) = [A(t)x(t)+
B(t)w(t)]TX[A(t)x(t) + B(t)w(t)]− xT (t)x(t)− yT (t)y(t) + xT (t)CTCx(t)

+xT (t)CTDw(t) + wT (t)DTCx(t) + wT (t)DTDw(t)

where we added the zero term yT (t)y(t)−(Cx(t)+Dw(t))T (Cx(t)+Dw(t)).
Collecting terms we readily obtain

yT (t)y(t) = xT (t)[A(t)TXA(t)−X + CTC]x(t) + wT (t)[DTD+
B(t)TXB(t)]w(t) + wT (t)[DTC + B(t)TXA(t)]x(t)

+xT (t)[CTD +A(t)TXB(t)]w(t) + xT (t)Xx(t)− xT (t+ 1)Xx(t+ 1) .

Noting that the properties of the random sequence {ξ(t)}t≥0 imply
E{ATXA} =

∑r
i=0A

T
i XAi, E{BTXB} =

∑r
i=0B

T
i XBi and E{ATXB} =∑r

i=0A
T
i XBi, it follows from the above equation that

E{yT (t)y(t)} = E{xT (t)[
∑r

i=0A
T
i XAi −X + CTC]x(t)

+wT (t)[DTD +
∑r

i=0B
T
i XBi]w(t)

+wT (t)[DTC +
∑r

i=0B
T
i XAi]x(t) + xT (t)[CTD +

∑r
i=0A

T
i XBi]w(t)

+xT (t)Xx(t)− xT (t+ 1)Xx(t+ 1)} .

Substituting from (5) into the first bracket in the above equation, one obtains

E
[
|y(t)|2

]
= E

[
xT (t)Xx(t)− xT (t+ 1)Xx(t+ 1)

+xT
(∑r

i=0A
T
i XBi

)
w(t) + wT (t)

(∑r
i=0B

T
i XAi

)
x(t)

−xT (t)
(∑r

i=0A
T
i XBi + CTD

) (
1
q I −

∑r
i=0B

T
i XBi −DTD

)−1
×
(∑r

i=0A
T
i XBi + CTD

)T
x(t) + wT (t)

(∑r
i=0B

T
i XBi

)
w(t)

+xT (t)CTDw(t) + wT (t)DTCx(t) + wT (t)DTDw(t)
]
.

(9)
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Define

P(t) :=
[
wT (t)− xT (t)

(∑r
i=0A

T
i XBi + CTD

)
×
(
1
q I −

∑r
i=0B

T
i XBi −DTD

)−1
−vT (t)

(
1
q I −

∑r
i=0B

T
i XBi −DTD

)− 1
2

]
×
(
1
q I −

∑r
i=0B

T
i XBi −DTD

)
×
[
w(t)−

(
1
q I −

∑r
i=0B

T
i XBi −DTD

)−1 (∑r
i=0B

T
i XAi +DTC

)
x(t)

−
(
1
q I −

∑r
i=0B

T
i XBi −DTD

)− 1
2 v(t)

]
.

(10)

Then, using the properties of {v(t)}t≥0 it follows that

E [P(t)] = E
[
wT (t)

(
1
q I −

∑r
i=0B

T
i XBi −DTD

)
w(t)

−wT (t)
(∑r

i=0B
T
i XAi +DTC

)
x(t)

−xT (t)
(∑r

i=0A
T
i XBi + CTD

)
w(t)

+xT (t)
(∑r

i=0A
T
i XBi + CTD

) (
1
q I −

∑r
i=0B

T
i XBi −DTD

)−1
×
(∑r

i=0B
T
i XAi +DTC

)
x(t)

−2TrDf

(
1
q I −

∑r
i=0B

T
i XBi −DTD

) 1
2

]
+m.

(11)

Taking into account (9) and (11) one obtains

E
[
|y(t)|2 − γ2|w(t)|2

]
= E

[
xT (t)Xx(t)− xT (t+ 1)Xx(t+ 1)− P(t)

−2TrDf

(
1
q I −

∑r
i=0B

T
i XBi −DTD

) 1
2 +m+

(
1
q − γ

2
)
wT (t)w(t)

]
.

(12)

Since the systems (1) and(2) are ESMS

lim
`→∞

1

`
E
[
xT (0)Xx(0)− xT (`)Xx(`)

]
= 0,

and then one directly obtains that

lim`→∞
1
`

∑`
t=0E

[
|y(t)|2 − γ2|w(t)|2

]
= lim`→∞

1
`E
[
−
∑`

t=0 P(t) +
∑`

t=0

(
1
q − γ

2
)
wT (t)w(t)

]
−2TrDf

(
1
q I −

∑r
i=0B

T
i XBi −DTD

) 1
2 +m.

(13)
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From (10) it follows that P(t) ≥ 0 and P(t) = 0 for

w(t) =
(
1
q I −

∑r
i=0B

T
i XBi −DTD

)−1 (∑r
i=0B

T
i XAi +DTC

)
x(t)

+
(
1
q I −

∑r
i=0B

T
i XBi −DTD

)− 1
2 v(t).

(14)

The above condition is fulfilled for a filter G having the state x̃(t) equal to
the state x(t) of F and if the following conditions are accomplished

Cf =
(
1
q I −

∑r
i=0B

T
i XBi −DTD

)−1 (∑r
i=0B

T
i XAi +DTC

)
Df =

(
1
q I −

∑r
i=0B

T
i XBi −DTD

)− 1
2 .

(15)

For w(t) given by (14) the first equation (1) becomes

x(t+ 1) = (A0 +
∑r

i=1 ξi(t)Ai)x(t) + (B0 +
∑r

i=1 ξi(t)Bi)

×
(
1
q I −

∑r
i=0B

T
i XBi −DTD

)−1 (∑r
i=0B

T
i XAi +DTC

)
x(t)

+ (B0 +
∑r

i=1 ξi(t)Bi)
(
1
q I −

∑r
i=0B

T
i XBi −DTD

)− 1
2 v(t).

(16)

Since x̃(t) equals x(t), t = 0, 1, ... from the above equation one obtains

Afi = Ai +Bi

(
1
q I −

∑r
j=0B

T
j XBj −DTD

)−1
×
(∑r

j=0B
T
j XAj +DTC

)
Bfi = Bi

(
1
q I −

∑r
j=0B

T
j XBj −DTD

)− 1
2 , i = 0, 1, ..., r.

(17)

Since X is the stabilising solution of the Riccati equation (5) it follows that
the filter with Afi , i = 0, 1, ..., r given above is ESMS.

Based on the expression (15) of Df and since x̃(t) = x(t), from the
second equation (2) it follows that

E
[
w̃(0)w̃T (0)

]
=

(
1

q
I −

r∑
i=0

BT
i XBi −DTD

)−1
. (18)

In the following it will be shown that under the assumption (7) from the

statement, for all ESMS filters G ∈ Ga having Df = Ψ
− 1

2
q the following

condition is accomplished

−m+

(
1

q
− γ2

)
‖G‖22 < 0. (19)
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Indeed, since G ∈ Ga and since Df = Ψ
− 1

2
q it follows that

det
mΨ−1q

‖G‖22
> e−2a. (20)

Taking into account (7) and the above inequality it follows that

det
mΨ−1q

‖G‖22
> det

(
1

q
− γ2

)
Ψ−1q

from which one directly obtains (19). Using the inequality (19), equations
(13), (11), the equation for Df in (15) and Definition 2, it follows that
||FG||2/||G||2 < γ.

Let us consider now the more general case for a certain filter G ∈ Ga,
satisfying therefore the condition

−1

2
ln det

mDfD
T
f

‖G‖22
≤ a . (21)

From the above condition and from the assumption (7) it follows that

det

(
1

q
− γ2

)
Ψ−1q < det

mDfD
T
f

‖G‖22
. (22)

Using the general property det(A) ≤ (Tr(A)/m)m, from the above inequal-
ity one obtains

Tr

(
DfΨ

1
2
q

)
>

(
1

q
− γ2

) 1
2

m
1
2 ‖G‖2 (23)

and thus (
1
q − γ

2
)
‖G‖22 − 2Tr

(
DfΨ

1
2
q

)
+m

<
(
1
q − γ

2
)
‖G‖22 − 2

(
1
q − γ

2
) 1

2 m
1
2 ‖G‖2 +m

=

((
1
q − γ

2
) 1

2 ‖G‖2 −m
1
2

)2

(24)

From the above inequality it follows that if(
1

q
− γ2

)
‖G‖22 = m (25)
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the left hand side of it is negative and therefore from (12) it follows that
‖FG‖2/‖G‖2 < γ. The condition (25) implies that

1

q
− γ2 =

m

‖G‖22
.

Substituting the above expression into (7) one obtains the condition

−1

2
ln det

mΨ−1q

‖G‖22
≥ a . (26)

Comparing (26) with the definition of the mean anisotropy one concludes

that if for a filter G ∈ Ga there exists another filter Ĝ with Ā
(
Ĝ
)
≥ a

such that ‖Ĝ‖2 = ‖G‖2 and having D̂f = Ψ
− 1

2
q for a certain q satisfying the

assumptions of Theorem 1, then ‖FG‖2/‖G‖2 < γ. A similar conclusion
is derived in the deterministic framework in [13]. Such a Ĝ always may be
found. Indeed since Ψ−1q → 0 for q → 0, it follows that the Riccati equation
(5) has a stabilising solution and the condition (26) is fulfilled for a small
enough q > 0. Then for any G ∈ Ga, based on Lemma 1 one can easily
determine Âfi , B̂fi , i = 0, ..., r and Ĉf such that ‖Ĝ‖2 = ‖G‖2.

Using the inequality (19), (13), (11), the equation for Df in (15) and
Definition 2, it follows that ||FG||2/||G||2 < γ. Let us finally notice that
according with the Lemma 2, it follows that a necessary condition for the
existence of a stabilizing solution of the Riccati equation (5) is 1/q ≥ ‖F‖2∞,
from which it follows that q ≤ ‖F‖−2∞ . Thus the proof is complete.
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